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Abstract: Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common
cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a
castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments
that control the disease have emerged, slowing progression and spread and prolonging survival
while maintaining the quality of life. These include immunotherapies; however, we do not yet know
the optimal combination and sequence of these therapies with the standard ones. All therapies are not
always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there
is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy
with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have
not shown a survival benefit in patients with CRPC. Other immunological approaches have also
not given clear results, which has indirectly prevented breakthrough for this type of therapeutic
strategy into clinical use. Currently, the only approved form of immunotherapy for patients with
CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based
on what was gained from recently completed clinical research on immunotherapy with dendritic
cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight
the current status and possible alternatives that should be considered in the future.

Keywords: prostate cancer; immunotherapy; dendritic cell-based vaccines; castration-resistant
prostate cancer; tumor microenvironment; biomarkers

1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed form of cancer in men and the
second most common cause of cancer-related death in the developed world [1]. About a
third of patients with PCa who have been castrated develop a castration-resistant form of
PCa (CRPC), which is currently incurable. Cancer cells in CRPC are no longer sensitive
to androgen deprivation, which is the basic form of treatment for the advanced stage of
the disease, therefore additional therapies are usually considered, including chemotherapy,
radiation therapy, second-generation antiandrogens and immunotherapy [2]. Treatment
prolongs survival and preserves quality of life. However, the optimal combination and
sequence of these therapies is not yet known. Not all therapies are always suitable for
every patient due to co-morbidities or adverse effects of therapies or both; therefore, CRPC
represents an unmet medical need.

In recent years, immunotherapy has greatly influenced the treatment of metastatic
cancer and changed the standard of care for many types of tumors. Immunotherapeutic
options in the fight against malignancies are numerous and can be used in different ways.
In the development of carcinogenesis, cancer cells escape the control of the immune system.
Thus, the main goal of immune therapies is to regain control by triggering specific immune
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reactions similar to those that occur during spontaneous tumor rejection. Current im-
munotherapy strategies include monoclonal antibodies against molecules that regulate the
immune response (immune checkpoint inhibitors (ICIs)), cell therapies such as the transfer
of ex vivo-activated T cells and natural killer (NK) cells, and cancer treatment vaccines,
which use tumor antigens (TAs) to activate the patient’s immune system against cancer
cells [3–6]. Although some disseminated cancers, such as malignant melanoma, lung cancer
and renal cell carcinoma, have shown robust responses to immunotherapy with monoclonal
ICIs, prostate cancer has generally not shown a significant response [7]. Advances in cancer
immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an
anti-CTLA-4 inhibitor) have not shown a survival benefit for patients with CRPC [8,9].
With the exception of cell-based therapy with sipuleucel-T [10] and immunotherapy with
dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine [11,12], other
immunological approaches have not given clear results and have indirectly prevented the
breakthrough of this type of therapeutic strategy into clinical use [13–15].

The heterogeneity of PCa, resistance to treatment and increasing need for personalized
therapies are driving the latest research to combine different treatment approaches and
introduce new ones. Many new therapies are already based on modulation of the immune
system with the aim of enhancing the “visibility” of the tumor antigen to the patient’s im-
mune system and/or interrupting various tumor survival strategies. In addition, standard
oncologic therapies (e.g., chemotherapy, radiotherapy, androgen deprivation therapy) not
only act as cytotoxic agents for PCa tumor cells but also have an immunological effect,
because cell lysis causes a release of TAs and possibly affects the activation of cytotoxic T
cells [16,17], i.e., a mechanism is triggered similar to that with cancer treatment vaccines.

In this article, we summarize the current status, the progress in development, possible
limitations and future directions of a pleotropic antigen-targeting immunotherapy for PCa,
particularly cell-based immunotherapy, considering the new insights arising from our
recent study [11].

2. Cancer Treatment Vaccines

Most cancer treatment vaccines are based on the use of TAs, which can be tumor-
associated antigens (TAAs) or more rarely, tumor-specific antigens (TSA), to activate the
patient’s immune system through cascade-regulating diverse immune cell activity, starting
with the entry of the TAA into antigen-presenting cells (APCs), which then present the
antigen together with the molecules of the major histocompatibility complex (MHC) to
naive lymphocytes. Several types of lymphocytes are activated in this process, including
CD4+ and CD8+ cells, which theoretically could lead to both specific cellular immunity
and humoral immune responses against tumor cells, promoting their destruction and
preventing tumor growth [18]. Thus, cancer treatment vaccines are generally composed of
an adjuvant that functions to activate APCs and a target protein or peptide known to be
associated with the cancer [7]. After intravenous, subcutaneous or intradermal injection,
antigen-loaded APCs, usually dendritic cells (DCs), migrate to the draining lymph nodes
where they present small peptide fragments of the target antigen on MHC molecules to
prime T cell recognition.

Historically, the first cancer treatment vaccine based on tumor cells and tumor lysates
was developed in 1980. Scientists used autologous tumor cells to treat colorectal cancer [19].
The first human TSA was identified in melanoma in the early 1990s [20]. This opened a
new chapter in the use of TAs in cancer vaccines. In 2010, a cell-based treatment vaccine
(sipuleucel-T) was successfully used to treat PCa [10]. In 2011, the Nobel Prize in physiology
or medicine was awarded for discovering the role of DCs in the immune system. The scientific
editors selected the published research of scientist Topalian and colleagues in the field of cancer
immunotherapy as the breakthrough article of 2013 [21]. In 2018, the Nobel Prize was awarded
to James Allison (University of Texas MD Anderson Cancer Center) and Tasuku Honjo (Kyoto
University School of Medicine) for their discoveries leading to new approaches in harnessing
the immune system to fight cancer, consisting of checkpoint inhibition mechanisms. The recent
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outbreak of the coronavirus pandemic has spurred the development of vaccine technology
and put cancer vaccines back in the spotlight. Currently, many cancer vaccines are still in the
preclinical and clinical research stages [22].

Cancer treatment vaccines can be broadly categorized into four different types based
on the way TAs are introduced and presented to the immune system: nucleic acid-, peptide-,
viral vector- and cell-based vaccines, as described in the following sections for the treatment
of PCa and in Table 1.

2.1. Nucleic Acid-Based Vaccines

Nucleic acid vaccines contain DNA or RNA encoding TA. RNA-based vaccines consist
of TA-encoding mRNA. The use of mRNA as a cancer treatment vaccine has several
advantages: a high level of safety due to the impossibility of incorporation into the genome,
i.e., without insertional mutagenesis and the absence of the introduction of an infectious
virus; enables the simultaneous delivery of several antigens for different TAs; the RNA only
needs to be internalized into the cytoplasm, which is immediately followed by antigen(s)
expression; can elicit humoral and cell-mediated immune responses, thereby increasing
the likelihood of overcoming vaccine resistance; and efficient manufacturing. On the other
hand, there are also challenges in using mRNA, such as a short half-life and only transient
protein expression. Currently, several mRNA cancer vaccines are in clinical trials for various
types of cancer [23] (melanoma, lymphoma, colorectal cancer); however, only one RNA-
based vaccine has been tested for the treatment of prostate cancer, which failed to show
a survival benefit despite increased immunogenicity [24,25]. Nevertheless, combination
therapy with an mRNA vaccine and immune checkpoint inhibitors shows better prospects
for cancer treatment [26], and a similar combination therapy for prostate cancer may prove
beneficial in the future.

