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Abstract: The morphogenesis of crops is critical to their yield performance. COP1 (constitutively
photomorphogenic1) is one of the core regulators in plant morphogenesis and has been deeply
studied in Arabidopsis thaliana. However, the function of COP1 in maize is still unclear. Here, we
found that the mesocotyl lengths of zmcop1 loss-of-function mutants were shorter than those of
wild-type B73 in darkness, while the mesocotyl lengths of lines with ZmCOP1 overexpression were
longer than those of wild-type B104. The plant height with zmcop1 was shorter than that of B73
in both short- and long-day photoperiods. Using transcriptome RNA sequencing technology, we
identified 33 DEGs (differentially expressed genes) between B73′s etiolated seedlings and those
featuring zmcop1, both in darkness. The DEGs were mainly enriched in the plant phytohormone
pathways. Our results provide direct evidence that ZmCOP1 functions in the elongation of etiolated
seedlings in darkness and affects plant height in light. Our data can be applied in the improvement
of maize plant architecture.

Keywords: ZmCOP1; mesocotyl elongation; plant height; RNA sequencing; phytohormone

1. Introduction

Plants exhibit different morphological characteristics when grown in darkness and
in light; together, these phenomenon is called morphogenesis [1,2]. The elongation of
the hypocotyl or mesocotyl is critical to seedling emergence [3–5]. In Arabidopsis thaliana,
COP1 (constitutively photomorphogenic 1) plays a central role in morphogenesis [6–8].
In darkness, the Arabidopsis thaliana hypocotyl elongates, while weak cop1 mutants have
shown a short hypocotyl length and open cotyledons [9].

In darkness, COP1 usually binds SPA1 (suppressor of phya 1) to form the COP1–SPA
complex [10]. PIF1 (phytochrome interacting factor 1) interacts with the COP1–SPA complex to
induce degradation of HY5 (elongated hypocotyl 5), resulting in hypocotyl elongation [11–14].
COP1 also participates in the degradation of WDL3 (wave-dampened 2-like 3) through the
26S proteasome-mediated pathway, leading to hypocotyl elongation [1,15].

In light, CRY (cryptochrome) inhibits the regulation activity of the COP1–SPA complex
and stabilizes HY5 [16–20]. The Pfr (far-red light-absorbing form) of the photosensitive pig-
ment induces phosphorylation of PIFs. Phosphorylated PIFs are recognized by COP1–SPA,
then ubiquitinated and degraded by the 26S proteasome [14,21]. Thus, the stability of HY5
and the degradation of PIFs inhibit hypocotyl elongation. COP1 is also involved in the
regulation of the circadian clock (Bhatnagar et al., 2020). A weak cop1 mutant showed a
short circadian clock gene expression cycle and an early flowering phenotype under short
daylight [9,15,22–24].
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Hormones such as BR (brassinolide), JA (jasmonic acid) and ETH (ethylene) play
important roles in the regulation of morphogenesis. In Arabidopsis, BR promotes skoto-
morphogenesis. BRI1 (BR-insensitive1) and BIN2 (BR-insensitive2) promote accumulation
of BBX28 and BBX29. BBX28 and BBX29 interact with BEE1 (BR-enhanced expression1),
BEE2 (BR-enhanced expression2) and BEE3 (BR-enhanced expression3) [25]. HY5 enhances
the activity of GSK3-like kinase BIN2 (brassinosteroid-insensitive 2) to repress skotomor-
phogenesis [24]. Ethylene inhibits EBF1 (ethylene response factor1) and EBF2 (ethylene
response factor2) to stabilize EIN3 (ethylene-insensitive 3) and EIL1 (EIN3-like 1), respec-
tively, inhibiting the opening and expansion of Arabidopsis cotyledons and maintaining
skotomorphogenesis [26,27].

