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Abstract: The onset and exacerbation of dementia have been observed in elderly patients with
type 2 diabetes. However, the underlying mechanism remains unclear. In this study, we investigated
the effects of aging on the cognitive function in a mouse model of type 2 diabetes. Pathogen-free
KK-Ay/TaJcl mice were used in this study. The cognitive abilities and memory declined in the mice
and worsened in the 50-week-olds. The levels of advanced glycation end products (AGEs), receptor
for AGE (RAGE), and Iba1 in the hippocampus were increased in the mice compared to those in the
control mice. Hippocampal levels of CC-chemokine receptor 7 and inducible nitric oxide synthase,
which are from M1-type macrophages that shift from microglia, were higher in KK-Ay/TaJcl mice
than in control mice. Tumor necrosis factor (TNF)-α and nitric oxide (NO) levels secreted by M1-type
macrophages were similarly elevated in the mice and were even higher at the age of 50 weeks. NO
levels were markedly elevated in the 50-week-old mice. In contrast, differentiation of CD163 and
arginase-1 did not change in both mouse types. Memory and learning declined with age in diabetic
mice, and the AGEs/RAGE/M1-type macrophage/NO and TNF-α pathways played an important
role in exacerbating memory and learning in those mice.

Keywords: type 2 diabetes; advanced glycation end products; ionized calcium binding adapter
protein 1; tumor necrosis factor-α; inducible nitric oxide synthase

1. Introduction

Aging is progressing in modern times, and the number of patients with lifestyle-
related diseases is increasing. Lifestyle-related diseases are also involved in dementia and
are deeply involved not only in vascular dementia (VD), but also in the development and
progression of Alzheimer’s disease (AD). Among the lifestyle-related diseases occurring in
middle-aged individuals, hypertension, diabetes, dyslipidemia, and metabolic syndrome
increase the risk of developing AD and promote pathological degenerative processes [1].

Notably, diabetes increases the incidence of dementia in the elderly [2]. Elderly
patients with diabetes have a higher incidence of VD than chronic vascular lesions, and
recent epidemiological studies have reported that the risk of AD complications is also
high [3–5]. The mechanisms by which diabetes modifies cognitive function can be divided
into vascular and metabolic factors and could be reversible and irreversible [6]. AD-type
dementia is related to metabolic factors and accumulates in the brain, causing neuropathy.
Insulin-degrading enzymes break down amyloids and prevent their accumulation in the
brain. When diabetes causes insulin resistance, a large amount of insulin is required
(hyperinsulinemia); therefore, a large number of insulin-degrading enzymes are used.
Consequently, brain amyloids cannot decompose and accumulate [7]. In addition, choline
acetyltransferase activity is decreased in patients with AD, and cholinergic neuropathy is
thought to occur, affecting memory and learning abilities [8]. Recent reports have shown
that the receptor for advanced glycation end product (RAGE) is abundant in brain microglia
and astrocytes of patients with AD, caused by inflammation and apoptosis, resulting from
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AGEs/RAGE [9–11]. However, the details of the onset mechanism of AD in the diabetic
elderly are not known.

In this study, we used KK-Ay/TaJcl mice, a type 2 diabetes mouse model, for 50 weeks
to investigate the mechanism of AD in elderly patients with diabetes. We then focused
on microglia in the hippocampus of the mouse brain and examined the M1 and M2 shifts
in macrophages.

