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Abstract: Obesity is an increasingly widespread disease worldwide because of lifestyle changes. It
is associated with an increased risk of cardiovascular disease, primarily type 2 diabetes mellitus,
with an increase in major cardiovascular adverse events. Bariatric surgery has been shown to be able
to reduce the incidence of obesity-related cardiovascular disease and thus overall mortality. This
result has been shown to be the result of hormonal and metabolic effects induced by post-surgical
anatomical changes, with important effects on multiple hormonal and molecular axes that make this
treatment more effective than conservative therapy in determining a marked improvement in the
patient’s cardiovascular risk profile. This review, therefore, aimed to examine the surgical techniques
currently available and how these might be responsible not only for weight loss but also for metabolic
improvement and cardiovascular benefits in patients undergoing such procedures.
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1. Introduction

Obesity is a chronic disease, characterized by an excess of adipose tissue, whose
etiology is complex and multifactorial, resulting from the interaction of numerous genetic
and environmental factors [1]. According to the World Health Organization, the global
prevalence of obesity has more than doubled since 1980, reaching a pandemic proportion,
for which the term “globesity” has been coined [2]. It is estimated that up to 35% of the
world’s population has problems with excess weight [1]. The phenomenon is growing
rapidly and also affecting the young (children and adolescents), with significant social
costs [3]. In Europe, up to 59% of adults and almost 1 in 3 children are overweight or
affected by obesity. Moreover, it is one of the main causes of death in the European Region,
with more than 1.2 million deaths per year (corresponding to more than 13% of total
mortality) [4].

The pathophysiological mechanisms linking obesity and the risk of cardiovascular
diseases (CVDs) and adverse cardiovascular events are multiple and different [5]. Obe-
sity induces insulin resistance and consequent hyperinsulinemia [6], increases the basal
sympathetic tone [7] and the excess adipose tissue produces a series of molecules, called
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“adipokines” [8], which promote systemic inflammation and induce a pro-thrombotic
state [9–11], all conditions known to be associated with the risk of coronary artery diseases
development and progression. Obesity is a real disease that reduces the quality and life ex-
pectancy, and taking into account the molecular mechanisms described above, it represents
a risk factor for the onset of diseases such as hypertension (HTN), type 2 diabetes mellitus
(T2DM), sleep apnea [12] and metabolic syndrome, leading to myocardial infarction (MI)
and stroke [5]. Furthermore, the risk of the onset of cancer diseases, such as renal, colorectal,
prostate, breast, and of developing musculoskeletal diseases, is growing [13].

The presence of obesity worsens glycemic control and metabolic parameters, thus
inducing diabetes. It is known that the risk of T2DM increases linearly with body mass index
(BMI) [14]. Because of this strict relationship, the term “diabesity” is also used [15]. For the
management of this condition, lifestyle changes are mandatory in addition to innovative
and effective pharmacological and surgical strategies [1]. It is important to personalize the
hypoglycemic therapy according to the patient’s phenotype, considering in particular those
with a neutral or weight-reducing effect. Bariatric surgical procedures (BS) decrease the
CVD risk, leading to sustained weight loss and improvement of glycemic control, HTN, and
dyslipidemia in patients with T2DM, also after many years from the intervention [16] and
have been found superior compared to those who did not undergo surgical treatment [17].
This surgery, also called “metabolic”, allows better control of diabetes through reduction
of caloric intake, weight loss, and reduction of insulin resistance. T2DM is considered a
criterion for bariatric surgery in patients with BMI > 35 kg/m2 [18] and several studies
have shown that bariatric surgery leads to decreased long-term mortality by improving
CVD risk profile [19–22] and reducing the risk of MI as well [23]. This review aimed to
analyze the current evidence about the cardiovascular effects of bariatric surgery in patients
with T2DM.

2. Literature Sources and Search Strategy

We performed a non-systematic review of the literature by applying the search strategy
in different electronic databases (MEDLINE, EMBASE, Cochrane Register of Controlled
Trials, and Web of Science). Original reports, meta-analyses, and review articles in peer-
reviewed journals up to April 2023 evaluating the clinical role of bariatric surgery and its
relationship with CVD, in the general population and in T2DM patients were considered.
The terms bariatric surgery, obesity, diabetes mellitus, CVD, BMI, HTN, dyslipidemia, MI,
and weight loss were incorporated into the electronic databases for the search strategy. The
references of all identified articles were reviewed to look for additional papers of interest to
extrapolate the more recent available data on the link between bariatric surgery and CVD,
especially in T2DM patients.