COP1 homologs have been identified in various plants, including Arabidopsis thaliana,
Sorghum bicolor, Zea mays and Oryza sativa (Huai et al., 2020). Although ZmCOP1 has been
shown to restore the atcop1-4 phenotypes in Arabidopsis, the function of ZmCOP1 in maize
has not been well studied. Here, we have phenotypically characterized zmcop1 mutants and
overexpression lines and identified DEGs between zmcop1 mutants and wild types using
RNA sequencing technology. We have shown that ZmCOP1 may inhibit the elongation of
the mesocotyl through the BR signal transduction pathway. We have provided evidence
that ZmCOP1 has a conserved function in Zea mays and Arabidopsis thaliana.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

zmcop1-1 and zmcop1-2 mutants were collected from the maize EMS mutant library
(www.elabcaas.cn, accessed on 14 September 2021). The wild type (B73 inbred line) from
the same library was used as a control.

For the wild type (WT), zmcop1-1 and zmcop1-2, a mesocotyl elongation analysis and
an RT-qPCR analysis were performed. In a chi-square test, the WT and zmcop1-1 were
crossed to generate F1 hybrid lines; then, F1 hybrid seeds were self-fertilized to generate
F2 lines. Around 140 seeds from one F2 ear were planted in soil in a greenhouse. The F2
seedlings were grown in the dark for 5–7 days. For plant height analysis, WT and zmcop1-1
were planted in Jiaozhou (36.26429, 120.03192) in the summer of 2021, in Ledong (36.26429,
120.03192) in the winter of 2021 and in Jiaozhou again in the summer of 2022. The mesocotyl
length and the plant height of the 7 day old etiolated seedlings were measured according
to the standard methods.

ZmCOP1 overexpression transgenic lines were generated by Beijing Bomei Xing’ao
Technology Co., Ltd. In general, the ZmCOP1 coding sequence was amplified and inserted
into the 521 plasmid, furthered by the ZmUBI promoter. The transformation was performed
following the standard Agrobacteria-mediated transformation protocol for maize, using
B104 immature embryos. Positive transformation events were selected based on kanamycin
and bar herbicide resistance. Positive transgenic lines were confirmed with PCR.

2.2. DNA Extraction and Genotyping

The CTAB method was used to extract the total DNA from leaves grown for 7 days.
Two pairs of primers were designed near two mutation sites using primer5.0. To perform
PCR, 2x Taq PCR StarMix with Loading Dye (GenStar) was used. A 1% agarose gel
electrophoresis experiment was used for the last step of genotype detection.

2.3. Measurement of SPAD Value

The SPAD values (relative content of chlorophyll) of the ear leaf and the first leaf
between the WT and zmcop1 were measured with SPAD502 (Zhejiang Top Cloud-Agri
Technology Co., Ltd., Hangzhou, China). The measuring position of the ear leaf was about
6 cm from the base of the first ear, and the measuring site of the first leaf was about 10 cm
from the tip of the leaf. At least 15 groups of data were collected.
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2.4. RNA Sequencing
2.4.1. RNA Extraction

The construction of a cDNA library and an RNA sequencing analysis was completed
with Wuhan MetWare Biotechnology Co., Ltd. (Wuhan, China).

Seven-day-old etiolated seedlings were collected for RNA isolation. Four biological
replicates were used. The RNA purity was checked using a NanoPhotometer® spectropho-
tometer (IMPLEN, Westlake Village, CA, USA). The RNA concentration was measured
using a Qubit®2.0 Fluorometer (Thermo Fisher Scientific, Carlsbad, CA, USA). The RNA
integrity was assessed using an RNA Nano 6000 Assay Kit of a Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, USA).

2.4.2. Library Preparation for Transcriptome Sequencing

A total of 1 µg of RNA was used for each sample library preparation. Sequencing
libraries were generated using a NEBNext® UltraTM RNA Library Prep Kit for Illumina®

(New England Biolabs, Ipswich, MA, USA), following the manufacturer’s recommenda-
tions. Briefly, mRNA was purified from the total RNA using poly-T oligo attached magnetic
beads. Fragmentation was carried out using divalent cations and under elevated temper-
atures in NEBNext First Strand Synthesis Reaction Buffer (5X). The first-strand cDNA
was synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase
(RNase H-). Second-strand cDNA synthesis was performed using DNA Polymerase I and
RNase H. cDNA fragments (preferentially 250~300 bp in length) were purified with an AM-
Pure XP system (Beckman Coulter, Indianapolis, IN, USA). The PCR products were purified
(AMPure XP system), and the library quality was assessed with the Agilent Bioanalyzer
2100 system.

