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Abstract: Vaccines trigger an immunological response that includes B and T cells, with B cells pro-

ducing antibodies. SARS-CoV-2 immunity weakens over time after vaccination. Discovering key 

changes in antigen-reactive antibodies over time after vaccination could help improve vaccine effi-

ciency. In this study, we collected data on blood antibody levels in a cohort of healthcare workers 

vaccinated for COVID-19 and obtained 73 antigens in samples from four groups according to the 

duration after vaccination, including 104 unvaccinated healthcare workers, 534 healthcare workers 

within 60 days after vaccination, 594 healthcare workers between 60 and 180 days after vaccination, 

and 141 healthcare workers over 180 days after vaccination. Our work was a reanalysis of the data 

originally collected at Irvine University. This data was obtained in Orange County, California, USA, 

with the collection process commencing in December 2020. British variant (B.1.1.7), South African 

variant (B.1.351), and Brazilian/Japanese variant (P.1) were the most prevalent strains during the 

sampling period. An efficient machine learning based framework containing four feature selection 

methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte 

Carlo feature selection, and maximum relevance minimum redundancy) and four classification al-

gorithms (decision tree, k-nearest neighbor, random forest, and support vector machine) was de-

signed to select essential antibodies against specific antigens. Several efficient classifiers with a 

weighted F1 value around 0.75 were constructed. The antigen microarray used for identifying anti-

body levels in the coronavirus features ten distinct SARS-CoV-2 antigens, comprising various seg-

ments of both nucleocapsid protein (NP) and spike protein (S). This study revealed that S1 + S2, 

S1.mFcTag, S1.HisTag, S1, S2, Spike.RBD.His.Bac, Spike.RBD.rFc, and S1.RBD.mFc were most 

highly ranked among all features, where S1 and S2 are the subunits of Spike, and the suffixes rep-

resent the tagging information of different recombinant proteins. Meanwhile, the classification rules 

were obtained from the optimal decision tree to explain quantitatively the roles of antigens in the 

classification. This study identified antibodies associated with decreased clinical immunity based 

on populations with different time spans after vaccination. These antibodies have important impli-

cations for maintaining long-term immunity to SARS-CoV-2. 

  

Citation: Ma, Q.-L.; Huang, F.-M.; 

Guo, W.; Feng, K.-Y.; Huang, T.;  

Cai, Y.-D. Machine Learning  

Classification of Time since 

BNT162b2 COVID-19 Vaccination 

Based on Array-Measured Antibody 

Activity. Life 2023, 13, 1304. https:// 

doi.org/10.3390/life13061304 

Academic Editors: Sarah Allegra and 

Silvia De Francia 

Received: 26 April 2023 

Revised: 26 May 2023 

Accepted: 29 May 2023 

Published: 31 May 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Life 2023, 13, 1304 2 of 22 
 

 

Keywords: antigen; COVID-19 vaccination; machine learning 

 

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel corona-

virus strain causing Coronavirus Disease 2019 (COVID-19) [1]. On 11 March 2020, COVID-

19 was finally classified as a pandemic by the World Health Organization (WHO) [2]. 

More than 6.3 million people have died from COVID-19 globally, according to the WHO, 

and more than 500 million cases have been confirmed. Additionally, more than 11 billion 

doses of vaccine have been distributed [3]. Fever, sore throat, dry cough, and pneumonia 

symptoms are among the clinical manifestations of COVID-19 [4]. During the span of this 

study, the Omicron variant was prevalent. The Omicron variant, which evolved from the 

Alpha variant, has increased infectivity compared to earlier variants [5]. Increased infec-

tiousness and antibody evasion have been linked to the mutations in the SARS-CoV-2 

spike protein [6]. 

Scientists have developed COVID-19 vaccines to combat the pandemic. To date, some 

types of vaccines against SARS-CoV-2 have been developed and widely used worldwide, 

such as the RNA-based type, non-replicating viral vector type, and protein-based type [7]. 

BNT16b2 (Pfizer - NY, USA and BioNTech - Mainz, Germany), mRNA-1273 (Moderna - 

Cambridge, USA), Ad26.COV2.S (Johnson & Johnson - NJ, USA), CIGB-66 Abdala (Cuban 

Genetic Engineering and Biotechnology Center - Havana, Cuba), and other common vac-

cines require one to three doses, depending on the type [7–10]. BNT162b2 contains mRNA 

encoding a full-length stable S glycoprotein that elicits dose-dependent SARS-CoV-2 neu-

tralizing antibody titers [11]. Two doses of BNT162B2 exhibit approximately 95% protec-

tion against severe illness [9,12–15]. As of early 2023, all vaccines have efficacy in reducing 

COVID-19 severe cases and death while their efficiency in controlling viral infection and 

mild symptoms is not very satisfactory [9,10,16,17]. Vaccine coverage must be extended to 

all countries while maintaining and improving public health control mechanisms to con-

trol COVID-19 morbidity and mortality worldwide. 

However, the efficacy of the BNT162b2 mRNA vaccine against SARS-CoV-2 de-

creases over time [11,18]. In addition, there have been reports of vaccine-induced protec-

tion waning progressively due to the emergence of new variants [19,20]. Whether the de-

cline in vaccine protection is linked to a decrease in virus resistance remains unclear. Vac-

cines trigger a complicated immunological response that includes B and T cells, with B 

cells producing antibodies [18,21,22]. Spike (S), membrane (M), nucleocapsid (N), and en-

velope (E) are the four structural proteins encoded by SARS-CoV-2 [23–25]. Most of the 

antibodies generated by vaccination are directed against the S protein, specifically the re-

ceptor-binding domain (RBD) [7,26]. A recent study of antibody alterations following two 

doses of inactivated COVID-19 vaccine, separated into three groups based on immuniza-

tion duration, revealed that the levels of antibodies (anti-Spike IgG) decrease with time [27]. 

