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Abstract: Plant malectin/malectin-like receptor-like kinases (MRLKs) play crucial roles throughout
the life course of plants. Here, we identified 23 SiMRLK genes from foxtail millet. All the SiMRLK
genes were named according to the chromosomal distribution of the SiMRLKs in the foxtail millet
genome and grouped into five subfamilies based on phylogenetic relationships and structural features.
Synteny analysis indicated that gene duplication events may take part in the evolution of SiMRLK
genes in foxtail millet. The expression profiles of 23 SiMRLK genes under abiotic stresses and
hormonal applications were evaluated through qRT-PCR. The expression of SiMRLK1, SiMRLK3,
SiMRLK7 and SiMRLK19 were significantly affected by drought, salt and cold stresses. Exogenous
ABA, SA, GA and MeJA also obviously changed the transcription levels of SiMRLK1, SiMRLK3,
SiMRLK7 and SiMRLK19. These results signified that the transcriptional patterns of SiMRLKs showed
diversity and complexity in response to abiotic stresses and hormonal applications in foxtail millet.

Keywords: malectin-like receptor-like kinase; transcriptional profile; abiotic stresses; phytohormone;
foxtail millet (Setaria italica)

1. Introduction

Foxtail millet (Setaria italica) is one of the main food crops and is cultivated in arid, semi-
arid and barren areas of northern China and India [1]. Foxtail millet is highly adaptable
to adverse growing conditions and is planted with fewer inputs, but it has excellent
nutritional properties [2]. The seeds of foxtail millet are rich in protein composition and
high in essential amino acids, making them one of the most important healthy foods [1,3].
In addition, the germplasm resources of foxtail millet are abundant, with the largest number
of cultivated and wild types, which has a good application prospect in crop improvement
projects such as gene mapping, allelic gene mining, and selection of excellent varieties [4].
Moreover, the genome sequencing of foxtail millet has been completed [5]. Its genome
size is relatively small, approximately 515 Mb, and its life cycle is short, making it an ideal
model system for crop research.

Plant cells can sense and respond to external stress signals through pattern recognition
receptors (PRRs), including receptor-like proteins (RLP) and receptor-like kinases (RLK)
located on the cell surface, so as to make timely responses to stress. RLK plays a key role in
the expression of stress-responsive genes by coupling external signals with intracellular
signals [6–8]. However, the function of the large majority of these RLKs remains to be
explored. Among them, there is a subfamily referred to as Malectin/malectin-like domain
containing receptor-like protein kinases (MRLKs), also named as the Catharanthus roseus
RLK1-like (CrRLK1L) protein kinases, which are involved in plant growth, fertilization,
hormone signal transduction, immune and stress response [9–17]. MRLK proteins feature
a predicted intracellular Ser/Thr kinase domain highly conserved among all RLKs, a
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transmembrane domain and a variable extracellular domain. Within the extracellular
domain of MRLK proteins reside one or two malectin/malectin-like modules [11].

Currently, MRLKs have been identified in multiple species, and the functions of some
of their members have been studied. In Arabidiposis, a total of 17 members of the MRLK
family have been identified, 10 of which have been reported to be involved in plant growth,
fertilization, immune response and other aspects [11,13–17]. Up till now, 16 MRLK genes
have been reported in the rice genome [18], but according to our recent study, at least
67 members were identified in this plant [19]. A total of 31 MRLK members that could
take part in the response to biotic and abiotic stress have been characterized in the tobacco
genome [20,21]; such overexpression of NtCrRLK1L47 could enhance salt tolerance in
tobacco seedlings [20]. A total of 24 CrRLK1L members were investigated in tomatoes,
and they may also be involved in the stress tolerance of tomato [22]. In addition, some
studies have shown that MRLKs in strawberry are related to fruit ripening and abiotic
stress response [23].

In the meantime, the functions of some MRLK homologs have been elucidated. For
example, FERONIA (FER), which is the best characterized MRLK family protein, and
ANXUR1 (ANX1) and ANXUR2 (ANX2), which are the closest homologues of FER, are key
regulators of polar growth and pollen tube reception in the female gametophyte [9–13,24].
OsCrRLK1L2 and OsCrRLK1L3 are involved in the regulation of circadian rhythm [18],
OsCrRLK1L15 participates in the response to salt stress [25], and OsMTD2 is essential
for pollen tube elongation [26]. PbrCrRLK1L13, in pear, mediates reactive oxygen species
signaling and balance of cellulose deposition in pollen tubes [27,28]. However, the biological
functions of these MRLKs in foxtail millet are still far from being elucidated.