3. Bariatric Surgery: Overview

Bariatric surgery refers to a group of gastrointestinal surgeries whose original aim was
to achieve weight loss in extremely obese populations. However, since its introduction in
the 1950s [24], it has been observed that in patients undergoing such surgery there was a
drastic reduction in obesity-associated diseases including primarily T2DM [25] but also
HTN, dyslipidemia, and overall mortality [26,27]. To emphasize the clinical importance
of these beneficial systemic effects, these procedures are now better defined under the
term metabolic bariatric surgery (MBS) [28]. Accumulated evidence in the last few years
has demonstrated a significant variation in the secretion and activity of hormones and
neurotransmitters. Some of these mediators are able to affect appetite and satiety as well
as energy expenditure and glucose metabolism, making it clear that the post-surgical
metabolic effects were not exclusively related to the mere weight loss (caloric restriction)
and malabsorption that follow such surgical procedures [29,30].

Currently, MBS are categorized by their predominant mechanism of action in pure
gastric restrictive procedures (adjustable gastric band, sleeve gastrectomy), gastric restric-
tion with significant malabsorption (malabsorptive surgeries: biliopancreatic diversion
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and duodenal switch), and gastric restriction with poor malabsorption (mixed restrictive
and malabsorptive surgeries: Roux-en-Y gastric bypass and one-anastomosis gastric by-
pass) [31]. The jejunocolic bypass was first performed in 1970; it is an example of a pure
malabsorptive procedure, and was abandoned due to severe side effects [32].

Pure gastric restrictive interventions are procedures that result in a reduction of gastric
capability by the creation of a smaller gastric chamber called a “pouch”, leading to weight
loss because of early satiety during food intake, thus associating to a lower intake of calories.
Among them, adjustable gastric banding (AGB) and sleeve gastrectomy (SG) are the most
performed procedures (Figure 1) [33].
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Figure 1. Gastric restrictive bariatric surgeries. (a): adjustable gastric band with less predictibale
nutrients reduction (???); (b): sleeve gastrectomy with more predictable nutrients reduction (?) and
possible cardiovascular benefits.

The AGB consists of a laparoscopic positioning of a silicone prosthesis (the band)
around the stomach creating a proximal gastric pouch of approximately 20–30 mL. The
prosthesis is adjustable, i.e., it has the possibility of tightening or widening the passage
between the pouch above and the remaining stomach (outlet) below the banding; this
occurs because the banding consists of an insufflation chamber that is connected to a valve,
positioned in the subcutaneous tissue, through a catheter [34].

The SG consists of the vertical partition of the stomach reaching a reduction of its size
of about 25%.

Originally, the SG was the first step to execute either a gastric by-pass (GPB) or
biliopancreatic diversion (BPD) with duodenal switch (DS) but since most patients showed
to successfully achieve satisfactory weight loss without the full procedure, it is now a
standing-alone surgery which trend is constantly increasing [33]. Even if it is commonly
considered a restrictive procedure, it has been demonstrated that the SG can induce several
hormonal changes turning its mechanism of action more complex and useful to determine
also metabolic changes [35].

Currently, the two most frequent malabsorptive procedures performed worldwide are
BPD and DS [36] (Figure 2).
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Figure 2. Gastric restriction procedures with significant malabsorption. (a): biliopancreatic diversion;
(b): duodenal switch.

These procedures are thought to achieve weight loss through a controlled malabsorp-
tion of nutrients.

BPD consists of the resection of approximately two distal thirds of the stomach with
the closure of the duodenal stump followed by an intestinal bypass. The procedure allows
the creation of two tubes: food passes through one and biliopancreatic secretions from the
liver and pancreas pass through the other. The meeting of pancreatic secretion and food
only takes place for a short distance, approximately 70 cm from the colon, thus resulting in
reduced digestion and less food absorption [37]. The gastric pouch is larger than those of
the restrictive procedures allowing larger meals even compared to GBP [31].