While existing studies have begun to chart the territory of antibody profiles post-COVID-19 

vaccination [28–31], the detailed interplay between antibody and vaccination remains incom-

pletely revealed. More comprehensive research is urgently needed to pinpoint the most critical 

antibodies that neutralize the virus effectively and determine their duration in the human 

body. This knowledge is paramount for enhancing vaccine strategies, potentially developing 

superior treatments, and guiding public health policies regarding booster shots and contain-

ment measures, ultimately fortifying our fight against the pandemic. 

In the current study, we investigated the influence of vaccines on antibody synthesis 

and monitored changes in antibody levels in the body over time following vaccination. 

Data on blood antibody levels in a cohort of volunteers vaccinated for COVID-19 vaccines 

were sourced from the Gene Expression Omnibus (GEO). The GEO data used for our anal-

yses were originally measured using antigen microarrays [32]. The volunteers were exam-

ined for their reaction before receiving the mRNA vaccine (Pfizer or Moderna), shortly 
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after receiving the first and second doses, and up to 6 months later. Vaccine-induced anti-

bodies are mainly directed against the S1 and RBD domains of the S protein and to a lesser 

extent against the S2 domain. Antibody levels were increasing significantly 2 months after 

vaccination and begin to decline after 6 months. Seventy-three antigens and 1373 volun-

teer records were involved in the study of Hosseinian et al. [32]. In the present study, 1373 

samples were classified into four groups according to the time of vaccination: before vac-

cination, within 60 days of vaccination, 60–180 days after vaccination, and over 180 days 

after vaccination. Multiple machine learning methods were integrated to identify key an-

tigen-reactive antibodies that changed after COVID-19 vaccination over time and to estab-

lish quantitative rules for accurate prediction. Several essential antigen-reactive antibod-

ies and classification rules were obtained, some of which were extensively analyzed. The 

results of this study could serve as a basis for developing effective vaccines with long-

lasting protection and elucidating the defense mechanisms of COVID-19 vaccines. 

2. Materials and Methods 

2.1. Data and Preprocessing 

Individualized antibody reactivity levels for SARS-CoV-2 antigens induced by 

mRNA vaccines were quantified using a coronavirus antigen microarray (CoVAM) fol-

lowing the procedure described by Hosseinian et al. [32]. Data were sourced from the GEO 

database using accession number GSE199668. The samples were divided into four classes 

according to the time of vaccination: 104 unvaccinated healthcare workers, 534 healthcare 

workers within 60 days after vaccination, 594 healthcare workers between 60 and 180 days 

after vaccination, and 141 healthcare workers over 180 days after vaccination [32]. In terms 

of features, the CoVAM contained 10 SARS-CoV-2 antigens, including nucleocapsid pro-

tein (NP) and several varying fragments of the S protein, as well as 4 SARS, 3 MERS, 12 

Common CoV, 8 influenza, and 36 other antigens. In terms of feature naming, the virus 

name was placed at the beginning to distinguish between the different sources of antibod-

ies, followed by the protein name, and the specific tag name followed after the protein 

name. The feature names and their descriptions are provided in Table S1. The normalized 

fluorescence intensity was used to characterize the expression levels of antigen-reactive 

antibodies in blood. The above features and four classes comprised the classification prob-

lem. By investigating the problem, essential features can be obtained. 

2.2. Feature Selection Methods 

Several features were adopted to represent samples. Some of them were important to 

classify samples into different classes, whereas others were not. In machine learning, the 

important features can be extracted by feature selection methods. To date, many such 

methods have been proposed. It is a challenge to select the correct one to process a given 

dataset. Generally, one single method can only output a part of the essential features as 

each method has its limitations. In this study, we adopted four feature selection methods: 

least absolute shrinkage and selection operator (LASSO) [33,34], light gradient boosting 

machine (LighGBM) [35], Monte Carlo feature selection (MCFS) [36] and maximum rele-

vance minimum redundancy (mRMR) [37]. These methods were designed following dif-

ferent principles, meaning that they can overview the given dataset from different aspects. 

Thus, more essential features can be obtained by applying them to the same dataset. Their 

brief descriptions are as follows. 

Least Absolute Shrinkage and Selection Operator. The LASSO is a statistical method 

used for regularization and feature selection [33,34]. This method reduces the regression 

coefficients of the redundant features to zero. The feature selection phase occurs after the 

reduction, where non-zero-valued features are sorted by the absolute value of their coef-

ficients. This study used the LASSO program implemented in Scikit-learn [38], which was 

run with default parameters. 
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Light Gradient Boosting Machine. The LightGBM is a free and open-source distrib-

uted gradient boosting framework for machine learning that was created by Microsoft 

[35]. It performs regression and classification by transforming weak decision tree (DT) 

classifiers into strong learners. In addition to regression and classification, this method 

ranks features according to their importance, measured by the number of times they are 

picked up for building DTs. A high ranking is given to features that are used frequently. 

LightGBM was implemented through a Python module, which can be obtained at 

https://lightgbm.readthedocs.io/en/latest/ (accessed on 10 May 2020). This program was 

also performed under default parameters. 

Monte Carlo Feature Selection. The MCFS is a useful tool for selecting informative 

features according to their relative importance in building DTs [36,39–41]. Subsets of fea-

tures are randomly constructed many times. For each subset, some samples are randomly 

selected for training, and the others are used for testing. For instance, a DT is built based 

on two out of three of the samples that are randomly selected, and the rest is used for 

testing, which is also repeated many times. The relative importance (RI) of each feature 

can then be estimated by considering the number of times they are used to construct the 

DTs, the information gain of the features, and the weighted accuracy of the DTs. Finally, 

features can be sorted according to their RI scores. The MCFS program adopted in this 

study was retrieved from http://www.ipipan.eu/staff/m.draminski/mcfs.html (accessed 

on 4 June 2019). Additionally, it was executed using default parameters.  