DNA-based vaccines consist of genetically modified DNA, usually in the form of plasmids
that contain the coding sequence of the target antigen. They can be delivered by a variety of
routes as well as by different strategies (e.g., electroporation, sonoporation, gene gun). The
antigen encoded by the DNA vaccine is then expressed and presented on the MHC molecules
for T cell activation. An advantage of DNA vaccines is the activation of both innate and adaptive
immunity [27–29]. Another important advantage is that they promote a systemic immune
response and immunological memory [30]. However, DNA vaccines typically exhibit relatively
poor immunogenicity, especially in clinical trials, mostly due to poor DNA uptake into cells and
due to the various mechanisms of resistance during tumor development [31,32].

DNA-based vaccines containing information on various TAAs, such as the prostate-
specific antigen (PSA), prostate-specific membrane antigen (PSMA), prostatic acid phos-
phatase (PAP), androgen receptor (AR) and testicular cancer antigen, have not demon-
strated increased clinical efficacy but most trials have shown an immunological response [33].
In addition to shared TAAs, such as AR and PAP, the DNA vaccine platform can generate
personalized cancer vaccines for patients with PCa [34]. An ongoing phase 1 clinical trial
(NCT03532217) utilizes a combination of a neoantigen DNA vaccination, nivolumab, ipili-
mumab and PROSTVAC for patients with metastatic hormone-sensitive prostate cancer
(mHSPC), which takes advantage of both shared and personalized antigen approaches.

2.2. Peptide-Based Vaccines

Peptide-based vaccines are built of subunits containing the specific epitope of the tu-
mor antigen [35]. After intradermal injection, professional APCs in the skin are exposed to
the synthetic vaccine peptides, corresponding products and antigens associated with cancer.
In a phase 1/2 clinical trial (NCT01784913) for patients with metastatic hormone-sensitive
prostate cancer (mHSPC), UV1, a synthetic long-peptide vaccine containing fragments
of human telomerase reverse transcriptase (hTERT) was administered in combination
with granulocyte–macrophage colony-stimulating factor (GM-CSF). hTERT is normally
repressed in healthy cells, but is usually overexpressed in cancer cells, and is responsible for
the immortality of tumor cells [36]. Another rapidly evolving approach is the development
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of personalized peptide vaccines that involve identifying peptide candidates for individ-
ual patients for their ability to induce an immune response in vitro and of subsequent
administration to the patient [37].

2.3. Viral Vector-Based Vaccines

These vaccines consist of viruses as a vector to transfer the gene-encoding TA(s) into
patients, resulting in stimulation of the host’s immune response against the antigen [38,39].
In 2003, a phase 2 clinical study for patients with minimally symptomatic CRPC was
conducted with PSA-TRICOM (PROSTVAC-VF), a virus-based vaccine using a combina-
tion of two viral vectors. Each vector encodes for PSA and three immune costimulatory
molecules [40,41]. The virus infects APCs and this triggers cell surface protein expression
and subsequent interaction with T cells, which in turn enhances the targeted immune
response and cell-mediated destruction of tumor cells [42,43]. The PROSTVAC-VF vaccine
was well tolerated. Overall survival was prolonged compared with the control group
(25.1 months versus 16.6 months). However, the primary objective, which was to increase
the time to progression, was not achieved. Patients with a higher disease burden had less
benefit [42,44]. PSA-TRICOM did not receive US Food and Drug Administration (FDA)
approval based on the findings of these trials.

2.4. Cell-Based Vaccines

The source of TAs to be introduced to the immune system can also be whole cells,
autologous or allogeneic [45]. These are usually utilized in combination with GM-CSF to
induce the growth and differentiation of DCs involved in antigen presentation [46].

2.4.1. Tumor Cell-Based Vaccines

In this approach, the whole tumor cell is used as an antigen, which in turn facilitates
both humoral and cellular immune responses. Tumor cells can be autologous or allogeneic
and are usually genetically modified to express the immune stimulatory cytokine GM-
CSF. GM-CSF induces the recruitment of APCs, which initiates a cascade of immune
responses [47]. GVAX is a whole tumor cell-based vaccine against PCa and is genetically
modified to secrete GM-CSF and irradiated to prevent further cell division. Although
phase 1 and 2 studies confirmed clinical efficacy and safety, two phase 3 trials, VITAL-1
and VITAL-2, failed to show a clinical benefit [47–49]. There are attempts to improve the
efficacy of GVAX-PCa by combining it with ICIs [50].

2.4.2. Dendritic Cell-Based Vaccines

Today, the only approved modality of immunotherapy for patients with CRPC is
cell-based medicine using the power of DCs. In the United States, it is available as
sipuleucel-T [10] and in Slovenia (EU) as the recent next-generation medicine (Box 1),
aHyC (autologous hybridoma cells), which consists of DCs electrofused with autologous
tumor cells [11]. Although both medicines are based on autologous cells, they differ
significantly in terms of administration and other properties.

Box 1. A note on the regulatory frame regarding personalized medicine.

The preparation of the innovative vaccine aHyC is available for international patients and approved
in Slovenia by the Agency for Medicinal Products and Medical Devices of the Republic of Slovenia
(part of the European Agency of Medicines—EMA). aHyC is a cell-based advanced therapy medic-
inal product (ATMP), for which the regulatory framework was established relatively recently, in
2009, in the EU. aHyC is completely personalized in nature; hence, this contributes to the relatively
very high safety profile. Moreover, the number of patients enrolled in the clinical trial was relatively
small, as it is for many other ATMPs [51], predominantly due to the nature of targeted diseases
including orphan disease indications, unmet needs and pediatric patient populations, yet the trial
was controlled and randomized, which is the standard for generating evidence in terms of efficiency
and safety, but is a challenge for most ATMPs [52].
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The most efficient, often designated “professional” APCs in the body are DCs. They
play a key role in the activation and regulation of the acquired immune response; thus, they
have been used extensively for the preparation of antitumor vaccines. After recognizing
and binding, generally foreign antigens, they present them to other effector immune cells
and thereby initiate a cellular immune response cascade. DCs are able to activate both
naive and memory T lymphocytes and are thus the most suitable cell entity for amplifying
the antitumor immune response [53]. Antigenic tumor material can also be provided to
the patient’s immune system by equipping DCs with TAs. This is achieved by incubating
DCs with tumor apoptotic bodies, with tumor necrotic lysates or with proteins, peptides
or even mRNA alone. Such vaccines are prepared from the patient’s own immune cells,
which can be exposed ex vivo to TAs and then introduced back into the patient, where
they are supposed to boost the immune response to cancer cells in the body [54,55]. DCs
have been used in clinical trials as a form of therapeutic treatment in cancer patients,
including PCa for more than three decades, demonstrating that such an approach is safe
(usually with only a few non-serious side effects), can trigger antitumor immunity and,
in some cases, can prolong survival. However, the clinical efficacy (e.g., time to disease
progression, symptoms) has been shown to be modest, although an immune response
has been demonstrated in many cases (reviewed by Sutherland et al. [56]). One such
example is sipuleucel-T, an autologous cell vaccine generated from a patient’s white blood
cells, containing around 20% of DC markers, activated with a recombinant fusion protein
(PA2024) to which a TSA (PAP) has been added. PAP is a glycoprotein enzyme synthesized
by prostate epithelial cells, and its expression significantly increases in the progression of
PCa [57,58]. The patient’s white blood cells are incubated ex vivo with the recombinant
protein PA2024 consisting of PAP fused to GM-CSF, allowing the APCs to present the
antigen on their surface [59]. The cell suspension is then re-infused intravenously into the
patient (50 × 106 CD54+ cells/250 mL suspension). Based on the results of the multicenter
IMPACT study, the FDA approved sipuleucel-T in 2010 for the treatment of patients with
CRPC with minimal or no symptoms. They reported a 4.1-month increase in survival
compared with the placebo (25.8 versus 21.7 months [10]).