2. Materials and Methods
2.1. Animal Experiments

Specific pathogen-free (SPF) 7- or 50-week-old C57BL/6N and KK-Ay/TaJcl male mice
were obtained from CLEA Japan Inc. (Tokyo, Japan). The mice were separately kept in
cages in specific pathogen-free conditions at 23 ± 1 ◦C, with a 12 h light:12 h darkness
schedule. The mice were housed with unlimited access to drinking water and a pelleted
basal diet. On the final day of the study, the body weights were measured. Blood glucose
levels were measured from the tail vein of each mouse. We defined diabetic as more than
a 300 mg/dL blood glucose level. In order to eliminate factors affecting the experiment,
each animal was kept under constant conditions, such as free access to the same food,
minimization of stress load, and freedom of movement within the cage. This work was
conducted in accordance with the recommendations of the Guide for the Care and Use
of Laboratory Animals of Suzuka University of Medical Science (approval number: 34).
All dissections were performed under pentobarbital anesthesia. All efforts were made to
minimize mouse suffering.

2.2. Open Field Test

The 50 × 50 × 40 cm3 open field area consisted of plastic. The mice’s distance moved
(cm) was measured by a video tracking system (Smart2, Bio Research Center, Nagoya,
Japan) during 15 min and was used as motor activity. The data obtained were graphed.

2.3. Step-Through Passive Avoidance Test

This test was used to evaluate non-spatial long-term memory following a previously
described method [12]. The experimental apparatus (Bio Research Center, Nagoya, Aichi,
Japan) consisted of two compartments: a light compartment and a dark compartment
separated by a grid door. A stainless-steel shock grid floor was presented in the dark
compartment. During the acquisition trial, the mouse was placed in the light compartment.
After 60 s, the grid door between the compartments was opened. The step-through latency
for animals to enter the dark compartment was measured, and the door was closed. As
soon as the animals entered the dark compartment, there was an inescapable foot-shock
(0.5 mA for 3 s). The retention test was performed 24 h after the training trial in a similar
manner without the electric shock, and the step-through latency to the dark compartment
was recorded. The maximal cutoff time for step-through latency was 600 s.

2.4. Measurement of AGEs, TNF-α, RAGE, Iba1, CCR7, iNOS, NO, CD163, and Arginase-1 in
the Hippocampus

At the end of the study, the brains were harvested. Following this, the hippocampus
was rapidly dissected, excised, and homogenized in lysis buffer (Kurabo, Osaka, Japan),
and the lysate was centrifuged at 10,000 rpm. ELISA kits were used to measure the hip-
pocampus concentrations of AGEs, tumor necrosis factor (TNF)-α, RAGE (MyBioSource,
San Diego, CA, USA), cluster of differentiation (CD) 163 (Elabscience, Houston, TX, USA),
ionized calcium binding adapter molecule 1 (Iba1: South San Francisco, CA, USA), CC-
chemokine receptor 7 (CCR7: abbexa, Cambridge, UK), inducible nitric oxide synthase
(iNOS), and arginase-1 (CUSABIO, Houston, TX, USA). NO was assayed using assay kits
(NO3

−+NO2
− colorimetric assay; Dojindo, Kumamoto, Japan) according to the manufac-

turer’s instructions. The microplate reader (Molecular Devices, Sunnyvale, CA, USA) was
used for the measurement of optical density.
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2.5. Statistical Analysis

The results are expressed as the means ± the standard deviation, and the data were
analyzed using one-way ANOVA followed by Tukey’s post hoc test or the Steel–Dwass test
was applied. The statistical significance level was set at p < 0.05 and 0.01.

3. Results
3.1. Effect of Aging on Body Weight and Blood Glucose Level in KK-Ay/Tajcl Mice

The body weight was higher in KK-Ay/Tajcl mice than in the controls. The body
weight of the control mice increased with age, but that of the KK-Ay/Tajcl mice did not
differ between 10 and 50 weeks of age (Figure 1A). The blood glucose levels were higher
in the KK-Ay/Tajcl mice than in the control mice. In the control and KK-Ay/Tajcl mice,
the blood glucose levels did not change with age; however, in the KK-Ay/Tajcl mice,
the 50-week-old mice showed higher blood glucose levels than the 10-week-old mice
(Figure 1B).
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Values are expressed as the mean ± SD of five animals. * p < 0.05, ** p < 0.01. Control: C57BL/6j mice.