Maximum Relevance Minimum Redundancy. The mRMR is a classic and powerful 

feature selection method [37]. It measures the importance of features according to two 

aspects: (1) relevance to class variable, (2) redundancy to other features. The relevance and 

redundancy are all measured by mutual information (MI). Similar to the above methods, 

mRMR also generates a feature list to indicate the importance of features. At first, the list 

is empty. Then, a loop procedure is executed. In each round, one feature with maximum 

relevance to class variable and minimum redundancy to features in the current list is se-

lected from all remaining features, which is appended to the current list. The loop proce-

dure stops until all features have been put into the list. The mRMR program used in this 

study was obtained from http://home.penglab.com/proj/mRMR/ (accessed on 2 May 2018) 

and it was executed with the default settings. 

The above four feature selection methods were applied to the dataset mentioned in 

Section 2.1, resulting in four feature lists, which were termed as LASSO, LightGBM, MCFS 

and mRMR feature lists. 

2.3. Incremental Feature Selection 

Although the feature selection methods can sort features in lists, it still retains a gap 

for extracting essential features. It is not easy to determine how many top features should 

be selected. In view of this, incremental feature selection (IFS) was employed in this study 

[42]. It can find out the optimal number of features for building the classifiers with best 

performance [43–45]. In the present study, one step interval was applied to each given list 

in the IFS method. Under this setting, a series of feature subsets were constructed in the 

following manner. The first subset contained the first feature in the list, the second one 

contained the top two features, and so on. A classifier was built for each feature subset 

based on one classification algorithm and samples encoded by features in this subset. All 

classifiers were tested by tenfold cross-validation [46]. According to the evaluation results, 

the classifier providing the highest performance was selected. It was termed as the optimal 

classifier and the optimal feature set was defined as the corresponding feature subset.  
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2.4. Synthetic Minority Oversampling Technique 

As mentioned in Section 2.1, there are significant differences in the size of the four 

classes. The classifier built on such datasets may generate bias. This should be tackled by 

using some advanced computational methods. Here, we selected the synthetic minority 

oversampling technique (SMOTE) [47–49]. The idea of this method is to generate synthetic 

samples for each minority class, thereby balancing the dataset. In detail, it randomly 

chooses a sample from one minority class and determines its k nearest neighbors in the 

same class. One of its neighbors is randomly selected and a synthetic sample is generated 

by the linear combination of the sample and its chosen neighbor. This newly generated 

sample is put into the minority class, thereby enlarging its size. This procedure can be 

performed several rounds until the minority class contains the same number of samples 

as the majority class. Herein, we used the SMOTE tool from https://github.com/scikit-

learn-contrib/imbalanced-learn (accessed on 24 March 2020) with default parameters. 

2.5. Classification Algorithms 

In the IFS method, one classification algorithm should be employed for building clas-

sifiers. This study adopted four classification algorithms: DT [50], K-nearest neighbor 

(KNN) [51], support vector machine (SVM) [52], and random forest (RF) [53]. These algo-

rithms have wide applications in tackling various medical and biological problems [54–

60]. DT uses a tree-like model to build classifiers, which can be extended by maximizing 

Gini index or information gain in each tree node [50]. The KNN algorithm finds the near-

est neighbors of a new sample and categorizes the new sample into one that is shared by 

most of its nearest neighbors [51]. The SVM can map samples into a high-dimensional 

space and finds a hyperplane that distinctly classifies samples in different classes. The test 

samples are then mapped into the same space and the category to which they belong are 

predicted based on which side of the hyperplane they fall [52]. A RF consists of a large 

number of individual DTs that operate as an ensemble [53]. Each decision tree in an RF 

generates class predictions on a test sample, and the class with the most votes is taken as 

the prediction result.  

2.6. Performance Assessment 

The weighted F1 is a widely used measurement in multi-class classification, which 

was selected as the key measurement to assess the performance of the classifier. For the 

calculation of the measurement, the F1-measure in each class should be calculated in ad-

vance. It is defined as the harmonic mean of the other two measurements: recall and pre-

cision, where recall is the proportion of correctly predicted positive samples among all 

positive samples, precision is the proportion of correctly predicted positive samples 

among all predicted positive samples. The weighted F1 is the weighted average of all F1-

measure values on different classes, where the weight for one class is defined as the pro-

portion of samples in this class.  

In addition, other measurements were also employed to give a full display of the 

performance of classifiers. The first one was Macro F1, which is another way to integrate 

the F1-measure values of different classes, which is defined as the mean of all F1-measure 

values. The second one was prediction accuracy (ACC) which is the most classic measure-

ment to assess the performance of classifiers. It is defined as the ratio of the number of 

correctly predicted samples and the overall sample number. However, when the dataset 

is imbalanced, ACC is not accurate enough. Matthew correlation coefficients (MCC) [61] 

is a more balanced measurement than ACC. Two matrices are used to calculate MCC. One 

is to store the true class of each sample and the other one is to store the predicted class of 

each sample. MCC assesses the relationship between these two matrices.  
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2.7. Extraction of Essential Features for Each Class 

Based on the IFS method, some essential features can be obtained. However, it is not 

clear which class they are highly related to. In view of this, we reconstructed a dataset for 

each class and applied the above feature selection methods to it. For one class, one dataset 

was generated, in which samples in this class were considered as positive samples and 

other samples were regarded as negative samples. Then, LASSO, LightGBM, MCFS, and 

mRMR were adopted to investigate this dataset, resulting in four feature lists. From each 

list, the top 20 features were picked, thereby obtaining four feature subsets. By investigat-

ing the overlap of these feature subsets, some essential features that occurred in multiple 

subsets can be obtained, which were deemed to be highly related to the given class. 

3. Results 

In this study, a dataset on the antibody reactivity levels for SARS-CoV-2 antigens 

induced by mRNA vaccines was investigated. The overall computational framework is 

illustrated in Figure 1. The results in each step are presented in this section. 