2.4.3. Clustering and Sequencing

Clustering of the index-coded samples was performed with a cBot Cluster Generation
System using a TruSeq PE Cluster Kit v3-cBot-HS (Illumia, San Diego, CA, USA), according
to the manufacturer’s instructions. After cluster generation, the library preparations were
sequenced on an Illumina platform and 150 bp paired-end reads were generated.

2.4.4. Analysis of the RNA-Seq Data

The raw sequencing data were filtered using fastp v0.19.3 with adapters and then
aligned to Zm-B73-REFERENCE-NAM-5.0. The aligned reads were calculated with Fea-
tureCounts v1.6.2. HISAT v2.1.0 was used to construct the index and to compare the clean
reads to the reference genome [28].

Afterward, StringTie v1.3.4d was used for the prediction of new genes [29]. fea-
tureCounts v1.6.2 and StringTie v1.3.4d were used to calculate the gene alignment and
the FPKM. DESeq2 v1.22.1 and edgeR v3.24.3 were used to analyze the differentially ex-
pressed genes between the two groups [30–32], and the p-values were corrected using the
Benjamini–Hochberg method. The corrected p-values and |log2foldchange| were used as
the thresholds for significant difference expression. A hypergeometric distribution test was
used for KEGG and GO term analyses [33–35].

2.5. RT-qPCR Analysis

A SteadyPure plant RNA extraction kit (AG) was used to extract the total RNA.
MonScriptTM RTIII ALL-in-One Mix with dsDNase (Monad) was used for reverse tran-
scription. SYBR Green Pro Taq (AG) was used with an ABI 7500 Real-Time PCR System
for fluorescence quantification; the amplified product was diluted to 500 ng/µL. The rela-
tive gene expression was calculated with the ∆∆Ct method. UBQ and AT1 were used as
actins [36,37]. The primers used in this experiment are listed in Supplementary Table S1.
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2.6. Statistical Analysis

Statistical analyses were performed using an ANOVA of Student’s t-test (p < 0.05; LSD
and Duncan test) in GraphPad Prism8 software (version 8.0.2, GraphPad Software, San
Diego, CA, USA). All experiments were repeated at least three times. p = 0.05 indicated
significant values.

3. Results
3.1. zmcop1-1 and zmcop1-2 Are Two Loss-of-Function Mutants

First, to understand the conservation of COP1 in different species, we downloaded and
analyzed COP1 sequences. We found that ZmCOP1 is highly similar to AtCOP1 at the DNA
sequence level (Figure S1). We then ordered two loss-of-function zmcop1 mutants from the
EMS mutant library (www.elabcaas.cn/memd/ (accessed on 14 September 2021)), naming
them zmcop1-1 and zmcop1-2, respectively. The two mutants were generated from B73 and
self-fertilized for four generations. Through a Sanger sequencing analysis, we confirmed
that both zmcop1-1 and zmcop1-2 were zmcop1 stop-gain mutants that changed from TGA to
TAA at the 1157th nucleotide and the 4608th nucleotide (Figure 1A,B), respectively. The
mutation in zmcop1-1 was located in the COIL helix domain; the base change led to the
losses of the COIL and WD40 domains. The mutation in zmcop1-2 was located between the
COIL domain and the WD40 domain (Figure 1C), affecting the latter. It has been reported
that WD40 is important in seedling and flower development as well as in light signal
transmission and perception [38]. Thus, we propose that zmcop1-1 and zmcop1-2 may affect
plant growth and development.
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Figure 1. Genotyping expression patterns of ZmCOP1. (A) Illustration of the mutation sites in 
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Figure 1. Genotyping expression patterns of ZmCOP1. (A) Illustration of the mutation sites in
zmcop1-1 and zmcop1-2. (B) Genotyping of zmcop1-1 and zmcop1-2. B73 was used as a reference. As
shown in the figure, G was mutated to A at the 1157th nucleotide in zmcop1-1 and G was mutated
to A at the 4608th nucleotide in zmcop1-2. (C) A model of the affected protein domains in zmcop1-1
and zmcop1-2. (D) Expression patterns of ZmCOP1 in different tissues (root, mesocotyl, leaf and leaf
sheath). The maize seedlings were grown in darkness and at room temperature for 5 days. Data are
means ± SD of at least three biological replicates; * p < 0.05, ** p < 0.01.