3.2. Behavioral Effects on Aging in KK-Ay/TaJcl Mice

Locomotor activity was lower in the KK-Ay/Tajcl mice than in the controls. In both
the control and KK-Ay/Tajcl mice, the 50-week-old mice showed decreased locomotion
compared to the 10-week-old mice (Figure 2A). The control and KK-Ay/Tajcl mice had the
same results in the first trial (conditioning: acquisition trial). In the second trial (playback
trial), high values were obtained from animals with established memory and learning,
and lower values indicate lower memory and learning ability. In both the control and
KK-Ay/Tajcl mice, there were lower memory and learning abilities in the 50-week-old mice
than in the 10-week-old mice. Memory and learning abilities were not observed in the
50-week-old KK-Ay/Tajcl mice (Figure 2B).

3.3. Effect of Aging on AGEs and RAGE in KK-Ay/TaJcl Mice

AGEs are produced in large quantities in patients with diabetes. We investigated
the expression levels of AGEs and their receptor, RAGE, which are involved in memory
and learning, in the hippocampus. Both the AGE and RAGE levels were higher in the
KK-Ay/Tajcl mice than in the controls (Figure 3A,B). In addition, in the KK-Ay/Tajcl mice, it
significantly increased at 50 weeks of age compared to that at 10 weeks of age (Figure 3A,B).
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C57BL/6j mice.
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Figure 3. Effect of aging on levels of AGEs (A) and RAGE (B) in hippocampus of KK-Ay/TaJcl mice.
The data show one representative experiment containing five animals. The hippocampus levels of
AGEs and RAGE in mice were measured using ELISA. Values are expressed as the mean ± the SD
derived from five animals. * p < 0.05, ** p < 0.01. Control: C57BL/6j mice.

3.4. Effect of Aging on Iba1, CCR7, iNOS, TNF-α, and NO in KK-Ay/TaJcl Mice

Next, we investigated the expression levels of microglia (Iba1) involved in AGEs, RAGE,
and the M1/M2 switch in microglia. Firstly, we investigated the M1 macrophages [13]. The
expression of Iba1 in the hippocampus was higher in the KK-Ay/Tajcl mice than in the
control mice. Moreover, both the control and KK-Ay/Tajcl mice showed higher levels in the
50-week-old mice than in the 10-week-old mice (Figure 4A). CCR7 and iNOS, which are M1
macrophages, were higher in the KK-Ay/Tajcl mice than in the control mice, and their levels
in the 50-week-old mice were higher than those in the 10-week-old mice (Figure 4B,C). In
particular, the 50-week-old KK-Ay/Tajcl mice exhibited a remarkable increase. Furthermore,
the TNF-α and NO secreted by the M1 macrophages were also increased in the KK-Ay/Tajcl
mice at 50 weeks of age compared to those at 10 weeks of age (Figure 4D,E). In particular,
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NO production by iNOS was markedly increased in the 50-week-old KK-Ay/Tajcl mice
(Figure 4E).
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Figure 4. Effect of aging on the levels of Iba1 (A), CCR7 (B), iNOS (C), TNF-α (D), and NO (E) in the
hippocampus of the KK-Ay/TaJcl mice. The data show one representative experiment containing
five animals. The hippocampus levels of Iba1, CCR7, iNOS, and TNF-α in the mice were measured
using an ELISA kit. The hippocampus level of NO was measured using the assay kit. Values
are expressed as the mean ± the SD derived from five animals. * p < 0.05, ** p < 0.01. Control:
C57BL/6j mice.