To avoid or reduce several complications related to BPD (mainly dumping syndrome
and marginal ulcer), a SG is executed instead of a distal gastric resection in the so-called
BPD/DS [38].

Roux-en-Y gastric bypass (RYGB) is a mixed restrictive and malabsorptive procedure.
Weight loss is achieved through gastric restriction and decreased intestinal absorption,
which is the greater the further downstream the outlet of the bilio-pancreatic secretions.
It consists of the definitive separation of the stomach with the creation of a small gastric
pouch of 25–30 mL. This pouch is anastomosed with the alimentary tract of a digiunal loop,
while the biliopancreatic tract is anastomosed between 100 and 150 cm downstream of the
gastrodigiunal anastomosis [39].

Today, one-anastomosis gastric bypass (OAGB) is the third most commonly performed
MBS surgery. It is a modification of the mini-gastric bypass that originated in 1997 [40] and
now counts several technical variants [41] but overall, it consists of a long narrow-sleeve
gastric tube in conjunction with end-to-side or side-to-side gastrojejunostomy performed
150–200 cm distal to the ligament of Treitz [42,43]. A schematic view of RYGB and OAGB is
shown in Figure 3.
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OAGB has been associated with a greater weight loss than RYGB [44]. Furthermore, in
patients with very high BMI (≥60 kg/m2), OAGB was shown to be non-inferior to RYGB
with regard to weight loss in a 2 years follow-up [45]. Interestingly, compared to RYGB,
OAGB seems to be more effective in the metabolic improvement of T2DM in patients with
a milder BMI increase [46]. However, most OAGB-related complications depend on the
size of the gastric pouch and the length of intestinal anastomosis and may require surgical
correction in an RYGB [47,48].

Table 1 shows the main clinical and technical aspects of the above-cited procedures.

Table 1. Clinical and technical comparison between MBS.

MBS Principal Mechanism of Action Technical Aspects Expected Weight Loss Side Effects

AGB Gastric restriction
� Reversible
� No anatomic

alteration
20–25%

� Splenic injury
� Oesophageal injury
� Band slippage/erosion/migration
� Reservoir deflation/leak
� Persisting vomiting
� Acid reflux
� Dysphagia
� Failure in weight loss

SG Gastric restriction

� Easy to perform
� Few long-term

complications
� Some

metabolic effects

25–30%
� Leaks are difficult to manage
� 20–30% of GERD
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Table 1. Cont.

MBS Principal Mechanism of Action Technical Aspects Expected Weight Loss Side Effects

BPD
and
DS

Mainly malabsorptive

� Strong
metabolic effects

� Durable weight loss
� Effective for

patients with very
high BMI

35–45%

� Protein-calorie malnutrition
� GERD
� Potential for internal hernias
� Duodenal dissection
� Technically challenging
� Higher rate of micronutrient

deficiencies than RYGBP
� loose stools, steatorrhea,

foul-smelling flatus

RYGB Mixed restrictive and malabsorptive

� Strong
metabolic effects

� Few complications
� Effective for GERD

30–35%

� Anastomotic leak
� Acute gastric dilation
� Delayed gastric emptying
� Stricture formation

with vomiting
� Incisional hernia
� Intestinal obstruction
� Dumping syndrome *

OAGB Mixed restrictive and malabsorptive

� Simpler operative
technique compared
to RYGBP

� Strong
metabolic effects

35–45%

� GERD possibly severe
(bile reflux)

� Long-term data lacking
� Severe malabsorption

depending on the BP
limb length

MBS: metabolic bariatric surgery; AGB: adjustable gastric band; SG: sleeve gastrectomy; GERD: gastroesophageal
reflux disease; BPD: biliopancreatic diversion; DS: duodenal switch; BMI: body mass index; RYGBP: Roux-en-Y
gastric by-pass. * Refers to symptoms and signs that occur when food reaches the small bowel too rapidly.
Early dumping syndrome occurs between 10 to 30 min after meal and includes abdominal cramps, tachycardia,
nausea, and diarrhea. Late dumping syndrome occurs from 1 to 3 h after the meal and it is characterized by
hyperinsulinemic hypoglycemia leading to perspiration, palpitations, hunger, weakness, confusion, tremor, and
syncope [49].