To understand the expression pattern of ZmCOP1 in maize seedlings, we carried out
an RT-qPCR analysis. We found that in 5-day-old etiolated seedlings in B73 and zmcop1-1,
ZmCOP1 was expressed in almost all tissues, indicating its role. The expression of ZmCOP1
decreased significantly in zmcop1-1 compared to in B73 by 42%, 40%, 38% and 31% in the
root, mesocotyl, leaf sheath and leaf, respectively (Figure 1D).

3.2. zmcop1-1 and zmcop1-2 Shortened Mesocotyl Elongation

In order to study the function of ZmCOP1 in mesocotyl elongation, we phenotypically
analyzed the mesocotyl lengths of zmcop1-1 and zmcop1-2, using B73 as a control (Figure 2A).
When grown in the dark, B73 had a mesocotyl length of about 7.4 cm, while zmcop1-1 and

www.elabcaas.cn/memd/
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zmcop1-2 each had a mesocotyl length of about 6.5 cm (Figure 2B). The mesocotyl length
of zmcop1-1 and zmcop1-2 was significantly shorter than that of B73, with about a 12%
reduction. The seedling length was 16.0 cm in the wild type, 12.1 cm in zmcop1-1 and
14.6 cm in zmcop1-2. zmcop1-1 and zmcop1-2 showed significantly lower seedling lengths
than the wild type (Figure 2C).
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Figure 2. Phenotypic analyses of zmcop1 mutants and overexpression transgenic lines. (A) Seedling
phenotypes of wild-type B73, zmcop1-1 and zmcop1-2 grown in darkness for 7 days. Bars: 3 cm.
(B) Quantification of mesocotyl length. (C) Quantification of seedling length. (D) Mesocotyl length
segregation from a zmcop1-1 heterozygous ear. (E) Seedling phenotypes of wild-type B104 and
ZmCOP1 overexpression lines (OE18, OE24, respectively) in darkness for 7 days. Bars: 3 cm.
(F) Expressions of ZmCOP1 in WT B104 (OE18, OE24), which was grown in darkness for 7 days.
(G) Quantification of mesocotyl length. (H) Quantification of seedling length. Data are means ± SD
of at least 10 biological replicates. Asterisks indicate significant differences in a two-way ANOVA
(* p < 0.05, ** p < 0.01).

To understand whether the phenotype was caused by the zmcop1 mutation, we per-
formed a chi-square test using zmcop1-1. We found that in 121 seedlings, 100 showed the
wild-type phenotype while 21 showed the short mesocotyl phenotype, which is inconsis-
tent with the 3:1 segregation ratio (χ2 = 3.160, df = 1). These data indicate that the short
mesocotyl phenotype is caused by one gene.

We then genotyped the zmcop1-1 seedlings and found that the length was 4.9 cm
for the wild-type genotype, 5.0 cm for the heterozygous genotype and 4.2 cm for the
mutated homozygous genotype. A statistical analysis showed that there were no differ-
ences between the wild-type and the heterozygous genotype (Figure 2D), indicating that
the mutation genotype is recessive. This result is consistent with the phenotype of cop1
in Arabidopsis thaliana grown in the dark, which has a short hypocotyl length and plant
height [9].

3.3. ZmCOP1 Overexpression Lines Showed Longer Mesocotyl Lengths

To understand whether overexpression of ZmCOP1 promotes the length of etiolated
seedling mesocotyls, we generated and planted transgenic lines while using B104 as a
genetic background (Figure 2E). We gained more than 20 ZmCOP1 OE lines and verified
with RT-qPCR that the ZmCOP1 in line 18 and line 24 was overexpressed more than tenfold
compared with that in wild-type B104 (Figure 2F). We found that in darkness, the length
of the etiolated seedling mesocotyl was about 10.8 cm in OE18, about 9.9 cm in OE24 and
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about 8.9 cm in wild-type B104 (Figure 2G). Thus, the mesocotyl lengths of the OEs were
significantly longer than that of the wild type. We further measured the whole seedling
length using these materials and found that the seedling length was 20.4 cm in OE18,
24.0 cm in OE24 and 19.8 cm in wild-type B104 (Figure 2H). The results showed that the
high expression of ZmCOP1 promoted the seedling hypocotyl length.