3.5. Effect of Aging on CD163 and Arginase-1 in KK-Ay/Tajcl Mice

We confirmed the expression of M2 macrophages in the hippocampus, which antago-
nizes M1 macrophages. Neither CD163 nor arginase-1, the markers of M2 macrophages [13],
differed between the groups (Figure 5A,B).
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4. Discussion

With aging, many molecules that are recognized as foreign substances are produced [14].
Amyloids are well-known molecules that are found in the brain. In particular, amyloid-β,
in which the APP protein has been cleaved, aggregates very easily, damages nerve cells,
and activates microglia, which are macrophages in the brain [15]. Numerous senile plaques
are found in the brains of patients with AD. Neuritic plaques are composed of amyloid-β,
and in the presence of glucose, amyloid-β is AGE and aggregated [16]. Microglia and
astrocytes in the brain contain RAGE, a receptor for AGEs, and the number of patients
with AD is increasing compared to healthy elderly people [9,17]. In the present study, the
expression levels of AGEs and RAGE in the hippocampus were increased in aged diabetic
mice (Figure 3). Microglia are a kind of resident macrophage, and when activated, they
secrete inflammatory cytokines such as TNF-α and IL-1β, which damage neurons [10,11].

Macrophages are functionally categorized into the M1 type, which acts injuriously, and
the M2 type, which acts as an anti-inflammatory agent [18,19]. The M1/M2 classification
has also been applied to brain-resident microglia [20]. In this study, hippocampal microglia
shifted to the M1 type. IFN-g, LPS, and TNF-g induce the M1-type macrophages [20,21].
In diabetes, the production of TNF-α is increased [22]. We reported previously that aged
diabetic mice secreted a large amount of TNF-α from liver and kidney [23]. AGEs, which
are upregulated by hyperglycemia, bind to RAGE to increase TNF-α secretion [24]. This
increased TNF-α induces M1-type microglia and increases the secretion of inflammatory
cytokines, such as CCR7 and iNOS [20]. Furthermore, AGEs bind to RAGE expressed in
microglia and increase the secretion of TNF-α from Iba1, thereby accelerating its shift to
M1 [18]. However, when AGEs accumulate in the hippocampus and cause neuropathy,
cathepsin B and E levels increase in microglia accumulated in the hippocampus prior
to neuropathy. Cathepsin B binds to the transcription factor NF-kB and degrades the
repressor IkB, which inactivates it and induces the gene conversion of damaging molecules.
In addition, cathepsin E induces an increase in cathepsin B. Thus, it has been reported
that these two processes transform macrophages into the neurotoxic M1 type [25]. In the
present study, an increase in cathepsin E was observed in the hippocampus, suggesting
that the inflammatory M1 type occupied the brains of the aged diabetic mice.

Notably, a marked increase in iNOS secretion was observed (Figure 4), which causes
overproduction of NO and increases the release of inflammatory cytokines [26]. iNOS-
derived NO is not only a major marker of endothelial function, but is also involved in
cerebral circulation disorders [27]. Currently, cognitive and memory disorders, such as
AD, are also involved in chronic oxygen supply reduction and metabolic disorders due
to decreased cerebral circulation [28]. Cerebrovascular endothelial disorders are strongly
associated with vascular risk factors (diabetes in this study) and aging [29,30]. These results
suggest that a marked increase in iNOS in M1 macrophages impairs vascular endothelial
function in aged diabetic mice and induces neuropathy due to the degeneration of the
cerebral microvascular endothelium.

Unfortunately, our study has some weaknesses. First, in this test, the value was
obtained using the ELISA kit. However, the source of each marker cannot be specified, and
immunohistological analysis is required. Second, the use of FACS gives more specific results
for the analysis of M1 and M2 macrophages. Thirdly, hippocampal findings can identify
the tissue identity better by the immunohistological approach. In this way, it is necessary
to investigate the immunohistology in more detail, and we will add further investigations.

Thus, in aged diabetic mice, brain hippocampal AGEs activate microglia and shift to
type 1 macrophages through the action of cathepsins and TNF-α. It has been suggested that
M1-type macrophages secrete large amounts of inflammatory cytokines and NO, which
cause neuropathy (Figure 6).
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