According to the 2022, American Society for Metabolic and Bariatric Surgery (ASMBS)
and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO)
guidelines [28,50], bariatric surgery is addressed patients with a BMI ≥ 35 Kg/m2 or in
patients with a BMI ≥ 30 kg/m2 and T2DM. In addition, MBS should be considered in
patients with a BMI of 30–34.9 kg/m2 who do not achieve satisfactory weight loss despite
optimal lifestyle and medical therapy [50]. It is worth mentioning that the BMI threshold
varies among different ethnicity with Asians considered obese yet from a BMI > 25.

No recommendation is listed to address a patient to a specific surgical technique.
Hence, local expertise, patient individual profile, and preference are the main factors to
take into account during the decision-making process [50].

There are no absolute contraindications to BS but severe heart failure, unstable coro-
nary artery disease, end-stage lung disease, active cancer treatment, portal hypertension,
drug/alcohol dependency, and impaired intellectual capacity are considered relative con-
traindications [31]. Moreover, it should be taken into account that this strategy might
result in different complications, such as surgical, nutritional, renal, gastroenteric, neuro-
logical, and psychological [51,52]. Thus, a multidisciplinary approach before and after BS
is mandatory.

4. Epidemiology

T2DM accounts for 90–95% of diabetic patients [53] and it is closely associated with
obesity and other cardiovascular risk factors such as HTN and dyslipidemia.

The number of T2DM patients is dramatically grown worldwide with 151 million
adults affected twenty years ago and 462 million in 2019 with a trend destined to increase
in the coming years [54].
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In 1990 the prevalence of the disease was 3.9% in men and 3.5% in women, in 2019 it
reached 6% in men and 5% in women [55]. The progressive increase of T2DM prevalence
has involved all regions of the world but more rapidly the developing regions such as
North Africa and South Asia, in particular China and India due to the rapid diffusion of
urbanization, sedentary lifestyle, and intake of industrial foods in the last years.

In a survey conducted in China in 2007–2008, the prevalence of T2DM was higher
than in other countries of the world reaching 9.7%, and has been predicted that in 2030,
2 of 10 people with T2DM in the world will live in China.

Obesity is one of the major modifiable risk factors of T2DM, but it has been observed
that BMI does not correlate with T2DM because it is not representative of the body fat
distribution being the android model of obesity with visceral and abdominal fat deposits to
have a role in the physiopathology of T2DM rather than the absolute individual weight [56].
This aspect explains the higher incidence of T2DM in young obese males with higher
abdominal circumference than young obese females in which the adiposity concentrates
on the glute-femoral region and the increase of incidence in post-menopausal women in
which the hormonal variation promotes android distribution of body fat. Furthermore,
obesity has ever been a healthy problem in Western countries as demonstrated in a survey
conducted in 2014 reporting a prevalence of 28% in high-income Western countries against
5% in South Asia countries where it has been registered as the highest world prevalence of
T2DM. This apparent paradox corroborates the hypothesis that, for the same BMI, the Asian
population has a higher risk of developing T2DM despite lower diffusion of obesity [57].

In the last twenty years, BS has become the first-choice treatment for severe obesity
with an acceptable risk of morbidity and mortality and high efficacy on T2DM control. In
a recent study that included 1111 diabetic patients treated with BS, 74% of patients had
diabetes remission at 1 year [58]. The efficacy of surgery persists over time as demonstrated
in a review of 10 cohort studies in which a significantly increased T2DM remission (relative
risk (RR) = 5.90; 95% CI 3.75–9.28) as compared to non-surgical treatment of obesity [59]
was registered in a long term follow up (≥5 years) [60,61].

5. Pathophysiological Changes after Bariatric Surgery

Bariatric surgery reduces the incidence of CVD through multiple hormonal mecha-
nisms [62–65]. Because the residual volume of the stomach limits food intake, it is manda-
tory a change in eating habits. The 2014 European guidelines suggest a small-fractionated
meal plan for all patients undergoing bariatric surgery [66]. These changes in eating
style may affect hormone signaling in the liver such as insulin, glucagon, ghrelin, and
many others [67].