DCVAC is another known example of a DC-based vaccine. It is composed of acti-
vated DCs and dead cells of the prostate cancer cell line, LNCaP. Phase 1 and 2 studies
showed improved survival in patients who received docetaxel and the DCVAC vaccine in
combination [60]. However, no improvement in survival was found in a phase 3 study [61].

The DC immunotherapy strategy can be improved by a completely personalized
approach. One effective way to achieve exposure of TAs is fusion of the plasma membranes
of DCs and tumor cells of the same patient; the resulting hybrid cells, so-called immunohy-
bridomas, mediate functions of original cells. They have the properties of APCs and contain
both known and unknown TAs, derived from tumor cells. Recently, one such completely
autologous DC-based cell vaccine has been tested in a phase 1/2 randomized, placebo-
controlled trial by preparing DCs from the patient’s monocytes and using the electrofusion
method to merge their plasma membranes with the patient’s own (autologous) cancer cells
into immunohybridomas, termed aHyC, that were administered subcutaneously to the
patients enrolled in the study [11,12]. The results revealed that the median overall survival
was 58.5 months (95% confidence interval [CI], 38.8–78.2 months), and was inversely corre-
lated to the subpopulation of NK cells in the peripheral blood, which were attenuated with
the aHyC application, demonstrating modulation of the patient’s immune response [11].
Median cancer-specific survival was prolonged by 33 months compared with controls,
almost 7 years after the diagnosis of CRPC [12].

Electrofusion of tumor cells and DCs to form hybridomas has been previously de-
veloped and evaluated with confocal microscopy and flow cytometry [62,63]. Antigen
presentation also involves late endocytotic compartments (lysosomes) containing MHC
II molecules, so heterologous fusion of vesicles (from different cell types, heterologous)
is required to deliver antigens to MHC II molecules in hybridomas. It has been shown
that fusion of late endocytotic compartments also occurs in aHyC hybridomas and that
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the efficacy of this approach, measured as an increased in vitro cytotoxic T cell response,
is stronger when the proportion of fused late endocytic compartments is greater in elec-
trofused hybridoma cells [64,65]. Furthermore, the advantage of the fusion of autologous
tumor cells and DCs over other forms of vaccines is that such immunotherapy is not limited
to only those types of tumors in which the potentially immunogenic antigenic determinants
are currently well known. They are also effective against unidentified TAs, which arise from
fused tumor cells and are bound to MHC class I and II molecules by specialized antigen
presentation mechanisms of DCs, and presented to T lymphocytes for recognition [66].

In addition, in all forms of DC-based vaccines, DCs also express essential costimula-
tory molecules for effective activation of T lymphocytes and produce pro-inflammatory
cytokines (e.g., interleukin-12). Thus, they can activate antigen-specific antitumor CD4+

and CD8+ clones of T lymphocytes in a balanced manner [64,67]. The activation of CD4+

T cells is necessary for long-term stimulation of the formation and functioning of antitu-
mor effector CD8+ T lymphocytes, which ultimately destroy cancer cells and reduce the
tumor burden. Research into the production and use of cell hybridomas has progressed
all the way to clinical trials. It has been shown that patients with various diffuse forms of
cancer tolerate this type of treatment well, with effector immune antitumor mechanisms
proven to be reactivated, but objective tumor regression was confirmed only in a small
number of patients [54,68]. Nevertheless, in vitro studies unequivocally demonstrate a
significantly stronger activation of T lymphocytes with aHyC than with any other DC-based
vaccines [3,69]. Therefore, the future of treatment with hybridomas obtained from tumor
cells and DCs, such as aHyC, is very promising among cell-based vaccines.
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Table 1. Clinical trials conducted with cancer treatment vaccines.

Nucleic Acid-Based Vaccines

Coding TA Epitope Vaccine or Plasmid
Vector Adjuvants Target; Phase n, Appl.

Route Outcomes Ref/
Year

RNA-based

Full-length STEAP1 PSA,
PSMA, PSCA CV9103 / advanced CRPC;

Phase I/IIa 2008-003967-37
44,
i.d.

The RNA vaccine CV9103 was well tolerated and immunogenic.
A total of 26 of 33 evaluable patients treated at the recommended
dose developed an immune response to one or more antigens.

[24]
/2015

Full-length STEAP1 PSA,
PSMA, PSCA, PAP and
MUC1

CV9104 / advanced CRPC;
Phase I/IIb 2011-006314-14

134,
i.d.

CV9104 did not improve OS compared to placebo. No significant
differences in the rPFS endpoints and time to symptom
progression compared to placebo.

[25]/
2017

DNA-based

PSA pVAX/PSA GM-CSF, IL-2
CRPC; Phase I 9 In 25% cases (2), a PSA-specific cellular immune response and a

rise in anti-PSA IgG. No AE (WHO grade > 2).
[70]/
2004

CRPC; Phase I 6 Induction of PSA-specific cellular immune responses in some
cases.

[71]/
2005

Full-length PAP pTVG-HP [MVI-816] GM-CSF

stage D0 PCa; Phase I/IIa 22,
i.d.

No significant AE. PAP-specific CD4+ and/or CD8+ T cell
proliferation (41% of patients); PAP-specific IFN gamma-secreting
CD8+ T cells (14%).

[72,
73]/2009
2010

CSPC; Phase II NCT01341652 99,
i.d.

Vaccination had detectable effects on micrometastatic bone
disease.

[74]/
2019

Modified PSA (rhesus PSA) pVAXrcPSAv531 / PCa with BCR; Phase I
NCT00859729

15,
i.d., EP

No systemic toxicity. Specific T cell reactivity PSA was observed
in some patients.

[75]/
2013

AR LBD (androgen receptor
ligand-binding domain) pTVG-AR ±GM-CSF mCSPC; Phase I multicenter 40

Delayed the time to castration resistance; 28% had a PSA
progression event. No grade ≥ 3 AE. In total, 47% developed
Th1-type immunity to the AR LBD with a significantly prolonged
PPFS vs. patients without immunity.

[76]/
2020

Viral Vector-Based Vaccines

Coding TA Epitope Virus Vector Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

PSA rV-PSA ±GM-CSF

PCa after radical prostatectomy or
radiation therapy; Phase I 33 Safe. Specific T cell response to PSA-3. In 42% of cases, stable

disease for 6 months, in 27%, for 11–25 months.
[77]/
2000

advanced mPCa; Phase I 42, d.s.,
s.c.

No significant treatment-related toxicity; increase in the
proportion of PSA-specific T cells after vaccination in some
patients.

[78]/
2002
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Table 1. Cont.

Viral Vector-Based Vaccines

Coding TA Epitope Virus Vector Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

PSA rF-PSA/rV-PSA / advanced PCa; Phase II 64 Minimal toxicity; increase in PSA-specific T cell responses; free of
PSA and clinical progression after 19 months.

[79]/
2004

MUC-1

VV/MUC-1/IL-2
(vaccinia virus
expressing MUC-1 and
IL-2)

IL-2 advanced PCa; Phase I 16, i.m.
Safe and well tolerated. MHC-independent MUC-1-specific
cytotoxic T cell activity; 1 patient had an objective tumor
response.

[80]/
2004

5T4 (trophoblast
glycoprotein) (TroVax) Vaccinia Ankara Virus ±GM-CSF mCRPC; Phase II 27, i.m.

Safe and well tolerated. 5T4-specific antibody responses, robust
5T4-specific immune responses correlated with time to
progression, no objective clinical responses.

[81]/
2008

PSA adenovirus/PSA / metastatic PCa; Phase I 32 s.c.
Safe with no serious AE. In total, 34% of patients produced
anti-PSA antibodies, 68% produced anti-PSA T cell responses,
PSA-DT was increased in 48%.