Therefore, in the current study, based on bioinformatics and qRT-PCR analysis, the
MRLK family members of millet were identified and characterized, and their possible roles
in stress response was studied. A total of 23 members were identified with diverse gene
and protein structures and different transcriptional expression levels under various stresses,
indicating that they have complex phylogenetic relationships and functional differentiation
of the family members to stresses.

2. Materials and Methods
2.1. Identification of MRLK Family Members in Foxtail Millet

The protein sequences of AtMRLKs that have been identified and characterized [11,16]
were used as queries for BLASTP searches in a plant genome database (http://plantgdb.
org/SbGDB/SiGDB/BdGDB/) (accessed on 22 October 2022) and the Ensembl Plants web-
site (https://plants.ensembl.org/Setaria_italica/Info/Index) (accessed on 22 October 2022) [29,30].
First, the candidate proteins of foxtail millet were preliminary authenticated by a BLASTP
search. Second, we used the protein family database (http://pfam.janel ia.org) (accessed
on 6 November 2022) to confirm the MRLK members after finding the malectin (pfam11721)
and malectin-like (pfam12819) domain. Then, we browsed through the Ensembl Plants web-
site to obtain the SiMRLK family candidate members. After that, the SMART (http://smart.embl-
heidelberg.de/) (accessed on 12 November 2022) [31], Inter Pro Scan program (http://www.
ebi.ac.uk/interpro/) (accessed on 12 November 2022) and Conserved Domain Database
(CDD) (http://www.ncbi.nlm.nih.gov/cdd/) (accessed on 12 November 2022) [32] were
used for further scanning to reaffirm the presence of malectin or malectin-like domains
and also to ensure the presence of transmembrane domains and intracellular kinase do-
mains in the candidate proteins. The physicochemical property analysis of MRLK fam-
ily proteins, such as molecular weight (kD), isoelectric point (pI), aliphatic index, insta-
bility index, major amino acids and grand average of hydropathy (GRAVY), were sur-
veyed using the ProtParam (https://www.expasy.org/resources/protparam) (accessed on
2 December 2022) [33].
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2.2. Distribution of Genes on Chromosomes, Organization of Exons and Introns, and Conserved
Amino Acid Motifs Arrangement

The location of the SiMRLK family genes were mapped on the nine chromosomes
of millet genomes according to the annotation information in the Ensembl Plants website
(https://plants.ensembl.org/Setaria_italica/Info/Index) (accessed on 8 January 2023) [34].
The map was drawn by the Mapchart software (http://www.wageningenur.nl/en.htm)
(accessed on 9 January 2023) [35]. Nomenclature of the putative SiMRLK genes was
assigned based on their chromosomal order. The organization of exons and introns was
constructed using the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn) (accessed
on 28 January 2023) [36] by aligning coding sequences (CDS) with their corresponding
genomic DNA sequences. The conserved amino acid motifs arrangement were detected
using the online version 4.9.1 of the Multiple Expectation for motif elicitation (MEME) tool
(http://meme-suite.org/) (accessed on 4 April 2023) with default parameters change to
10 conserved motifs and optimum motif width set to >6 and <200 [36,37].

2.3. Phylogenetic Relationship and Syntenic Regions Analysis

To further explore the evolutionary relationship of SiMRLK gene families, the candi-
date SiMRLKs proteins were initially multiply aligned by using the ClustalW v2.0 online
tool (http://www.ebi.ac.uk/Tools/webservices/services/msa/clustalw2_soap) (accessed
on 3 April 2023). Then, the neighbor joining phylogenetic tree was constructed by the
MEGA 7.0.26 software package [38–40] with default parameters and the reliability of inte-
rior branches was assessed with 1000 bootstrap repetitions. The syntenic regions occupied
by MRLK family genes in the foxtail millet genome were explored according to the plant
genomic duplication database (http://chibba.agtec.uga.edu/duplication/) (accessed on
26 March 2023). The diagram of syntenic regions analysis was drawn by Circos version 0.63
(http://circos.ca/) (accessed on 26 March 2023) [41].