The primary change after BS is weight loss, which results in several benefits [68]. A
previous study has evaluated how different degrees of weight loss may affect metabolic
function and adipose tissue biology [69]. A weight loss greater than 16 percent of initial
weight results in a significant decrease in free fatty acids (FFA) and C-reactive protein
(CRP) plasma concentrations [70,71]. Conversely, plasma adiponectin levels raised signifi-
cantly [72], and a preferential loss of intra-abdominal and intrahepatic fat compared to total
body fat was also found [69]. Hepatic benefits correlate with the degree of weight loss: a
decrease of 3–5% is associated with reduced steatosis, ≥5–7% resolved NASH while greater
reductions (i.e., ≥10%) may also improve liver fibrosis [73]. Weight loss is also associated
with histologic improvement and this effect is directly correlated to the degree of weight
reduction regardless of the method used to achieve it [74].

After bariatric surgery, blood levels of triglycerides and glucose are significantly
reduced, while postprandial levels of adiponectin, glucagon-like peptide 1 (GLP-1), in-
sulin, and serum insulin-like growth factor-1 (IGF-1) are significantly increased. Ele-
vated adiponectin levels are associated with changes in total fat mass and reduced risk
of atherosclerosis [75]. Increased GLP-1 levels after weight loss surgery can improve
obesity-induced endothelial dysfunction, restore the endothelial protective properties of
high-density lipoprotein cholesterol (HDL-C) [76], and reduce insulin resistance. These
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metabolic changes result consequently in a decreased incidence of common carotid artery
intima-media thickness augmentation especially in young patients with morbid obesity [5].
Serum Hsp60 is increased in morbidly obese patients and decreases after post-surgical
weight loss. The association of Hsp60 with cardiovascular risk as a pro-inflammatory adipo-
factor suggests that Hsp60 may be a potential link between adipose tissue inflammation
and CVD development [77].

Weight loss after bariatric surgery may help blood pressure control in obese patients.
Previous observations have shown a remission rate of HTN between 60% and 70% in
the year following weight loss surgery reaching a peak as high as 90% in a medium
follow-up [78,79].

In this regard, the prospective, observational, unicenter BARIHTA study (Hemody-
namic Changes And Vascular Tone Control After BARIatric Surgery. Prognostic Value
Regarding HyperTension And Target Organ Damage), has reported that patients with
severe obesity scheduled to undergo bariatric surgery [80] showed a statistically significant
decrease in plasmatic renin activity (PRA), aldosterone, angiotensin-converting enzyme
(ACE) activity with an increase in the ACE/ACE2 ratio [80].

Bariatric surgery also reduces the rates of T2DM because of better glucose control that
may lead to a remission of diabetes in up to 95–100% of patients [81]. Initially, weight loss
was thought to be the major determinant of this benefit [82]. However, different studies
have found that metabolic changes and modulation of the hormones profile play a greater
role, in improving incretin secretion, recovering islet function, and restoring peripheral
insulin sensitivity to regulate glucose homeostasis [83–89]. In addition, bariatric surgery
reduces circulating levels of succinate [90] and curbs the Krebs cycle to prevent excessive
glucose production.

Weight loss after bariatric surgery modulates GLP-1 levels [91–94]. This mediator
plays an important role in changes in metabolism [92]. GLP-1 is a peptide hormone and
neurotransmitter with several metabolic and non-metabolic effects such as its ability to
improve B-cell function and insulin sensitivity [88,93–95]. The rapid entry and absorption
of nutrients in the distal small intestine induce increases in GLP-1 (up to three-fold).
Although the majority of GLP-1 research has focused on glycemic control, GLP-1 functions
extend beyond glucose metabolism. It is known that GLP-1 has a dose-dependent effect
on satiety [92]. It promotes satiety, potentiates insulin release, and suppresses glucagon
release in response to nutrient ingestion [92]. GLP-1 agonists are now approved for weight
loss [96].