[82]/
2009

PSA rV-PSA/rF-PSA GM-CSF mCRPC; Phase II 32 Enhanced mOS. PSA-specific T cell responses showed a trend (p =
0.055) toward enhanced survival.

[44]/
2010

PSA
PROSTVAC-VF
(rV-PSA/rF-PSA)

+GM-CSF + 3
costimulatory
molecules

mCRPC; Phase II 82/125 Longer mOS by 8.5 months (25.1 vs. 16.6 months for controls) [42]/
2010

locally recurrent or progressive
PCa; Phase I

21, s.c.,
i.t.

Safe and feasible. Stable (10) or improved (9) PSA values.
Improved serum PSA kinetics and intense post-vaccination
inflammatory infiltrates were seen in the majority of patients.

[83]/
2013

PSMA
PSMA-VRP
(Venezuelan Equine
Encephalitis virus)

/ mCRPC; Phase I 12
Safe; no toxicities were observed. No PSMA-specific cellular
responses—dosing was suboptimal; few patients had a humoral
response to PSMA.

[84]/
2013

/
HVJ-E (inactivated
hemagglutinating virus
of Japan envelope)

/ CRPC; Phase I/II UMIN000006142 6 i.t. and
s.c.

PSA response rate was 16.6% (1/6), NK cell activity was elevated,
IL-6, IFN-α, IFN-β and IFN-γ levels were not affected.

[85]/
2017

PSA PROSTVAC-VF ± GM-CSF mCRPC; Phase III 864 Safe, well tolerated, it had no effect on OS or AWE (alive without
events).

[86]/
2019

5T4 (trophoblast
glycoprotein) (TroVax)

ChAd (chimpanzee
adenovirus) and MVA
(Modified Vaccinia
Ankara)

early-stage PCa or stable disease;
Phase I NCT02390063 40, i.m. Excellent safety profile. 5T4-specific T cell responses detected in

the majority of patients.
[87]/
2020

PSA, brachyury and MUC-1 adenovirus 5 (Ad5) / mCRPC; Phase I NCT03481816 18

Tolerable and safe; no grade >3 treatment-related AE toxicities. In
total, 100% of 17 patients mounted T cell response to at least one
TAA; 47% of patients mounted immune responses to all three
TAAs.

[88]/
2021
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Table 1. Cont.

Peptide-Based Vaccines

TA Peptide Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

Complex carbohydrate
hexasaccharide molecule globo H +KLH QS-21 immunological

saponin PCa patients; Phase I 20 s.c. High-titer IgM antibodies against globo H; decline of the slope of
the log of PSA concentration vs. time.

[89]/
1999

SART1, SART2, SRAT3,
p56lck, ART-1, ART-4, CypB

PPV (up to 5 selected
peptides) / CRPC; Phase I 10, i.d.

Safe and well tolerated with no major AE. Increased CTL
response to both peptides and cancer cells was observed in four
(40%) patients. Anti-peptide IgG antibodies were also detected in
post-vaccination sera of seven (70%) patients. Decrease in PSA
level in some patients.

[90]/
2003

HER-2/neu E75 GM-CSF advanced PCa; Phase I 17 Safe with only minor toxicities observed. Effective in eliciting an
HER-2/neu-specific immune response.

[91]/
2005

Thomsen–Friedenreich
antigen TF-KLH QS21 immunological

saponin
biochemically relapsed PCa;
Phase I 20

All patients developed maximum IgM and IgG antibody titers by
week 9; change in post-treatment logPSA slopes vs. pretreatment
was observed.

[92]/
2005

SART1, SART2, SART3, Lck,
ART1, PAP, PSA PSMA,
MRP

PPV (up to 4 selected
peptides) / localized PCa;

Phase I 10

Increased CTL response and the anti-peptide IgG titers were
observed in the post-vaccination samples in 8 of 10. Number of
infiltrating memory CD4 T (CD45RO+) cells was significantly
larger in the vaccination group vs. control group. CD8(+) T cell
infiltration was seen only in the vaccinated group.

[93]/
2007

PSA PSA peptide Montanide ISA-51
recurrent PCa after radical
prostatectomy; Phase II pilot,
NCT00109811

5, s.c. No serious AE. No significant changes in serum PSA. [94]/2009

PSA, PSCA, PSMA,
Survivin, Prostein, TRP-P8

14-synthetic-multi-
peptide vaccination
cocktail

± (imiquimod,
GM-CSF or mucin-1-
mRNA/protamine
complex) + montanide
ISA51

HSPC; Phase I/II 19, s.c.
Well tolerated; no patient showed any severe AE. A clinical
response was observed in 8 out of 19 patients and PSA-DT was
improved in 4 cases.

[95]/
2009

Ii-Key/HER-2/neu AE37 GM-CSF castrate-sensitive and CRPC;
Phase I 32 Safe. AE37 elicited HER-2/neu-specific cellular immune

responses.
[96]/
2010

NY-ESO-1 NY-ESO-1 peptides CpG 7909 advanced PCa; Phase I 13 Induced integrated antigen-specific antibody immune responses;
T cell responses were induced in 9 patients (69%).

[97]/
2011

SART3, MRP3, ppMAPkkk,
HNRPL, EGF-R, PSMA,
UBE2V, p56lck, CypB, PAP,
SART2, PSA, WHSC2,
EZH2, PTHrP

PPV (2-4 selected
peptides) Montanide ISA51V CRPC; Phase II 100 PPV was safe and well tolerated. Peptide-specific IgG and T cell

responses strongly correlated with PSADT, and with OS.
[98]/
2013
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Table 1. Cont.

Peptide-Based Vaccines

TA Peptide Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

hTERT GX301 (4 telomerase
peptides)

Montanide ISA-51,
Imiquimod PCa; Phase I/II 11, i.d.

Safe, well tolerated. With potential immunologic and clinical
efficacy, vaccine-specific immunological responses were detected in
all patients.

[99]/
2013

NY-ESO-1 NY-ESO-1 peptides / mCRPC; Phase I 9, s.c. NY-ESO-1 specific T cell response in 6 P; PSA DT increased from 3.1
to 4.9 months.

[100]/
2014

SART3, Lck, UBE2V,
WHSC2, HNRPL, MRP3,
PAP, PSMA, PSA, EGF-R,
PTH-rP, CypB

KRM-20 (mixture of 20
peptides) Montanide ISA51V CRPC; Phase I

UMIN000008209 17
Safe; no serious AE. Partial response or no change in PSA observed
in 7/15 patients (47%); CTL activity for at least one peptide and IgG
level were augmented in most patients.

[101]/
2015

hTERT UV1 long peptides + GM-CSF mPC; Phase I/IIa 21, i.d. Moderate toxicity; UV1-specific T cell responses in 18/21 patients
(85.7%).

[102]/
2017

CDCA1 (cell division
cycle-associated 1) CDCA1 peptide Montanide ISA51 CRPC post-DBC; Phase I

NCT01225471 12, s.c. Well tolerated without any serious AE; Peptide-specific CTL
responses.

[103]/
2017

RhoC synthetic long peptide
of RhoC Montanide ISA-51 PCa with radical prostatectomy;

Phase I/II 22 Well tolerated; a strong CD4 T cell response. [104]/
2020

hTERT GX301 (4 telomerase
peptides)

Montanide ISA-51,
Imiquimod

mCRPC; Phase II 2014-000095-26;
NCT02293707 63, i.d. No major side effects, 54% overall immune responder rate, 95% of

patients showed at least one vaccine-specific immune response.
[105]/
2021

Tumor Cell-Based Vaccines

Cells Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

Autologous, irradiated tumor cells engineered to
secrete GM-CSF GM-CSF PCa; Phase I 8

Well tolerated. Induction of anticancer immunity as assessed using
DTH skin testing; new antiprostate cancer cell antibodies were
detected.