3.4. The Expressions of ZmHY5 and Other Light Genes Are Regulated by ZmCOP1

HY5 and HY5L have been reported to interact with COP1 to inhibit the morphogen-
esis of the hypocotyl elongation of Arabidopsis seedlings [9,22]. To understand whether
ZmHY5 is regulated by ZmCOP1, we detected the expressions of ZmHY5 and ZmHY5L
in the 5-day-old etiolated seedlings. We found that the ZmHY5 and ZmHY5L in zmcop1-1
decreased by 20% and 13%, respectively (Figure 3A,B), indicating that the ZmCOP1 led
to expression changes for ZmHY5 and ZmHY5L in the etiolated maize seedlings. How-
ever, contrasting the fact that AtHY5 is degraded by AtCOP1 [39], it seems that ZmHY5 is
stabilized by ZmCOP1. This needs to be studied further.
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(C–E) Differential expressions of several light-regulating genes in wild-type B73 and zmcop1 seedlings
grown in darkness for 7 days. (C) Expressions of ZmPHYA in wild-type B73 and the zmcop1-1
mutant. (D) Expressions of ZmCHS in wild-type B73 and the zmcop1-1 mutant. (E) Expressions of
ZmNIA2 in wild-type B73 and the zmcop1-1 mutant. (F) Plant architecture of zmcop1-1 at silking time.
(G) Quantification of plant height during the silking stage. (H) Quantification of ear height during the
silking stage. Asterisks indicate significant differences between WT B73 and zmcop1 using a Student’s
t-test and a two-way ANOVA (* p < 0.05, ** p < 0.01).

In order to understand whether ZmCOP1 is involved in the absorption and utilization
of light in maize, we identified the the expressions of several key light-regulating genes,
such as ZmPHYA, ZmCHS and ZmNIA2 [15]. We found that the expression of ZmPHYA in
zmcop1 was slightly but not statistically significantly lower than that in the WT (Figure 3C).
The expressions of ZmCHS and ZmNIA2 in zmcop1 were higher than those in the WT,
increased by 30% and 74%, respectively (Figure 3D,E). The phenomenon of ZmCOP1
affecting the expression of photoregulatory factors indicated that the function of ZmCOP1
is conserved for AtCOP1.
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3.5. ZmCOP1 Affects Plant Height

In order to explore whether ZmCOP1 affects plant development in the light, we carried
out plant height phenotyping between WT B73 and zmcop1 at the silking stage (Figure 3F).
We found that the plant height was 204.8 cm in wild-type B73 and 170.4 cm in zmcop1-1.
The plant height was lower by 17% in zmcop1-1 than in the WT (Figure 3G). The ear height
in the zmcop1-1 mutant was also lower than that in the WT, reduced by 27% (Figure 3H).
However, there was no significant difference in either the plant height or the ear height
between the zmcop1-2 mutant and wild-type B73; this needs to be studied further.

Chlorophyll is one of the most important photosynthetic pigments in plants, and its
content directly affects the intensity of plant photosynthesis [40]. In order to clarify the
effect of ZmCOP1 on light absorption during maize’s growth period, we determined the
relative content of chlorophyll in its leaves. We found that there was little difference in the
SPAD values of wild-type B73, zmcop1-1 and zmcop1-2 in the first and ear leaves (Figure S2).