Peptide YY (PYY) is a peptide released by enteroendocrine L cells in the distal small
intestine and colon in response to feeding [97]. It is mainly involved in the central regulation
of appetite [98]. It has been shown in an experimental model that PYY mediated weight
loss after bypass surgery [99]. Moreover, increased PYY has been observed in patients
after bariatric surgery [100]. PYY is also believed to regulate glucose homeostasis [101].
Although further studies are needed, it is plausible that increased PYY levels are associated
with the stabilization of glucose levels, metabolism, and weight, which have a direct impact
on both the rates and complications of obesity and diabetes.

Although patients with T2DM openly outnumber patients with T1DM, bariatric
surgery has been associated also with benefits on T1DM subjects and associated biomark-
ers. One study indicated that comparable benefits might be achieved by bariatric surgery
on complications associated with T1DM as well as T2DM [91]. Other evidence indicates
significant declines in insulin, glycosylated hemoglobin (HbA1c), net BMI, triglycerides,
cholesterol, and blood pressure after bariatric surgery. Although evidence is still limited
due to the paucity of studies and early stages of trials, existing results show that bariatric
surgery is promising in reducing morbidity and mortality rates caused by T1DM.

The impact of bariatric surgery on the course of Nonalcoholic Fatty Liver Disease
(NAFLD) in obese individuals has been also reported [102–105]. Some studies indicate
that NAFLD probably causes various cardiovascular and hepatic complications despite its
apparently benign nature. Bariatric surgery might be a potential method to stop disease
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progression. To further understand how BS can curb the progression of NAFLD, it is
essential to unveil the biomarkers that drive NAFLD and its broad impacts. While the liver
is primarily affected, also other parts of the gastrointestinal system are inhibited by the
presence of various biomarkers that modulate chemical and endocrine function. These
biomarkers consist of but are not limited to, cholesterol ester transfer protein (CETP) [106],
neurotensin (NT) [107], and vitamin D [108]. CETP may favor the progression of NAFLD
through metabolic inflammation in the liver. High NT levels have been associated with
high rates of NAFLD, CVD, T2DM, and obesity. Low levels of vitamin D (insufficiency
or deficiency) are indicative of NAFLD progression in association with fibrinogen levels,
CRP levels, and T2DM [108]. Table 2 summarizes the principal molecular and hormonal
changes after bariatric surgery.

Table 2. Clinical and technical comparison between MBS.

Molecule/Hormone Change Direction Final Physiologic Effect Clinical Changes
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6. Effects of Bariatric Surgery on Diabetes Mellitus and Other Cardiovascular
Risk Factors

Bariatric surgery has been proven to achieve benefic results on cardiovascular risk, by
short- and long-term effects on diabetes mellitus, HTN, dyslipidemia, and inflammation,
leading to a better quality of life (Figure 4).
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6.1. T2DM

Several, large cohort studies comparing BS to conventional obesity management have
confirmed that patients undergoing bariatric surgery achieve diabetes remission more
frequently than those on conventional therapy alone, over a follow-up period ranging from
one to 5 years [58,60,109,110].

Glycemic profile improvement after bariatric surgery is largely due to the weight loss
and the subsequent increase in insulin sensitivity, as it happens to patients who lose an
equivalent amount of weight by using caloric restriction [111]. A substantial improvement
in the glycemic balance is also determined by changes in the gut microbiome, gut hormones,
and bile acid signaling, which typically occur early after bariatric surgery.

Within 3 months from surgery, the gut microbiome appears markedly altered, with
increased diversity [112–115]. In support of the above, fecal transplant from either mice
or humans that have undergone RYGB into germ-free rats fed on a high-fat diet results in
weight loss and improvement in glycemic parameters [116].

Bile acid signaling is also altered after some bariatric surgery interventions. In particu-
lar, serum bile acid concentration and composition change following RYGB and SG, but
not following laparoscopic AGB. Bile acids act as hormones that bind to the farnesoid X
receptor (FXR), improving glucose tolerance [117,118]. The specific effect of FXR pathway
activation is still unclear since studies on rodents have shown that both inhibition and
activation of FXR result in improved metabolic phenotypes and weight loss.

Recent meta-analyses have highlighted how different surgical techniques produce
different effects on glucose homeostasis, being more drastic procedures (e.g., RYGB) more
effective than less drastic ones (e.g., SG), and having laparoscopic AGB (which does not
alter the gut anatomy) the lowest remission rate [119,120].