 

Figure 1. Flow chart of the entire analytical process. The 73 antigens in samples from four classes 

were ranked in terms of feature importance by four feature selection algorithms, including LASSO, 
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LightGBM, mRMR, and MCFS. Such procedure generated four feature lists, which were fed into the 

IFS method. Efficient classifiers were set up, which used the optimal feature subset from each list. 

At the same time, classification rules were also built. Obtained optimal feature subsets were inves-

tigated to obtain antigens recurring in multiple subsets. Lastly, a biological analysis was performed 

on the above-obtained antigens and classification rules. 

3.1. Results of Feature Selection Methods 

According to the framework, four feature selection methods were used to rank the 

73 antigens based on the degree to which they contributed to the classification. These lists 

are provided in Table S2. For easy descriptions, they were called LASSO, LightGBM, 

MCFS and mRMR feature lists. 

3.2. IFS Results and Feature Intersection 

As mentioned above, four feature lists were obtained. Each list was put into the IFS 

method one by one. DT, KNN, RF, and SVM were adopted in the IFS method. The perfor-

mance of each classification algorithm under some top features in each list is listed in Table 

S3. Using the weighted F1 as the major measurement, we compared the performance of 

the classifiers using the same classification algorithm and feature list. Several IFS curves 

were generated by plotting the weighted F1 on the y-axis and the number of features on 

the x-axis, as shown in Figures 2 and 3. 

 

Figure 2. IFS curves of four classification algorithms based on IFS results on the LASSO and 

LightGBM feature lists. (A) IFS curves of the LASSO feature list, (B) IFS curves of the LightGBM 

feature list. The number in each box was the highest weighted F1 for one classification algorithm. 
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Figure 3. IFS curves of four classification algorithms based on the IFS results on the MCFS and 

mRMR feature lists. (A) IFS curves on the MCFS feature list, (B) IFS curves on the mRMR feature 

list. The number in each box was the highest weighted F1 for one classification algorithm. 

For the LASSO feature list, Figure 2A shows the IFS curves based on four classifica-

tion algorithms. When the top 47, 73, 21 and 73 features in each list were used, the DT, 

KNN, RF and SVM can yield the highest weighted F1 values of 0.702, 0.711, 0.735 and 

0.733, respectively. Accordingly, the optimal DT, KNN, RF and SVM classifiers can be built 

with the corresponding top features. Their detailed performance, including ACC, MCC, 

macro F1 and weighted F1, is provided in Table 1. Evidently, the optimal RF classifier was 

better than the other three optimal classifiers.  
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Table 1. Performance of optimal classifiers on different classification algorithms and feature lists. 

Feature List 
Classification 

Algorithm 

Number of 

Features 
ACC MCC Macro F1 Weighted F1 

LASSO feature list 

DT 47 0.704 0.554 0.744 0.702 

KNN 73 0.716 0.574 0.776 0.711 

RF 21 0.741 0.622 0.787 0.735 

SVM 73 0.737 0.603 0.796 0.733 

LightGBM feature list 

DT 40 0.720 0.573 0.762 0.717 

KNN 18 0.747 0.618 0.802 0.744 

RF 31 0.752 0.649 0.796 0.742 

SVM 35 0.761 0.640 0.806 0.758 

MCFS feature list 

DT 17 0.729 0.589 0.771 0.727 

KNN 20 0.742 0.611 0.799 0.739 

RF 23 0.756 0.649 0.801 0.747 

SVM 41 0.768 0.652 0.811 0.765 

mRMR feature list 

DT 14 0.730 0.594 0.763 0.728 

KNN 24 0.741 0.612 0.797 0.737 

RF 26 0.754 0.646 0.797 0.745 

SVM 30 0.762 0.643 0.805 0.758 

For the LightGBM feature list, the obtained four curves are illustrated in Figure 2B. 

From this figure, four optimal classifiers can be obtained, which adopted the top 40, 18, 31 

and 35 features in the list. They generated the weighted F1 values of 0.717, 0.744, 0.742 and 

0.758. Table 1 also lists the performance of these optimal classifiers. Clearly, the optimal 

SVM classifier was a little better than the other three optimal classifiers.  

For the MCFS feature list, the IFS results on this list were summarized as four IFS 

curves, as shown in Figure 3A. It can be observed that the optimal DT/KNN/RF/SVM clas-

sifier adopted the top 17/20/23/41 features in this list. The detailed performance of these 

optimal classifiers is provided in Table 1. Evidently, the optimal SVM classifier was the 

best among four optimal classifiers, which produced a weighted F1 of 0.765.  

As for the last mRMR feature list, Figure 3B displays the IFS curves on four classifi-

cation algorithms. The highest weighted F1 values for the classification algorithms were 

0.728 (DT), 0.737 (KNN), 0.745 (RF) and 0.758 (SVM), respectively. This performance was 

obtained by using the top 14, 24, 26 and 30 features in the corresponding feature list. Thus, 

the optimal DT, KNN, RF and SVM classifiers can be set up using these features. Table 1 

lists their detailed performance. The optimal SVM classifier yielded better performance 

than the other three optimal classifiers.  

According to the above results, we can find the best classifiers of four feature lists. In 

detail, the best classifier in the LASSO feature list was the optimal RF classifier, whereas 

it was the optimal SVM classifier in the other three lists. We picked up the optimal feature 

subsets for further investigation. A Venn diagram was plotted for these subsets, as illus-

trated in Figure 4. The intersection results of these optimal feature subsets are available in 

Table S4. The antigens appearing in several feature subsets suggest that they were identi-

fied as important by multiple feature selection methods. They can play important roles in 

differentiating healthcare workers at different time spans after vaccination. The biological 

significance of some antigens (features) will be discussed in Section 4. 
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Figure 4. Venn diagrams of the optimal feature subsets extracted from the LASSO, LightGBM, 

MCFS, and mRMR feature lists. The overlapping circles indicated antigens that were included in 

multiple optimal feature subsets. 