[106]/
1999

Three tumor cell lines + Mycobacterium vaccae
(SRL-172) CRPC; Phase I/II 60

Safe and well tolerated with no major AE. No significant decrease
in PSA, an increase in cytokine production, increases in specific
antibodies and evidence of T cell proliferation in response to the
vaccinations.

[107]/
2002

Three allogeneic cell lines + bacille Calmette-Guérin CRPC; Phase I 28 i.d. No significant toxicity. In total, 11/26 patients (42%) showed
significant, prolonged decreases in PSA velocity.

[108]/
2005

LNCaP and PC-3 irradiated and engineered to secrete
GM-CSF (GVAX plat-form) GM-CSF

PCa with PSA relapse + radical
prostatectomy; Phase I/II 21 Favorable safety profile. Significant decrease in PSA velocity. [109]/

2006

mPCa; Phase I/II 80, i.d. Well tolerated, no serious AE. PSA stabilization occurred in 15 (19%)
patients, and a >50% decline in PSA was seen in 1 patient.

[48]/
2008
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Table 1. Cont.

Tumor Cell-Based Vaccines

Cells Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

Autologous tumor cells, irradiated Immunomodulated
with IFN-α2b and BCG mPCa; Phase I 11 Safe; AE restricted to the inoculation sites. Two patients had a

decrease in PSA.
[110]/
2007

LNCaP irradiated and engineered to express
recombinant IL-2 and IFN-gamma IL-2 and IFN-gamma

CRPC; Phase I 6 Safe and feasible. PSA decline of 50% was achieved in two of the six
patients.

[111]/
2007

CRPC; Phase I/II 30, i.d.
Safe and well tolerated. Significant prolongation of the PSA-DT, 3
patients sustained a >50% decrease in PSA, T cell stimulation in the
majority of patients.

[112]/
2009

Two allogeneic prostate tumor cell lines irradiated and
engineered to express αGal epitopes

HAP (HyperAcute
Prostate) advanced PCa; Phase I 8 Minimal toxicity. Humoral immune responses to autoantigens in

25% of P (2/8), suggesting dose-dependent effect.
[113]/
2013

Dendritic Cell-Based Vaccines

TA Cells Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

Loaded with PSMA
peptides: PSM-P1 or
PSM-P2

aDC
CRPC;
Phase I,
Phase II

19 and
33, i.v.

No significant toxicity. Increased T cell response to PSMA peptides
in HLA-A2-positive patients; 7/19 and 9/33 partial PSA value
responders.

[114]/
1996
[115]/
1998

hrPSA aDC PCa after radical prostatectomy;
Phase I

24, i.v.,
s.c., i.d.

No serious AE. Transient PSA decrease; disappearance of
circulating prostate cells.

[116]/
2004

Loaded with hTERT I540
peptide aDC CRPC; Phase I 5 No significant toxicity. hTERT-specific T lymphocytes were induced

in 2 patients.
[117]/
2004

Loaded with allogeneic
prostate cancer cell line
lysate (LNCaP, DU14,
JM-RCC)

aDC KLH CRPC; Phase I/II 11, i.n. or
i.d.l

Feasible and not toxic, induction of both humoral and cellular
immunity, a reduction in PSA velocity in 1 and an increased
PSA-DT in 6 men.

[118]/
2004

Loaded with PAP +
GM-CSF (sipuleucel-T) aDC mCRPC; Phase III multicenter

NCT00065442
82 and
341, i.v.

Well tolerated. Beneficial treatment effect: increased specific T cell
response. TTP and interim survival were associated with a subset of
subjects with Gleason scores ≤ 7; prolonged OS for 4.1 months.

[119]/
2005
[10]/
2010

Loaded with a cocktail
peptide PSA, PSMA,
survivin, prostein, trp-p8

DCs CRPC; Phase I 8

Safe and feasible; no serious AE. One partial response in PSA
(decrease >50%) and three stable PSA values or decelerated PSA
increases. Three of four PSA responders also showed
antigen-specific CD8+ T cell activation against prostein, survivin
and PSMA.

[120]/
2006
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Table 1. Cont.

Dendritic Cell-Based Vaccines

TA Cells Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

Loaded with PSA peptide
(PSA146-154) aDC locally advanced or mPCa;

Phase Ib 14, i.v. DTH-derived T cells exhibited PSA peptide-specific cytolytic
activity.

[121]/
2006

Loaded with peptides
derived from PSCA, PAP,
PSMA, PSA

aDC CRPC; Phase I/II 6, i.d. Well tolerated. Significant cytotoxic T cell responses against all
prostate-specific antigens tested; an increase in PSA-DT.

[122]/
2006

Loaded with PSCA and PSA
peptides aDC mCRPC; Phase I/II 12, s.c. No relevant toxicities. DTH positivity was associated with

significantly superior survival.
[123]/
2006

Loaded with PSA peptides
(PSA-1, PSA-2, PSA-3) aDC IFN-gamma mCRPC; pilot 12, i.c.

Well tolerated; no serious AE. In total, 2/12 had slight increase in
PSA peptide-specific T lymphocytes; 1 partial and 1 mixed
responder were identified.

[124]/
2007

Loaded with a peptide
cocktail: PSA, PAP, PSMA aCD1c KLH mCRPC; Phase I 12, i.d. or

i.v. Feasible, safe and well tolerated. [125]/
2008

Loaded with apoptotic
LNCaP tumor aDC KLH CRPC; Phase I 12, s.c.

Safe and well tolerated. Increase in T cell proliferation responses to
prostate tumor cells in vitro, decrease in PSA slope, two-fold
increase in PSA-DT.

[126]/
2010

Loaded with prostate cancer
cell line lysates (DU145,
LNCaP, PC3)

alogeneic DC CCH, TRIMEL CRPC; Phase I 14, s.c. Safe; no relevant AE. In total, 6/14 had decrease in PSA levels;
DTH(+) patients showed a prolonged PSA-DT.

[127]/
2013

Loaded (incubated) with
rPSMA, rSurvivin peptides DC CRPC; Phase I 11, s.c. Cellular immune response, disease stabilization, no adverse events

and partial remission.
[128]/
2015

Tn-MUC1 loaded aDC nmCRPC; Phase I/II 17, i.d.,
i.n.

Safe, able to induce significant T cell responses and increase in
PSADT following vaccination.

[129]/
2016

Loaded with protein
PA001—contains the
extracellular domain of
hPSMA

aDC

Transduced with
Ad5f35-encoding
inducible human
(ih)-CD40

mCRPC; Phase I 18, i.d. Safe. Anti-tumor activity was observed with PSA declines; objective
tumor regressions and robust efficacy of post-trial therapy.

[130]/
2017

Loaded with irradiated
prostate cancer cell line
LNCaP
(DCVAC/PCa)

aDC Cyclophosphamide,
Imiquimod

PCa with BCR; Phase I/II
2009-017259-91 27 s.c.

No significant side effects, PSA-DT in all treated patients increased
after 12 doses from 5.67 months to 18.85 months, specific
PSA-reacting T lymphocytes were increased significantly.

[131]/
2018

Incubated with NY-ESO-1,
MAGE-C2 and MUC1 a-mDC + a-pDC / CRPC; Phase IIa NCT02692976 21 Feasible and safe. Induced functional antigen-specific T cells, which

correlated with an improved clinical outcome.
[132]/
2019



Life 2023, 13, 1498 13 of 28

Table 1. Cont.

Dendritic Cell-Based Vaccines

TA Cells Stimulatory Adjuvants Target; Phase n, Appl.
Route Outcomes Ref/

Year

Electrofused with
autologous prostate tumor
cells (aHyC)

aDC Cyclophosphamide,
allogeneic buffy coat CRPC; Phase I 19, s.c.