Two hypotheses could explain the gut rearrangement that occurs early after bariatric
surgery: (1) the hindgut hypothesis, under which the rapid transit of nutrients into the
distal bowel, due to proximal small bowel bypass, would cause increased secretion of gut
hormones; and (2) the foregut-exclusion hypothesis, by which the levels of an unidentified
anti-incretin factor would decrease after exclusion of nutrients from the duodenum and the
proximal jejunum [121,122].
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6.2. Systemic Arterial HTN

Bariatric surgery leads to improvement or resolution of HTN. A systematic review and
meta-analysis of prospective studies have shown that a BMI reduction of 5 corresponds to
an HTN reduction of 27% after 12–24 months from surgery [123].

Decrease in vasoconstrictors (angiotensinogen, angiotensin II, renin, and endothelin-1),
increase in vasodilators, and natriuresis (induced by higher levels of atrial natriuretic peptide,
due to neprylisin reduction) are key factors which mediate blood pressure reduction [124,125].

HTN improvement after bariatric surgery is also due to obstructive sleep apnea reso-
lution. Obstructive sleep apnea syndrome in obese people is characterized by intermittent
hypoxia/hypercapnia, which causes the activation of the sympathetic nervous system and
renin-angiotensin-aldosterone system, contributing significantly to HTN

6.3. Dyslipidemia

Bariatric surgery-induced weight loss results in significant improvement of atherogenic
lipid profile, in terms of reduction in total cholesterol, low-density lipoprotein cholesterol
(LDL-C), and triglycerides, and increase in cardioprotective HDL-C [126,127]. However, the
magnitude of these changes varies widely among the different bariatric surgical techniques,
likely due to anatomic alterations unique to each procedure [127,128]. A systematic review
on long-term (2 years) follow-up after bariatric surgery demonstrated a remission rate for
hyperlipidemia of 60.4% for RYGB and 22.7% for LAGB [129].

6.4. Inflammation

Bariatric surgery has been proven to reduce obesity-related inflammatory states. A
meta-analysis of 52 studies reported a decrease in serum inflammatory markers such as
CRP levels, measured by high-sensitivity assay (hs-CRP), of 61.7%, up to 34 months after
bariatric surgery [130]. Similarly, RYGB surgery reduced inflammatory biomarkers, such
as CRP, leptin, and soluble receptor 1 for tumor necrosis factor α (TNFα), and increased
anti-inflammatory mediators, adiponectin in particular, regardless of the magnitude of
weight loss, within 6 months from the procedure [131].

6.5. Health-Related Quality of Life

The amelioration or resolution of comorbidities typically associated with obesity,
including T2DM, HTN, obstructive sleep apneas, dyslipidemia, and gastroesophageal
reflux disease, after bariatric surgery, improves significantly patients’ quality of life. A
meta-analysis of more than 2000 patients across 21 studies reported a marked improve-
ment in mental health, assessed by using the Short-Form 36 (SF-36) questionnaire, after
surgery [132]. Significant improvement in patients’ self-perception of health status after
surgery was also observed.

7. Long-Term Impact of Bariatric Surgery on Metabolic Profile and
Cardiovascular System

MBS is now considered the most effective treatment for obesity and its complications
even in the long term [133–137].

Twelve randomized controlled trials, with a total of 874 patients with T2DM comparing
surgical vs. medical therapy with follow-up from 1 to 5 years [134–136,138–145] have shown
the long-term impact of bariatric surgery on diabetes.

In these studies, the following surgical procedures have been used: RYGB (9 studies),
AGB (5 studies), SG (2 studies), and BPD (1 study) [146]. All of these trials, except one [140],
showed that bariatric surgery was more effective for glycemic control and remission of
T2DM, with a significant decrease in HbA1c compared with the non-surgical group (1.8%
to 3.5% vs. 0.4% to 1.5%) [146]. People with earlier-stage T2DM appear to have better
improvement after bariatric surgery, in terms of remission rates, suggesting that bariatric
surgery should be considered as an early option [146].
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However, the effect of bariatric surgery on HTN in the long term is not well established
yet. Data from an observational study (n = 2010) indicate that up to 44% of patients
who experience initial remission had a recurrence and need to restart antihypertensive
medications within 10 years. However, it should take into account that aging and weight
regain might be responsible for this HTN [147].