3.3. Essential Features for Each Class 

The essential features obtained above may not be highly related to one class. To ex-

tract the essential features for each class, four datasets corresponding to the four classes 

were constructed, as described in Section 2.7. Then, LASSO, LightGBM, MCFS and mRMR 

were applied to each dataset. Four feature lists were obtained. The top 20 features were 

selected for taking the intersection. A Venn diagram was drawn for each class, as illus-

trated in Figure 5. The specific antigen names are listed in Table S5. For the first class, 

namely, unvaccinated healthcare workers, antigens such as SARS.CoV.2.S1.RBD.mFc and 

SARS.CoV.S1.HisTag were identified by all four feature selection methods. For the second 

class, namely, healthcare workers within 60 days after vaccination, 

SARS.CoV.2.S1.mFcTag and HuIgM.0.30 were deemed to be important by all feature se-

lection methods. For the third class, namely, healthcare workers between 60–180 days af-

ter vaccination, three features (SARS.CoV.2.S1.mFcTag, HuIgM.0.30, and 

SARS.CoV.2.S1.RBD.mFc) were identified to be essential. For the fourth class, namely, 

healthcare workers over 180 days after vaccination, MERS.CoV.S1.RBD.367.606.rFcTag, 

Flu.B_Mal/.HA1, and a-HuIgG_0.03 were screened out by all methods. The discussion on 

the importance and functionality of some features will be provided in detail in Section 4. 
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Figure 5. Venn diagrams of top features identified by LASSO, LightGBM, MCFS, and mRMR meth-

ods for four classes. For each class, the top 20 antigens in the four feature lists were selected for 

taking the intersection. These antigens were considered to be highly associated with one particular 

class. (A) Venn diagram for unvaccinated healthcare workers; (B) Venn diagram for healthcare 

workers within 60 days after vaccination; (C) Venn diagram for healthcare workers between 60 and 

180 days after vaccination; (D) Venn diagram for healthcare workers over 180 days after vaccination. 

3.4. Classification Rules 

It can be observed from Table 1 that the optimal DT classifier was generally inferior 

to the other three optimal classifiers on the same feature list. However, the DT classifier 

has a great merit that was not shared by the other three classifiers. It can provide a group 

of classification rules, which made the classification procedures completely open. The op-

timal DT classifiers on four feature lists adopted the top 47, 40, 17 and 14, respectively, 

features in the corresponding lists. All healthcare workers were represented by the above 

features, respectively. Four trees were built by DT, from which four rule groups were es-

tablished. These rules are provided in Table S6; 190, 183, 202, and 226 classification rules, 

respectively, were contained in four groups. Each rule is composed of antigen features 

and their associated fluorescence intensity values, which explains how the feature’s high 

or low fluorescence intensity influences the capacity to identify the classes of samples. A 

detailed discussion of some quantitative rules can be found in Section 4. 

4. Discussion 

We identified a set of antigen-reactive antibodies as potential features that could re-

veal the effect of COVID-19 vaccines on anti-viral immune activation and reflect changes 

in antibody levels in the body over time after vaccination by using data on serum antibody 

levels in volunteers after receiving COVID-19 vaccines. This confirms the potential of such 
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features to contribute to the development of effective vaccines with long-lasting protec-

tion. The serum antibody data we analyzed were detected by a coronavirus antigen mi-

croarray (CoVAM). The microarray approach has been extensively applied in SARS-CoV-

2 research due to its excellent sensitivity and specificity [62–64]. Recently, this method was 

frequently employed for measuring antibody levels following mRNA vaccination [30,65]. 

Recent publications have found that some identified features, as well as the relevant quan-

tification rules, are linked to vaccine-induced anti-viral immune activation and duration. 

4.1. Key Features for Identifying the Effect of COVID-19 Vaccines on Antibody Production 

Using these computational methods, we discovered a set of unique viral antigens-

reactive antibodies selected by at least three methods. The antigens we analyzed are from 

epidemic coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV, common cold 

coronaviruses, and multiple subtypes of influenza. S1, S2, and RBD are components of 

SARS-CoV-2’s spike protein, which it uses to infect cells. Moreover, ‘tags’ were attached 

to these proteins to make them easier to study. For example, ‘mFcTag’ is a piece from a 

mouse antibody, and ‘HisTag’ is a chain of specific building blocks, both used for tracking 

and purifying the protein. These top-specific antibodies are closely related to the compo-

nents of various COVID-19 vaccines, suggesting the protective effect of these vaccines. In 

the present study, we analyzed 13 specific antibodies, listed in Table 2. In this section, we 

compared the changes in significant viral antigen-reactive antibodies in the serum of vac-

cinated and unvaccinated individuals. We also discussed the plausibility and cross-im-

munization of important antibodies (including non-SARS-CoV-2 antibodies) induced by 

COVID-19 vaccines. 

Table 2. Top antigens identified by computational methods (The symbol ‘✔’ indicates that the 

antigen was identified by the corresponding method).  