3.6. GO Analysis Showed That the DEGs Are Related to Hormone Signal Transduction

To further explore the functional mechanism of ZmCOP1, we performed a RNA
sequencing analysis using zmcop1-1 and wild-type B73. We found 33 DEGs, of which
19 were up-regulated and 14 were down-regulated (Figure 4A). To verify the expression
patterns of the DEGs, we performed RT-qPCR. We confirmed that the results thereof were
consistent with those of the RNA-seq (Figure 4B). A volcano map was used to show the
overall distributions of differential genes in the WT and zmcop1 (Figure 4C). Based on the
expression patterns between the WT and zmcop1, we clustered the differentially expressed
genes into groups (Figure S3). The genes that showed consistent expression patterns in all
of the zmcop1 replicates were speculated to have similar functions.
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the DEGs with RT-qPCR. Asterisks indicate significant differences between WT B73 and zmcop1 using
a Student’s t-test and a two-way ANOVA (** p < 0.01. (C) DEG volcano map. Red dots represent
up-regulated differential genes in zmcop1-1, green dots represent down-regulated differential genes
and blue dots represent non-differentially expressed genes. (D) GO bar chart. The abscissa denotes
secondary GO entries, and the ordinate indicates the number of differential genes in the GO entries.

To understand the biological information of the DEGs, a GO (gene ontology) analysis
was performed. According to the threshold of p ≤ 0.05, the DEGs were divided into three
main functional categories: BP (biological process), CC (cellular component) and MF (molec-
ular function) (Figure 4D). The regulations of biological (10 DEGs), metabolic (16 DEGs)
and cellular processes (21 DEGs) were enriched in the BP category. The cellular anatomical
entity (19 DEGs) was enriched in the CC category. The catalytic activity (15 DEGs) and
binding (20 DEGs) were enriched in the MF category. The GO analysis showed that the
DEGs are related to plant hormone signal transduction and metabolite biosynthesis.

3.7. KEGG Showed That DEGs Are Related to Hormone Signal Transduction

To understand which biological processes DEGs participate in, KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) enrichment analyses were conducted (Figure 5A) [35]. We
found that ZmCOP1 regulates a wide range of KEGG pathways, such as those for MAPK
hormone signal transduction, ribosome formation, RNA transport, glyoxylic acid and
dicarboxylic acid metabolism and biosynthesis of secondary metabolites. These path-
ways are closely related to plant hormone production, genetic material changes and
metabolite biosynthesis.

It has been reported that ZmCOP1 regulates plant cell elongation and division by
regulating the BR signal transduction pathway [41]. In Arabidopsis thaliana, both JA and
BR play an important role in regulating cell and hypocotyl elongation [41–43]. We found
that Zm00001eb309760 was rarely expressed in zmcop1 (Figure 5B). Zm00001eb309760 is
annotated to encode a leucine-rich repeat receptor-like protein kinase family protein.
Zm00001eb309760 may participate in the biosynthesis of BR. In addition, we found that a
new gene, named novel.1754, was increased in the zmcop1 mutant (Figure 5C). The KEGG
analysis showed that novel.1754 participates in the biosynthesis of jasmonic acid by reg-
ulating MYC2 and also regulates the α-linolenic acid metabolic pathway (Figure 5D). In
summary, based on our KEGG results, we propose that ZmCOP1 participates in the ETH,
BR and JA plant hormone pathways.
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of enrichment. The larger the point, the larger the number of differential genes enriched in the
pathway. The redder the color of the dot, the more significant the enrichment. (B) Expression of
Zm00001eb309760 in RNA-seq. Asterisks indicate significant differences between wild-type B73 and
the mutant material using a Student’s t-test (** p < 0.01). (C) Expression of novle.1754 in RNA-seq.
Asterisks indicate significant differences between wild-type B73 and the mutant material using a
Student’s t-test (** p < 0.01). (D) KEGG pathway maps. The substances marked in red boxes represent
up-regulated genes, while those marked in green boxes represent down-regulated genes.

4. Discussion

A previous study showed that ZmCOP1 could restore the phenotype of an atcop1-4
mutant in Arabidopsis thaliana, including the gene expressions for hypocotyl length, cotyle-
don openings, chlorophyll levels and light response [9]. In our study, the mesocotyl of the
zmcop1 mutants was significantly shorter than that of the WT in maize seedlings grown in
the dark for 7 days (Figure 2B). By measuring the height of the seedlings, we found that
the seedling height of the zmcop1 mutants was also shorter (Figure 2C). However, unlike
with the atcop1 phenotype in Arabidopsis thaliana, we did not observe significant changes
in the cotyledons at the maize seedling stage. We speculate that the function of COP1 in
Arabidopsis thaliana and maize is conservative, but there are also some differences.