2.4. Plant Material, Growth Conditions, Abiotic Stresses and Hormonal Applications in
Foxtail Millet

The foxtail millet accession (jingu 21) was donated by Prof. Han Yuanhuai of Shanxi
Agricultural University. In 2022, ‘jingu 21’ was planted in the plant culture room located
at the farm at Taiyuan Normal University. The millet plants were grown in seedling trays
filled with soil and vermiculite (1:1), alternating between 16 h for 25 ◦C during the day and
8 h for 20 ◦C at night, and keeping the relative humidity around 75%. Only healthy and
uniform millet plants at the seedling stage (28 days) were selected for the abiotic stresses,
which included drought (20% PEG6000), salt (200 mM NaCl) and cold (4 ◦C), as well as
hormonal applications, which included 100 µM abscisic acid (ABA), 100 µM gibberellic acid
(GA), 500 µM salicylic acid (SA) and 100 µM methyl jasmonate (MeJA). About 200 millet
seedlings were treated with each stress. Three replicates were collected from each stress
treatment. Therefore, a total of 600 millet seedlings were used for each stress treatment.
The transcriptional level of 6 selected SiMRLKs genes were analyzed at 0, 0.5, 1, 3, 6, 12 and
24 h, respectively. After harvest, the samples were immediately frozen in liquid nitrogen
and stored at −80 ◦C until further analysis.

2.5. Total RNA Extraction, cDNA Reverse Transcription, and qRT-PCR Analysis

Total RNA was isolated from millet leaves using TRIzol reagents (Invitrogen, Waltham,
MA, USA). The residual genomic DNA was removed by treating the RNA samples with
RNase-free DNase. The first strand of cDNA was synthesized from 2 µg of total RNA in
25 µL reaction systems using the M-MLV First Strand Kit (Invitrogen). All the primers for
quantitative real-time PCR (qRT-PCR) were designed according to SiMLRK sequences using
primer 6.0 (Table S3). qRT-PCR was carried out in an Applied Biosystems Quantitative Real-
Time PCR Detection System. Each reaction consisted of 10 µL SYBR Premix ExTaq (Takara,
Kyoto, Japan), 2 µL cDNA samples, and 1 µL of each primer (10 µM) and 6 µL ddH2O in a
reaction system of 20 µL. The thermal cycle was as follows: 95 ◦C for 3 min, followed by
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40 cycles at 94 ◦C for 15 s, 62 ◦C for 20 s, and 72 ◦C for 20 s. Melting-curve analysis was
performed directly after real-time PCR to verify the presence of gene-specific PCR products.
This analysis was done by 94 ◦C for 15 s, followed by a constant increase from 60 to 95 ◦C at
a 2% ramp rate. The millet actin gene (SiActin1, Transcript ID: Si026509m) was used as an
internal control and served as a standard gene for normalizing all mRNA transcriptional
levels. The relative amount of template present in each PCR amplification mixture was
evaluated by using the 2−∆∆Ct method.

2.6. Statistical Analysis

Analysis of variance was performed on the data. The mean and standard deviation of
the three replicates for all treatments were compared using the SPSS 11.5 software package
(SPSS, Chicago, IL, USA), using the minimum significance difference (LSD) test at the 5%
level. Graphics were drawn using Origin 7.5.

3. Results
3.1. Identification of SiMRLK Family Members in the Foxtail Millet Genome

A total of 23 SiMRLK members were identified in the foxtail millet genome (Table 1).
The SiMRLK genes were mapped on the chromosomes according to the location information
on chromosomes in the foxtail millet genome (Table 1 and Figure 1). We noted that the
23 SiMRLKs are distributed on seven of all nine chromosomes in the foxtail millet genome
(Figure 1). The majority of SiMRLKs (six genes) were mapped on chromosome 2, while
one SiMRLK was found on chromosome 5 and one on chromosome 6. Furthermore, there
are four SiMRLKs on chromosomes 3, 7 and 9, respectively, while there are three SiMRLKs
on chromosome 1 and no SiMRLK gene on chromosomes 4 and 8 (Figure 1). Members of
SiMRLK family were named SiMRLK1 to SiMRLK23 based on their location information on
the millet chromosome.