Safe, no serious AE and feasible. mOS was 58.8 months. Attenuates
an increase in peripheral blood CD56brightCD16− NK cells. A
decrease in CD56brightCD16− NK cells correlates with prolonged
patient survival.

[11]/
2021
[12]/
2022

Loaded with mRNA from
autologous TC or mRNAs
that encoded hTERT and
survivin

aDC / PCa patients after prostatectomy;
Phase I/II 20 Safe; no serious AE. In total, 11/20 P were BCR-free over 96 months. [133]/

2022

Mixed Cancer Treatment Vaccines

TA IT-Treatment Modality Adjuvants Target; Phase N, Appl.
Route Outcomes Ref/

Year

PSMA DNA/Ad expression
vector

±CD86 plasmid,
±GM-CSF PCa; Phase I/II clinical trial 26, i.d.

No serious AE. In total, 100% of P inoculated with the viral vector
and 50% of P receiving DNA plasmid showed signs of successful
immunization.

[134]/
2000

PRAME, PSMA DNA plasmid + 2
peptides / PCa; Phase I 10, i.n. Safe, feasible, well tolerated. In total, 4 of 10 P had stable disease

(SD) for 6 months or longer, or PSA decline.
[135]/
2011

PAP sipuleucel-T ±
pTVG-HP DNA ±GM-CSF mCRPC; Phase I, pilot

NCT01706458
18, i.v.,
i.d.

No AE > grade 2 were observed. Th1-biased PAP-specific T cell
responses were detected in 11/18; higher titer antibody responses
to PAP detectable in booster arm. The mOS was 28 months.

[136]/
2018

hTERT (V934/V935) Ad6expression vector ±
DNA / PCa; Phase I, pilot NCT00753415 14, EP Good safety profile, with no severe AE. Significant increase in

immunogenicity response against hTERT.
[137]/
2020

aDC, autologous DC; AE, adverse events; ART, ADP-ribosyltransferase; BCR, biochemical recurrence; CCH, Concholepas concholepas haemocyanin; CSPC, castration-sensitive prostate
cancer; CTL, cytotoxic T lymphocytes; CypB, cyclophilin B; DBC, docetaxel-based chemotherapy; d.s., dermal scarification; EGF-R, epidermal growth factor receptor; EP, electroporation;
HER-2/neu, human epidermal growth factor receptor 2; HNRPL, heterogeneous nuclear ribonucleoprotein L; HSPC, hormone-sensitive prostate carcinoma; i.c., intracutaneously;
i.d., intradermally; i.m., intramuscular injection; i.n., intranodally; i.t., intratumoral; i.v., intravenous infusion; KLH, keyhole limpet hemocyanin; Lck, lymphocyte-specific protein
tyrosine kinase; mOS, median overall survival; MRP, multidrug resistance-associated protein; n, number of patients; NY-ESO-1, New York esophageal squamous cell carcinoma 1
antigen; P, patients; PPFS, PSA progression-free survival; PSCA, prostate stem cell antigen; PPV, personalised peptide vaccine; PRAME, preferentially expressed antigen in melanoma;
PSA-DT, PSA-doubling time; rF, recombinant fowlpox virus; rPFS, radiographic progression-free survival; rV, recombinant vaccinia virus; SART, squamous cell carcinoma antigen
recognized by T cell 2; s.c., subcutaneously; STEAP1, six transmembrane epithelial antigens of prostate 1; TARP, T cell receptor gamma alternate reading frame protein; TRIMEL,
standardized melanoma lysate; TRP-P8, transient receptor potential p8; TTP, time to progression; UBE2V, ubiquitin-conjugating enzyme E2 V; VRP, vaccine replicon particles; WHSC2,
Wolf–Hirschhorn syndrome candidate 2 protein. Grey boxes: locally approved treatments.



Life 2023, 13, 1498 14 of 28

Safety of DC-Based Vaccines

CRPC mainly affects older men who are compromised because of other accompanying
diseases. They are usually receiving a range of other therapies and are consequently more
prone to various treatment complications [138]. In individual cases, the therapy must
be changed due to adverse effects (AEs) of drugs, known interactions with other drugs,
accompanying diseases or patient wishes.

The safety of DC immunotherapy has been documented in several phase 1 clinical
trials [139]. Local injection site reactions (e.g., pain, erythema and pruritus) were common
but generally mild. Systemic AEs with fever, malaise and other flu-like symptoms were
observed; however, grade 3–4 systemic AEs according to Common Terminology Criteria for
Adverse Events (CTCAE) were extremely rare [140]. It is possible to trigger autoimmune
reactions with all types of immunotherapy. DC-based cancer treatment vaccines have been
shown to rarely cause severe AEs, in contrast to other immunotherapeutic approaches
such as monoclonal antibodies and cytokines [141]. In one study, up to 60% of patients
treated with ipilimumab had AEs due to immune reactions (of which 15% were CTCAE
grade 3–4) [142]. In contrast, patients treated with DC maintained their quality of life
because of the low incidence of AEs [143]. Quality of life is an important indicator that
we use for evaluating new cancer drugs. Reports on the impact of DC immunotherapy on
quality of life are rare. One study evaluating 55 patients with renal cell carcinoma treated
with DCs showed no negative effect of immunotherapy on quality of life [143].

Accordingly, the results of a recently completed clinical trial, in which the cell vaccine
was prepared from DC and tumor cells, show a relatively high level of safety of treatment
with aHyC [11]. The results also showed that the patients maintained a high level of
functionality, remained active and self-caring and had quality free time, which contributed
to psychological relief and a reduction in mental distress due to the disease. It should be
noted here that the small sample (n = 16) dictates caution in interpreting the results.

aHyC therapy exhibits a favorable safety profile that can be attributed to several
factors. First, the aHyC cell vaccine is completely autologous; tumor cells and DCs as the
starting material for the production of immunohybridomas are obtained from the patient’s
tissue and no other starting materials and raw materials are present in the final product.
Second, we did not administer aHyC intravenously, but subcutaneously. Intravenous
administration is generally not used for vaccination because it elicits a relatively small
immune response compared with other injection routes [144], and may also cause allergic
reactions. We believe that due to the completely personalized preparation of aHyC, there
were no allergic or autoimmune reactions. Moreover, the lower incidence and lower inten-
sity of AEs with aHyC compared with sipuleucel-T (administered intravenously) could be
due to the fully autologous nature of the vaccine, quality of preparation and subcutaneous
administration. No patient required hospitalization, no autoimmune reactions were de-
tected and laboratory indicators of liver and kidney functions remained stable during the
clinical investigation, which indicates that immunotherapy with aHyC does not affect the
functioning of important organs in the body.

3. Adoptive Cell Transfer

Adoptive cell transfer refers to a cell-based anticancer immunotherapy that involves
several modalities of the collection, manipulation and re-administration of lymphocytes.
Collected lymphocytes can be autologous or allogeneic and are either circulating or tumor-
infiltrating leukocytes. CAR-T therapy, the most studied and already approved therapy for
the treatment of some non-solid cancers, involves the collection of circulating T lympho-
cytes, which are then genetically engineered to express tumor antigen-specific receptors
together with a costimulatory domain to activate T cells upon antigen recognition (chimeric
antigen receptors (CARs). The chimeric molecule enables T cells to increase their respon-
siveness to an antigen by increasing their proliferation and cytokine secretion.