Target Antigens LASSO LightGBM MCFS mRMR 

SARS.CoV.2.S1.mFcTag ✔ ✔ ✔ ✔ 

MERS.CoV.S1.RBD.367.606.rFcTag ✔ ✔ ✔ ✔ 

SARS.CoV.2.Spike.RBD.His.Bac ✔ ✔ ✔ ✔ 

SARS.CoV.S1.HisTag ✔ ✔ ✔ ✔ 

SARS.CoV.2.S1.RBD.mFc ✔ ✔ ✔ ✔ 

SARS.CoV.2.S1 + S2 ✔ ✔ ✔ ✔ 

SARS.CoV.2.S2  ✔ ✔ ✔ 

hCoV.HKU1.NP  ✔ ✔ ✔ 

SARS.CoV.2.Spike.RBD.rFc ✔  ✔ ✔ 

SARS.CoV.2.S1 ✔  ✔ ✔ 

SARS.CoV.2.S1.HisTag ✔  ✔ ✔ 

SARS.CoV.S1.RBD.HisTag ✔  ✔ ✔ 

hCoV.229E.S1 ✔ ✔ ✔  

The top eight features identified were from SARS-CoV-2: S1 + S2, S1.mFcTag, 

S1.HisTag, S1, S2, Spike.RBD.His.Bac, Spike.RBD.rFc, and S1.RBD.mFc. The compositions 

of COVID-19 vaccines are listed in a recent paper comparing these vaccines [7]. The S 

protein of SARS-CoV-2 was chosen as a promising target by the majority of COVID-19 

vaccines because blocking the interaction between the RBD of echinocandin and human 

angiotensin-converting enzyme 2 (ACE2) is effective in preventing infection [66,67]. In 

addition, the RBD is part of the S protein’s S1 subunit [68,69]. Suthar et al. highlighted that 

the S protein of SARS-CoV-2, particularly RBD, stimulates the production of neutralizing 

antibody NAbs [70]. Similarly, an animal study revealed that RBD-specific IgG accounts 

for half of the antibody responses induced by S proteins. As a result, given that popular 

COVID-19 vaccines such as BNT162B1 encode the S protein of SARS-CoV-2, they can stimu-

late the production of S protein (including S1 and S2 subunits) and RBD-specific antibodies.  
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SARS.CoV.S1.HisTag and SARS.CoV.S1.RBD.HisTag are top features from SARS-

CoV. SARS-CoV and SARS-CoV-2, both belonging to β-B coronavirus, and share 79% of 

their gene sequences [71,72], and the S protein shares 76% of its amino acid identity [73]. 

SARS-CoV-2 and SARS-CoV share the same host cell receptor ACE2 and are structurally 

similar; thus, they may exhibit some degree of cross-immunity [67]. These data suggest 

the effectiveness of SARS-CoV-reactive antibodies against SARS-CoV-2. These results 

were further confirmed by Wec et al., who isolated several antibodies from a SARS survi-

vor that neutralized coronaviruses such as SARS-CoV-2 [74]. Min et al. identified several 

monoclonal antibodies against SARS-CoV S protein or RBD that are cross-immunoreac-

tive with SARS-CoV-2 [26], which agrees with our predicted features.  

MERS.CoV.S1.RBD.367.606.rFcTag from MERS-CoV was the next feature identified. 

MERS-CoV also belongs to β coronavirus and shares a 50% sequence similarity to SARS-

CoV-2 [71], a coronavirus with a high lethality rate. The S protein of MERS-CoV and the 

RBD in it share some similarities to SARS-CoV-2, suggesting that the cross-immunity of 

the RBD-specific antibody to the S protein of MERS-CoV against SARS-CoV-2 is less than 

that of the SARS-CoV-specific antibody, but still exists.  

The last two identified features, hCoV.HKU1.NP and hCoV.229E.S1, are antigens 

from β coronavirus hCoV-HKU1 and α coronavirus hCoV-229E, respectively. Cross-im-

munization with SAR-CoV-2 is possible due to their close relationship. HCoVs are com-

posed of proteins called spike (S), membrane (M), envelope (E), and nucleocapsid (N) [75]. 

In addition to the S protein, the N protein is an important antibody target [70,76], implying 

that hCoV.HKU1.NP-specific antibodies contribute to SARS-CoV-2 prevention. Although 

hCOV-228E is less closely related to SARS-CoV-2 than the other coronaviruses we men-

tioned above, the potential preventive effect of its specific antibodies against COVID-19 

cannot be ruled out. However, given that hCoV-HKU1 and hCoV-229E are common coro-

naviruses, the detection of these antibodies in the sera of volunteers may be attributed to 

their previous infection. 

Research on pan-coronavirus vaccines has attracted increasing attention to prevent 

novel SAR-CoV-2 variants. Some studies reported that conserved regions on the inner 

surface of the RBD are potential targets for pan-coronavirus vaccines [77]. New studies of 

mRNA vaccines against a variety of the more common coronaviruses are underway [78]. In 

summary, the positive serum test for non-SARS-CoV-2 antigens could be due to the ability of 

certain antibodies induced by COVID-19 vaccines to act on other coronaviruses. Therefore, the 

non-SARS-CoV-2 antigens we mentioned above can be seen as useful features. 

4.2. Features Related to Time since Vaccination for Determining the Duration of Specific Anti-

bodies after COVID-19 Vaccination 

The essential antigen-reactive antibodies were identified using computational meth-

ods and divided into four classes based on vaccination time. The top features from each 

subclass were selected for discussion. Figure 6 shows the values of these top features in 

each of the four classes to visualize the changes in the antibodies that target specific anti-

gens over time. Unlike the previous section, this section focuses on the changes in im-

portant antibodies at different periods after vaccination according to subclasses, including 

unvaccinated cases. 
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Figure 6. Fluorescence intensity distribution of top antigens in four subclasses. Box plots show 

trends of four important antigen-reactive antibodies according to each subclass assigned by time 

after vaccination. (A) S1 + S2, (B) S1.mFcTag, (C) S2, (D) Spike.RBD.His.Bac. Numbers in the abscissa 

represent the indices of four classes. Classes 1–4 represent unvaccinated healthcare workers, 

healthcare workers within 60 days after vaccination, healthcare workers between 60 and 180 days 

after vaccination, and healthcare workers over 180 days after vaccination, respectively. 

The S protein of SARS-CoV-2 is currently the antigen targeted by a majority of 

COVID-19 vaccines [7,11,16,27,79]. The top features we identified are contained in the S 

protein of SARS-CoV-2, and antibodies against them all change significantly over time 

after vaccination.  