Table 1. Identification of MRLK family genes in in foxtail millet genome.

Name Gene Genomic Location Orientation DNA mRNA PROTEIN Exons

SiMRLK1 SETIT_016192mg Chr I: 2,269,336-2,281,707 Reverse 12372 3075 1020 24
SiMRLK2 SETIT_016251mg Chr I: 2,286,255-2,294,201 Reverse 7947 3395 922 23
SiMRLK3 SETIT_016287mg Chr I: 7,753,767-7,759,223 Forward 5457 2622 873 12
SiMRLK4 SETIT_028931mg Chr II: 2,466,757-2,469,304 Reverse 2548 2505 834 2
SiMRLK5 SETIT_028769mg Chr II: 8,797,129-8,803,723 Reverse 6595 3290 1082 24
SiMRLK6 SETIT_028790mg Chr II: 8,808,248-8,814,896 Reverse 6649 3602 1036 24
SiMRLK7 SETIT_028810mg Chr II: 27,658,950-27,669,289 Forward 10340 3325 994 23
SiMRLK8 SETIT_028799mg Chr II: 27,683,557-27,690,810 Forward 7254 3090 1029 24
SiMRLK9 SETIT_028878mg Chr II: 27,824,611-27,835,635 Forward 11049 2916 887 13
SiMRLK10 SETIT_021217mg Chr III: 2,531,201-2,534,600 Forward 3400 3400 840 1
SiMRLK11 SETIT_021180mg Chr III: 27,523,701-27,527,334 Forward 3634 3634 873 1
SiMRLK12 SETIT_024804mg Chr III: 29,987,665-29,990,274 Reverse 2610 2610 869 1
SiMRLK13 SETIT_024630mg Chr III: 42,311,418-42,318,343 Forward 6926 2547 848 13
SiMRLK14 SETIT_000277mg Chr V: 9,293,577-9,296,524 Forward 2948 2948 862 1
SiMRLK15 SETIT_013178mg Chr VI: 2,184,449-2,190,852 Reverse 6404 3084 1027 24
SiMRLK16 SETIT_009322mg Chr VII: 29,953,522-29,960,949 Reverse 7428 3471 891 21
SiMRLK17 SETIT_009325mg Chr VII: 29,970,651-29,979,365 Reverse 8715 3703 886 21
SiMRLK18 SETIT_009240mg Chr VII: 30,011,401-30,020,155 Reverse 8755 3481 1029 24
SiMRLK19 SETIT_009354mg Chr VII: 32,306,664-32,309,798 Forward 3135 3135 836 1
SiMRLK20 SETIT_039238mg Chr IX: 5,036,546-5,039,071 Forward 2526 2526 841 1
SiMRLK21 SETIT_034180mg Chr IX: 47,183,943-47,187,152 Reverse 3210 3210 884 1
SiMRLK22 SETIT_034215mg Chr IX: 49,665,610-49,668,585 Reverse 2976 2976 863 1
SiMRLK23 SETIT_034221mg Chr IX: 57,483,937-57,486,745 Reverse 2809 2809 861 1
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isoelectric point (pI), but the pIs of eight SiMRLKs were higher than seven, displaying that 
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index (AI) values range from 79.88 (SiMRLK21) to 94.43 (SiMRLK2). The present study 
divided 19 SiMLRK members into stable proteins because the instability index of these 
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SiMLRK22 and SiMLRK23) is greater than 40, suggesting that these SiMLRKs are unstable 
proteins (Table S1). Orientation analysis showed that 10 SiMLRK proteins were located on 
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Figure 1. The distribution of 23 SiMRLK genes on chromosomes. Mapchart software was used to
map the location of genes on chromosomes. The SiMRLKs were distributed on seven chromosomes
of millet. The scale is measured in megabases (Mb).