COP1-HY5 forms the core complex that controls plant photomorphogenesis [22,44].
COP1 and HY5 play antagonistic roles in response to light signals and in the regulation
of seedling morphogenesis. HY5 is a key transcription factor involved in the inhibition
of hypocotyl elongation. We found that the contents of ZmHY5 and ZmHY5L were both
decreased in the zmcop1 mutants (Figure 3A,B). It has been reported that AtHY5 is degraded
by AtCOP1 [39], and our results showed that ZmHY5 is stabilized by ZmCOP1 at the
RNA level. Whether ZmHY5 is degraded by ZmCOP1 at the protein level needs to be
studied further.

Low expression of AtCOP1 has been found to lead to differential expression of normal
light-regulated genes in dark-treated materials. atcop1 mutation inhibits photomorpho-
genesis and the elongation of hypocotyl [45,46]. In our research, through RT-qPCR, we
confirmed that the expression of the light-regulated gene ZmPHYA in the zmcop1 mutant
seedlings treated in darkness for 7 days was slightly lower than that in the WT (Figure 3C).
We speculate that some light-regulating genes in maize zmcop1 are also affected, and that
mutation of zmcop1 affects plant morphogenesis.

It has been reported that nia1 and nia2 blossom and mature earlier than the WT in
Arabidopsis thaliana, indicating that AtNIA1 and AtNIA1 are involved in the regulation of
plant flowering [47]. We observed that the tasseling and flowering times of the zmcop1
mutants were 3−5 days later than those of B73. Additionally, the expression of ZmNIA2 was
increased in the zmcop1 mutants compared to in B73 (Figure 3E). Therefore, we speculated
that the late flowering phenotype was caused by the high expression of ZmNIA2 in the
zmcop1 mutants.

Studies have shown that under low light intensity, HY5 in Arabidopsis is down-
regulated by COP1-mediated ubiquitination and degradation. BIN2 is partially inactivated
with repression of the transcriptional activity of HY5. In contrast, BZR1 is accumulated
(Li et al., 2020). As a result, the hypocotyl length is promoted by the enhanced transcrip-
tional activity of the related genes. With an increase in light intensity, the elongation of
Arabidopsis hypocotyls would be inhibited. Our RNA-seq results showed down-regulation
of BRI1 in zmcop1 mutants (Figure 5B). Considering the function of AtCOP1, we propose
that zmcop1 mutation first affects the downstream BR synthesis pathway, inhibiting cell
elongation and division, and affects plant height afterward (Figure 5D).
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5. Conclusions

We experimentally demonstrated the roles of ZmCOP1 in maize morphogenesis. We
found that ZmCOP1 affects the elongation of maize mesocotyl in darkness and affects plant
height in the light. We confirmed that ZmCOP1 regulates the expressions of several key
light factors in the same way as AtCOP1. Finally, we identified some DEGs and showed
that ZmCOP1 may control maize morphogenesis by regulating genes involved in the plant
phytohormone pathway. Our data can be applied in maize performance improvement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13071522/s1, Figure S1: Phylogenetic analysis of ZmCOP1.
(A) Homology analysis of COP1 proteins in maize, sorghum, rice, grape, Arabidopsis, soybean and
poplar. (B) Phylogenetic tree analysis showed that ZmCOP1 and AtCOP1 proteins are highly similar;
Figure S2: Measurement of relative content of chlorophyll. (A) The leaf site of relative content of
chlorophyll. (B) SPAD of the ear leaves. (C) SPAD of the first leaves. Data are mean ± SD of at least
20 plants.; Figure S3: RNA-seq results showed that zmcop1 mutation led to changes in the expression
of some genes. (A) Differential gene clustering heat map. Abscissa denotes sample name and
hierarchical clustering result, ordinate indicates differential gene and hierarchical clustering result.
Red indicates high expression and green indicates low expression. (B) Kmeans cluster diagram. The
Abscissa represents the sample, and the ordinate represents the standardized expression.; Table S1:
The primers used in this experiment.
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