As shown in Figure 6A, the first identified feature was SARS.CoV.2.S1 + S2. Based on the 

overall structure of the S protein of SARS-CoV-2 [80], the specificity of the SARS.CoV.2.S1 + 

S2-reactive antibodies was the lowest among the four selected features. As shown in Figure 

6B–D, the second, third, and last identified features were SARS.CoV.2.S1.mFcTag, 

SARS.CoV.2.S2, and SARS.CoV.2.Spike.RBD.His.Bac, respectively. 

According to the changes in the value of each feature in class 1 (unvaccinated 

healthcare workers), SARS.CoV.2.S1 + S2 and SARS.CoV.2.S2 showed elevated levels, 

whereas SARS.CoV.2.S1.mFcTag and SARS.CoV.2.Spike.RBD.His.Bac were almost unde-

tectable in serum. Thus, antibodies against the S2 subunit of the S protein were produced 

earlier after immunization and resulted in relevant specific protection. However, volun-

teers infected with SARS-CoV-2 before COVID-19 vaccination may also increase the levels 

of SARS.CoV.2.S1 + S2 and SARS.CoV.2.S2. 

Comparison of the levels of the four features in class 2 (healthcare workers within 60 

days after vaccination) revealed that SARS.CoV.2.S1.mFcTag showed the most significant 

increase, and the values were relatively concentrated within a month after vaccination. 

The values of SARS.CoV.2.S2 increased less significantly and were less consistent than 

those of SARS.CoV.2.S1.mFcTag. A study of healthcare workers found a 14-day boost in 

serum anti-S antibodies, followed by a significant drop in anti-S antibody levels until 42 
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days after vaccination [81]. Therefore, the levels of other antigens contained within the S 

protein of SARS-CoV-2 can also elevate antibodies against them within 42 days after vac-

cination, which agrees with the results of the present study.  

Based on the trend from class 2 (healthcare workers within 60 days after vaccination) 

to class 4 (healthcare workers over 180 days after vaccination), the values of all features 

showed varying degrees of decline after 60 days. Among them, the values of 

SARS.CoV.2.Spike.RBD.His.Bac and SARS.CoV.2.S1.mFcTag declined slower than those 

of the other features and stimulated some stable antibodies that existed for a longer pe-

riod. By contrast, the levels of SARS.CoV.2.S1 + S2 and SARS.CoV.2.S2 decreased more 

rapidly, suggesting that the S2 subunit is less ideal as an antibody target than the S1 sub-

unit and RBD after COVID-19 vaccination. Similarly, previous studies reported that the 

antibodies identified in the serum following immunization are predominantly anti-S or 

anti-RBD antibodies [9,10,14] which appears to support this hypothesis. 

The levels of features in class 4 (healthcare workers over 180 days after vaccination) 

were maintained at high levels, except for SARS.CoV.2.S, which was lower. This result 

indicates that the features found after COVID-19 immunization can persist for more than 

6 months (180 days). The immunogenicity of mRNA-1273 lasts for at least 3 months [82], 

whereas that of BNT162b2 lasts for at least 2 months [12]. The varied compositions based 

on the type of vaccines can lead to variation in the duration of specific antibody presence. 

However, the four features identified imply that the S-protein and RBD-specific antibod-

ies are present in the serum for long periods in general. 

4.3. Rules for Quantitative Time after COVID-19 Vaccination and Antibody Levels 

In addition to the qualitative features, a set of quantitative rules for accurate classifi-

cation at the time after COVID-19 vaccination were established. All criteria were linked to 

specific antibody levels, and they were selected using at least two sorting methods. Some 

top features have been validated as having the ability to classify samples. In the present 

study, we selected the most typical rules for each time group for further discussion. Table 

3 lists all of the rules, followed by a comprehensive analysis. 

Table 3. Representative Rules. 

Rules Criteria Predicted Class (Days after Vaccination) 

Rule 0 SARS.CoV.2.S1.mFcTag ≤ 5354.39 

Unvaccinated healthcare workers 
 −383.87 < SARS.CoV.2.S1.HisTag 

 −414.30 < SARS.CoV.2.S1.RBD.mFc ≤ 3773.83 

 414.54 < hCoV.OC43.HE 

Rule 1 SARS.CoV.2.S1.mFcTag ≤ 54,010.17 
Healthcare workers within 60 days after 

vaccination 
 37,653.75 < SARS.CoV.2.S2 

 48,882.58 < SARS.CoV.2.S1 + S2 

Rule 2 5354.39 < SARS.CoV.2.S1.mFcTag 
Healthcare workers between 60 and 180 

days after vaccination 
 3773.83 < SARS.CoV.2.S1.RBD.mFc ≤ 33,656.48 

 400.30 < SARS.CoV.S1.HisTag ≤ 15,087.42 

Rule 3 5354.39 < SARS.CoV.2.S1.mFcTag ≤ 34,194.92 Healthcare workers over 180 days after vac-

cination  3773.83 < SARS.CoV.2.S1.RBD.mFc 

Rule 0 applies four criteria to identify unvaccinated samples. The thresholds for 

SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.HisTag are outlined in Table 3. The low levels 

of anti-S1 antibodies suggested by these values are consistent with the lack of vaccination. 

Studies indicate that even a single vaccine dose can trigger a robust anti-S1/2 antibody 

response in SARS-CoV-2-infected individuals [83], and that antibody responses are not 

immediate following a single vaccine dose [13], validating the accuracy of these criteria. 

The third criterion, SARS.CoV.2.S1.RBD.mFc, should be within the range set out in Table 
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1, typically low in unvaccinated individuals. Vaccination raises anti-RBD IgG levels in the 

body [84], so this range helps to distinguish vaccinated individuals. The final criterion is 

hCoV.OC43.HE, an antigen from a common coronavirus that causes similar symptoms to 

the common cold, whose threshold is listed in Table 3. If its serum level is above the thresh-

old specified in Table 1, it suggests prior exposure to hCoV.OC43, or possibly transient 

vaccine-induced cross-reactive antibodies to other HCoVs [85]. Over time, vaccinations 

prompt the production of more precisely targeted antibodies [18], which further aids in 

excluding vaccinated individuals. 