Another study of long-term evaluation, including 1738 RYGB and 610 AGB patients,
has shown that the prevalence of dyslipidemia was reduced at 7 years follow-up [148].
In a meta-analysis of observational studies and RCTs, including more than 7000 patients,
the improvement or resolution of dyslipidemia was higher with RYGB than SG (OR,
1.61 (95% CI, 1.05–2.46); p < 0.05), but with comparable benefits in a 3-year follow-up.
Hence, longer follow-up is needed to better evaluate procedure-specific differences in
dyslipidemia outcomes.

MBS was linked to a significantly lower incidence of Major Adverse Cardiac
Events (MACE) in patients with severe obesity, T2DM, and HTN up to 10 years after
surgery [25,149–151]. Although large observational studies have demonstrated improve-
ments in all-cause mortality and MACE in this population, evidence from pre-specified
randomized controlled trials is needed. To date, only three large matched-cohort studies
are available on MACE outcomes with short median follow-up periods (3.9–4.7 years) with
RYGB as the main bariatric procedure (63–80%) applied [62,63,152]. Furthermore, these
studies have used different macrovascular outcomes for MACE evaluation.

Another analysis including 14 studies with up to 29,208 patients who underwent
bariatric surgery and 166,200 matched controls (mean age 48 years, 30% male, follow-
up period ranged from 2 years to 14.7 years), surgical patients showed more than 50%
reduction in mortality compared to control group [23]. In the pooled analysis from Kwok
et al., bariatric surgery was associated with a significantly reduced risk of composite
cardiovascular adverse events and MI [23].

Also, Tang et al., in a recent review of the literature and meta-analysis of population-
based cohort studies (up to 2,857,016 patients) showed MACE relative risk (RR) in the
bariatric surgery group was 0.53 (95% confidence interval (CI) = 0.45–0.62, p < 0.001)
compared with nonsurgical group (35717432). The risk of MI (RR = 0.40, 95% CI = 0.30–0.52,
p < 0.001), stroke (RR = 0.60, 95% CI = 0.46–0.79, p < 0.001), cardiovascular death (RR = 0.43,
95% CI = 0.35–0.54, p < 0.001), and all-cause death (RR = 0.44, 95% CI = 0.32–0.59, p < 0.001)
was significantly lower in bariatric surgery group [153]. These results were confirmed in
the subgroup analysis of patients with diabetes mellitus and in the subgroup with median
follow-up ≥5 years [153].

The current literature, mainly related to observational studies, suggests that patients
undergoing bariatric surgery have a lower risk of cardiovascular events and mortality com-
pared to controls. However, future randomized studies are needed to confirm these benefits.

8. Conclusions

“Globesity” and “diabesity” are increasing worldwide with a high social and medical
impact.

Metabolic surgery is an evolution of obesity surgery. As reported in this article, it
represents a valid and feasible therapeutic option for reducing cardiovascular risk, in this
class of patients, even compared with medical and lifestyle change interventions.

Several studies have shown that MBS acts not only by reducing body weight but also
by interacting with complex molecular and hormonal systems which dysfunction correlates
closely with the onset of CVDs: in perspective, this means that MBS will have the potential
of therapy for dysmetabolism rather than obesity per se.

Understanding the molecular and hormonal changes that follow MBS can be use-
ful to deepen the knowledge of the pathophysiology of cardiovascular complications in
obese patients, allowing a better definition of the individual profile that can benefit the
most from this kind of treatment approach. Indeed, short and long-term studies have
demonstrated that MBS can control the major modifiable cardiovascular risk factors includ-



Life 2023, 13, 1552 13 of 20

ing dyslipidemia, HNT, and diabetes which severity should be taken into account in the
decision-making process to improve long-term outcomes.

Being the new goal of MBS the treatment of metabolic illness, a multidisciplinary ap-
proach including cardiologists, surgeons, anesthesiologists, endocrinologists, psychologists,
and nutritionists seems necessary to define the most effective therapeutical strategy for
each patient, making the field of bariatric surgery of great medical and surgical interest.
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