An important challenge with this therapy is identification of the tumor antigen, which
should be present on most cancer cells, but not on normal cells. Another important
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challenge is how to reduce the toxicity of such therapy, which is mostly connected to
the serious side effect known as cytokine release syndrome, an increase in inflammatory
cytokines released by immune cells after CAR-T transfer, but also due to neurotoxicity
as a result of targeted antigens on normal cells by CAR-T cells, so-called on-target/off-
tumor recognition [145]. The third important challenge with CAR-T treatment is the
durability of the therapy. CAR-T is considered a passive form of immunotherapy because
it does not (re)activate the immune system but has an intrinsic antineoplastic effect. In
contrast, DC-based vaccines are examples of active immunotherapy, because they achieve
anticancer effects only upon activation of the host’s immune system [146]. Thus, patients
who respond to CAR-T therapies are at risk of disease recurrence due to several factors,
including the lack of long-term persistence after CAR-T transfer [147]. However, various
strategies are currently being tested to improve the long-term efficacy of CAR-T treatment,
including consolidative treatments, patient selection, additional pre- and post-CAR-T
infusion treatment and CAR-T design and manufacturing optimization [148].

These challenges, together with the immunosuppressive tumor microenvironment
and the physical barriers of solid tumors, are the reason that the use of CAR-T therapy
is currently limited mainly to blood cancers, but despite all the difficulties, many clinical
and preclinical studies are currently underway for solid tumors, including PCa. Three
antigen candidates meet the criteria for CAR-T therapy for PCa and are currently under
investigation: the epithelial cell adhesion molecule, prostate stem cell antigen and PSMA
(reviewed by Perera et al. [149]).

4. Limitations of Immunotherapy in Prostate Cancer
4.1. Tumor Microenvironment

PCa tissue is composed of tumor cells and host components (immune cells, stroma, ep-
ithelial cells and soluble factors (cytokines)) that form the tumor microenvironment (TME).
TME changes with time. There are constant interactions between immune cells, stromal
cells, non-cellular components and tumor cells that affect tumor progression/regression or
the response to treatment [16]. Both tumor cells and tumor stroma create an unfavorable en-
vironment for an effective immune response, leading to tumor progression and escape [150].
The stroma contains fibroblasts, which allow tumor cells to survive, and in addition, they
participate in the development of a hypoxic environment, which is extremely unfavorable
for the normal functioning of immune cells [151]. In such conditions, immunosuppressive
cell populations are recruited, and the function of antitumor effector CD8+ T lymphocytes
and DCs is inhibited [152,153]. Research into the functioning of the immune system in
and around PCa tissue has confirmed the presence of regulatory T lymphocytes (Treg),
M2 tumor macrophages and myeloid-derived suppressor cells. In addition, many other
suppressor mechanisms have been discovered that favor the survival of cancer cells and
participate in the spread of cancer, such as cytokines secreted by fibroblasts, tumor cells
and stromal cells, as well as adenosine [154,155]. PCa is classified as one of the “immune
cold cancers” [156]. Relatively few T lymphocytes were measured in TME. This is partly
due to the low total tumor mutational burden (TMB) observed in PCa compared with other
cancers (e.g., malignant melanoma, renal cancer), resulting in a reduced presence of tumor
neoantigens, which are required for an effective immune response [157,158]. In addition,
tumor cells evade the immune system by changing their surface antigens, so that the
immune system no longer recognizes them as foreign, and therefore the disease progresses
more easily. The key to the successful treatment of CRPC with new immunotherapeutic
approaches is understanding the complexity of tumor cells and their interactions with
the highly immunosuppressive TME of PCa [159] and thus to understand the different
mechanisms of cancer cell resistance to evade immune surveillance. Contact-dependent
and paracrine communication between tumor cells and host cells, extracellular matrix
remodeling by cancer cells, properties of tissue-resident immune cells, altered metabolic de-
mands and metabolite secretion in TME [160] and numerous other factors tailor the unique
features of each TME, which dictates a unique approach to treat cancer in each individual.
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4.2. Biomarkers

Most clinical studies to date have not shown a benefit of DC-based immunother-
apy (e.g., effect on PSA values, time to disease progression, symptoms), most likely due
to inadequate surrogate targets that did not correlate with prolonged survival [55,161].
Although pioneering in nature, the IMPACT study has been subject to many criticisms.
Patients receiving sipuleucel-T received docetaxel as next-line treatment in most cases at
disease progression, whereas patients receiving the placebo received sipuleucel-T at disease
progression. This has led to a delay in treatment with drugs known to be effective [162].
In addition, the therapy did not significantly affect certain study endpoints: the time to
disease progression, significant effect on PSA, tumor burden, symptoms or pain [10]. Thus,
without a significant impact on surrogate endpoints, it is difficult to understand and explain
the observed improvement in survival of patients treated with sipuleucel-T. Moreover,
no biological marker was found in the patients’ blood that could be used to evaluate the
effectiveness of the vaccine.

Without a known predictive biomarker to assess the effectiveness of therapy, it is diffi-
cult to guide treatment and assess a disease status and progression. It is believed that the
kinetics of the clinical response after immunotherapy with antitumor vaccines are different
(delayed, prolonged) compared with cytotoxic therapy or therapy with second-generation
antiandrogens [163]. In the field of PCa, many biomarkers have been considered for prog-
nostic assessment or treatment decisions, but only a few have actually been rigorously
tested and validated [164,165]. One such biomarker is a constitutively expressed splice
variant of the androgen receptor AR-V7. The variant AR-V7+ shows resistance to both
enzalutamide and abiraterone acetate [166]. However, the presence of the AR-V7+ variant
does not appear to impair the response to taxanes (e.g., docetaxel) [167]. On the other
hand, there is a lack of biomarkers in the field of immunotherapy of PCa. It was found
that patients with a high microsatellite instability (MSI-H) or mismatch repair deficiency
(MMRD) respond better to ICIs [168,169]. Patients carrying germline mutations in DNA
damage repair genes have also responded well to ICIs [170–172]. To date, the biomarker
with likely the greatest potential clinical usefulness is the status of microsatellite instabil-
ity [170,173,174], which has been particularly supported by the FDA with the approval of
pembrolizumab for therapy of patients with mCRPC with MSI-H [175].

The expression level of programmed cell death protein 1 (PD-1) and programmed
death-ligand 1 (PD-L1) is low in healthy prostate tissue (present in 0.5–1.5% of cases),
but relatively high in PCa (7.7–13.2%) [176]. It is associated with the aggressiveness
of the disease; PD-L1 expression is present in 61.7% of local high-risk PCa and 50% of
CRPC [177,178]. Nevertheless, the response to ICI therapy does not necessarily depend on
PD-L1 expression. This suggests that other factors contribute to the efficacy of anti-PD-L1
therapy and that simply measuring tissue PD-L1 levels may not be an effective biomarker
of the treatment response.

According to currently available data, prognostic and predictive blood biomarkers
in advanced PCa are not yet ready for use in daily clinical practice. Other markers are
at various stages of development and evaluation. In the future, it will be imperative to
discover alternative biological markers that will allow us to evaluate the response of the
disease to immunotherapy and adjust the treatment in time, if necessary. Open challenges
remain in identifying patients in whom conventional methods for assessing the response
fail to identify a benefit from immunotherapy treatment. The key purpose of immuno-
oncology-specific criteria for evaluating the response to therapy is to sensibly correlate and
capture atypical response patterns, so that patients do not discontinue effective treatment
prematurely or remain on ineffective treatment too long, and to identify patients who will
respond to therapy. It is necessary to find reliable and properly validated biomarkers that
can identify patients who will respond to therapy. The appropriate selection of patients who
will respond to specific treatment will play an important role in the individual therapeutic
approach. Predictive biomarkers (e.g., MSI-H, MMRD, TMB) have already been identified
in some groups of patients who responded well to immunotherapy [169,179,180]. In
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addition, with a better understanding of the TME of PCa, we will be able to turn the
so-called immune cold cancer into a hotter one.