Rule 1 incorporates three criteria for identifying individuals 0 to 60 days post-vac-

cination. The first criterion is SARS.CoV.2.S1.mFcTag, which should not exceed the limit 

outlined in Table 3. High levels of anti-S/RBD antibodies are typically observed 8 weeks 

after mRNA-1273 or BNT162b2 vaccination [14], and given that most vaccines generate 

antibody responses against S proteins, including the S1 subunit, an increase in anti-S1 an-

tibodies is expected post-vaccination. However, due to the finite antibody production by 

vaccines [86], a maximum value is set within this period [9]. The second and third criteria 

refer to SARS.CoV.2.S2 and SARS.CoV.2.S1 + S2. Their serum levels should exceed the 

thresholds specified in Table 3. As the S1 and S2 subunits are included in the S protein, 

changes in the level of S1 + S2 specific antibodies should have a strong correlation with 

anti-S antibodies. A recent study has reported that the levels of anti-S antibodies in serum 

significantly increase 14 days after vaccination [81], supporting the high thresholds for 

SARS.CoV.2.S1 + S2 in this rule. Anti-S2 antibody levels also increase significantly post-

vaccination [87], although their reactivity is generally lower than that of anti-S1 and anti-

RBD responses [13]. These results confirm that the high value of SARS.CoV.2.S2 facilitates 

the differentiation while the lowest value of SARS.CoV.2.S2 in Rule 1 can be lower than 

that of SARS.CoV.2.S1 + S2. 

Rule 2 utilizes three criteria to identify individuals 60–180 days post-vaccination. The 

first two criteria, SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.RBD.mFc, should have se-

rum levels above the threshold set in Table 3, and between the range specified for 

SARS.CoV.2.S1.RBD.mFc. The vaccine’s protective capability is associated with antibody 

count, and research indicates that COVID-19 vaccine efficacy decreases from 1 to 6 months 

post-vaccination [19], suggesting a corresponding decline in antigen-reactive antibodies. 

Although no study has yet confirmed the range levels outlined in our rule, it is reasonable 

to predict that SARS.CoV.2.S1.mFcTag levels would be lower than in Rule 1, while 

SARS.CoV.2.S1.RBD.mFc levels would be higher than in Rule 0. The final criterion, 

SARS.CoV.S1.HisTag, stands out from the first two as it pertains to an antigen from SARS-

CoV, not SARS-CoV-2. Given the substantial sequence similarity between SARS-CoV and 

SARS-CoV-2 [88], the existence of cross-reactive non-specific epitopes led us to include 

SARS.CoV.S1.HisTag as a criterion in Rule 2. Lv et al. reported that some SARS-CoV-2-

infected individuals can create cross-reactive antibodies that bind to the RBD of SARS-

CoV [89], implying that the COVID-19 vaccination can stimulate similar cross-reactive an-

tibodies in individuals.  

The final rule (Rule 3), for people who have been vaccinated for more than 180 days, 

sets thresholds for SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.RBD.mFc as set out in Ta-

ble 3. These values are similar to Rule 2, probably because the vaccine-induced production 

of these antibodies drops to its lowest level after 180 days [90,91]. In contrast to Rule 2, 

this rule sets a cap on SARS.CoV.2.S1.mFcTag levels, indicating an overall decrease. This 

helps rule out those vaccinated for COVID-19 within the past 180 days. Similarly, higher 

predicted SARS.CoV.2.S1.mFcTag and SARS.CoV.2.S1.RBD.mFc levels in this rule indicate 

the vaccine stimulates lasting anti-S1/RBD antibodies, effectively distinguishing unvac-

cinated individuals. 
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4.4. Limitations of this Study 

There are some limitations in this study. First, several machine learning algorithms, 

including feature selection and classification algorithms, were adopted. The selection of 

essential antigens relied highly on the performance of the classification algorithms. It is 

known that an efficient classifier may not adopt two similar features. If these two features 

were all essential antigens, one would be omitted, i.e., some essential antigens may not be 

detected by our machine learning based framework. Second, a major limitation of micro-

array is the limited antibody coverage, which means only specific antibodies can be meas-

ured according to the predefined set of antigens on the array surface. Further study is required 

to take more COVID-19-related antibodies into consideration. Finally, the main purpose of 

this study was to discover essential antigens that were highly related to the classification of 

healthcare workers or one class, rather than to develop a machine learning classifier. There-

fore, no test/train split was conducted on the dataset, and so accuracy metrics reported here 

should be considered as unvalidated in either an independent or test set. 

5. Conclusions 

Combining data on serum antibody levels in volunteers after COVID-19 vaccination 

and advanced machine learning methods, a set of antigen-reactive antibodies were ex-

tracted, which could reveal the effect of the vaccine on antiviral immune activation and 

reflect changes in antibody levels in the body over time after vaccination. In the computa-

tional framework, four efficient feature selecting algorithms, namely, LASSO, LightGBM, 

MCFS, and mRMR, were used to rank the features according to their contributions to the 

classification. Then, through the IFS method, the optimal features for four classification 

algorithms (DT, KNN, RF, SVM) in each feature list were confirmed. Subsequently, the 

overlapping features were identified by taking the intersection of the optimal feature sub-

sets corresponding to the four feature selection algorithms, such as 

SARS.CoV.2.S1.mFcTag, SARS.CoV.2.Spike.RBD.His.Bac, and SARS.CoV.2.S1 + S2. Mean-

while, we determined the specific features that were highly related to one class. In addition, 

classification rules were constructed, which can quantitatively explain the important roles of 

features in the classification. Our findings have the potential to improve vaccine efficacy as-

sessment and enable personalized vaccination strategies, ultimately contributing to more ef-

fective public health measures against COVID-19 and similar viral outbreaks. 
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