Therefore, the changes in the NK cell subpopulation, which were discovered in the
recently completed phase 1/2 study that linked their role to survival, show a perspective in
the field of biomonitoring of CRPC disease [11,12]. Namely, it was found that immunother-
apy with aHyC inhibits the growth of a subpopulation of NK cells (CD56brightCD16−) [11],
and concurrently, among patients who died, survival was significantly longer in those with
a smaller increase in this subpopulation of NK cells in peripheral blood. The relatively low
number of patients included in this correlation analysis (n = 10) dictates caution in interpre-
tation of the results; however, the correlation between the parameters, the CD56brightCD16−

change and survival, was high (R = −0.80; p < 0.005), suggesting that changes in the pe-
ripheral blood CD56brightCD16− NK cell subpopulation could be a novel biomarker that
could be helpful in evaluating the response to aHyC therapy. The role of these cells in
the immune system is not yet clear. It has been reported that their number is high in the
endometrium of the uterus, and this has been linked to a possible immunosuppressive role
and protection of the fetus from rejection [181]. Also, in one study on multiple sclerosis
treatment, their expansion was associated with a reduction in inflammation [182]. They act
in an immunoregulatory manner, secrete cytokines and play a role in metastases [183,184],
suggesting that immunohybridomas can interact with both T cells and NK cells in the
immune response [55]. Data in this area are scarce [185,186], but warrant further studies.

5. Discussion

This article summarizes the various immunotherapy modalities for prostate cancer
and emphasizes the potential of DC-based immunohybridoma cancer vaccines. PCa cells
divide relatively slowly, even in patients with advanced disease, allowing time to activate
the immune system [187]. This makes PCa an ideal target for cancer treatment vaccines [49].
PCa vaccines that work by activating the immune system may be more beneficial if used
early, before the onset of high-burden disease [57]. There are several reasons for this: the
immune system is activated with a delay, a certain time after administration of the vaccine;
a greater disease burden reduces the effectiveness of the immune response; and cancer
develops mechanisms by which tumor cells escape the control of the immune system.

PCa cells express several known prostate-specific immunogenic antigens (e.g., PAP,
PSA and PSMA) and can be used as targets for vaccines based solely on one antigen [57,188].
Although vaccine-based therapies have several advantages, one possible drawback is that
an effective immune response to a specific TAA might be variable, limited in part by human
MHC, termed the human leukocyte antigen expression and haplotype, which affects the
presentation of the immunogenic epitopes [189,190]. A high affinity and increased duration
of peptide-MHC interactions may lead to more effective vaccine-induced immunogenic-
ity [191,192].

Ways of presenting cancer cell antigens to the immune system have been investigated
in various clinical studies, from a general strategy with one known antigen for all patients
(easier preparation of the vaccine) to other, more individualized strategies with several
different antigens for individual patients (more demanding vaccine preparation). A general
approach was used in the PROSTVAC-VF vaccine trial (viral vector-based vaccine) [40,193]
and the GVAX trial (tumor cell-based vaccine) [47,193]. Beneficial effects on patient survival
were reported in some PROSTVAC-VF and GVAX studies in which the vaccine was adminis-
tered subcutaneously/intracutaneously [193]. DNA-based vaccines containing information
on various TAAs (PAP, PSA, PSMA and testicular cancer antigen) have not demonstrated
an increased clinical efficacy, but most trials have shown an immunological response [33].
The strategy of using a single antigen, specifically PAP, was used in the production of
sipuleucel-T in the IMPACT trial. Because most PCa cells express PAP [57], this was a
logical next route to improve the efficacy of vaccines in PCa immunotherapy. The likely
mechanism of action of the sipuleucel-T cell vaccine is the induction of an immune response
to PAP on PCa cells via DCs [59]; however, it is not entirely clear whether sipuleucel-T
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actually works this way because it contains less than 20% DC markers [194,195]. DCs are ca-
pable of activating both naive and memory T lymphocytes and appear to be an ideal target
for amplifying antitumor immune responses [53] in the treatment of patients with CRPC.
Thus, an approach with enriched, activated DCs may be a more effective immunotherapy
strategy than the approaches mentioned previously [132].

An innovative way to trigger specific immune reactions to interrupt the unresponsive-
ness of antitumor effector lymphocytes and NK cells, similar to those of spontaneous tumor
rejection, was performed with an optimally planned and manufactured immune vaccine
aHyC [63–65] in a phase 1/2 study, in which whole autologous tumor cells were used as
a source of TAs, with known and unknown antigens specific to each patient [11], instead
of choosing one [10] or a few [132]. In addition, all the patients included in the study had
been pre-treated with metronomic doses of cyclophosphamide before the first vaccination,
aiming to reduce the number of Treg cells in the TME [196–198].

An improved functional efficiency of aHyC, reflected in a better clinical picture of
patients, could be achieved by optimizing the procedures for the preparation of the cell vac-
cine and by establishing the optimal functioning of the patient’s immune system, especially
in the environment of a malignant neoplasm. Most tumors develop in immunocompetent
hosts, which means that the progression of the disease from a localized form to metastatic
disease is associated with numerous interactions of cancer cells with cells of the host’s
immune system. Research into the functioning of the immune system in and around PCa
tissue has confirmed the presence of Treg cells and many other suppressor mechanisms
that favor the survival of cancer cells and participate in the spread of cancer. Thus, the goal
of immune therapy in the future, with an optimally designed and manufactured immune
vaccine, is to trigger specific immune reactions similar to those during spontaneous tumor
rejection [199].

6. Conclusions and Future Directions

PCa has immunogenic potential, but the immunosuppressive TME prevents the im-
mune system from responding appropriately to destroy tumor cells. Populations of in-
hibitory immune cells, fibroblasts and tumor cells produce cytokines that indirectly and
directly inhibit the immune system, which should fight against tumor cells. In recent years,
immunotherapy has had a profound impact on the treatment of metastatic cancer and has
changed the standard of care for many types of tumors. Although some disseminated
cancers, such as malignant melanoma, lung cancer, bladder cancer and renal cell cancer,
have shown dramatic responses to immunotherapy [7], PCa has generally not shown a
significant response. In contrast to other cancers, when blocking the PD-1/PD-L1 axis
alone is sufficient, it is likely that different approaches will need to be combined in PCa
to improve clinical response rates. Results of ongoing phase 2 and 3 clinical trials may
provide insights into the advantages and disadvantages of different strategies, as well as
into different mechanisms of therapeutic resistance.

Adequate platforms for vaccine development will also need to be developed. Usually,
animal models are used for such research, but the immune system of rodents is very
different from that of humans, and the transfer of the data obtained is often useless [200,201].
In the era of personalized medicine, we strive to adapt the treatment to each individual
patient based on the characteristics of the tumor (and the patient). In the near future,
molecular dissection of PCa is inevitable, but additional research work will be required
before we have a definitive clinical usefulness of specific biomarkers [202].

We believe that immunotherapy in PCa is just the beginning of a long story. With
further scientific work, we will be able to answer many questions, including the follow-
ing. How can we make PCa more “hot”—prone to attacks by the immune system or
immunotherapy? What is the exact mechanism by which an effective immune response is
blocked? Are there different cancer cell-killing T cells that are activated by CTLA-4 inhibi-
tion versus those that are activated by PD-L1 inhibition? It is still difficult to predict what
role aHyC immunotherapy will play in the future. The effect of aHyC on CD56brightCD16−
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NK cells, suggesting an association with survival, is certainly an important finding. With
further research, we may be able to confirm this and discover something new, opening up
possibilities in the field of PCa and other forms of solid tumors. In the coming years, we
will obtain a clear answer about the role of new forms of systemic treatment, which may be
used in combination and at earlier stages of the disease.
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