The physiochemical characteristics were studied through the PROTOPARAM online
tool (Table S1). The results found that there are many similar characteristics among the
members of this family. The assumed lengths of SiMRLK proteins range from 834 (SiM-
RLK4) to 1082 (SiMRLK5) amino acid residues (Table 1). The molecular masses of the
proteins range from 92.17 kD (SiMRLK19) to 118.42 kD (SiMRLK5) (Table S1). All the
SiMRLK proteins were found to be hydrophilic according to their grand average of hydro-
pathicity (GRAVY) value. The majority of SiMRLK proteins were acidic in nature according
to their isoelectric point (pI), but the pIs of eight SiMRLKs were higher than seven, dis-
playing that the eight SiMRLKs are alkaline proteins in nature (Table S1). Furthermore,
the aliphatic index (AI) values range from 79.88 (SiMRLK21) to 94.43 (SiMRLK2). The
present study divided 19 SiMLRK members into stable proteins because the instability
index of these proteins is less than 40, while the instability index of four proteins (SiMLRK2,
SiMLRK13, SiMLRK22 and SiMLRK23) is greater than 40, suggesting that these SiMLRKs
are unstable proteins (Table S1). Orientation analysis showed that 10 SiMLRK proteins
were located on the forward strand, and the remaining 13 SiMLRK proteins were found on
the reverse strand (Table 1). The major amino acid composition of the SiMLRK proteins
is Leu, followed by Ser. Some other amino acids, such as Gly, Ala, Thr and Val, are also
abundant, varying depending on the different SiMLRK protein (Table S1).
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3.2. Phylogenetic Analysis and Conserved Motif Analysis of the SiMRLKs in Foxtail Millet

In Arabidopsis, most of the 17 AtMRLKs have been studied for biological functions.
In order to study the phylogenetic relationships of SiMRLKs in millet and predict the
possible biological functions of SiMRLKs, we analyzed the phylogenetic relationships of
23 identified SiMRLKs and 17 AtMRLKs (Figure 2). The results showed that the 40 MRLK
proteins in the phylogenetic tree are divided into five subfamilies (Figure 2). For SiMRLKs,
there are four members in group I (SiMRLK4, −11, −12, −21), six members in subfamily II
(SiMRLK10, −14, −19, −20, −22, −23), three members in group III (SiMRLK3, −9, −13),
four members in group IV (SiMRLK1, −2, −7, −8), and six members in group V (SiMRLK5,
−6, −15, −16, −17, −18). Some SiMRLK proteins are tightly grouped with the AtMRLK
proteins (such as group I, II and III), indicating that these proteins are evolutionarily closely
related to AtMRLKs and that they may perform similar biological functions in different
species (Figure 2).
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Figure 2. Phylogenetic analysis of MRLKs from Arabidopsis thaliana and foxtail millet. Based on the
protein sequences of MRLKs from Arabidopsis and foxtail millet, the phylogenetic tree was constructed
using the method of adjacent linkage (NJ). Subfamilies I–V represent the classification of members of
the MRLK family.

To further study the architecture of the SiMRLK family members, we identified the
conserved amino acid motif arrangement of 23 identified SiMRLK proteins. Ten motifs,
named as motifs 1 to 10, were detected by MEME analysis (Figure 3 and Table S2). Based
on the analysis results, it can be found that motifs 1, 2, 3, 5, and 6 are widely distributed
among all family members and are key motifs of the SiMRLK family proteins in foxtail
millet. Meanwhile, similar motif composition and assembly order are conserved among
members of the same subfamily of SiMRLK (Figure 3). For instance, the subfamily I and II
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just contained motifs 5-2-1-3-6 in order, and the subfamily III contained motifs 8-5-2-1-3-6
in order, while 8-10-4-7-5-2-1-3-6 in order appeared in subfamily IV and 8-10-9-4-7-5-2-1-3-6
in subfamily V. However, there is a special motif, motif 9, found only in the proteins of the
V subfamily (Figure 3 and Table S2).
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Figure 3. The motif distributions and three-dimensional structures of SiMRLK proteins. The motifs
were numbered 1–10, with different colored boxes representing different motifs. The sequence
information of each motif is shown in Table S2.

3.3. Structural Diversity and Duplication Analysis of SiMRLK Genes in Foxtail Millet

In order to clarify the intron–exon organization of SiMRLK family genes, a gene
structure diagram was constructed based on the CDS sequence and genomic DNA sequence
of each member of the SiMRLK family, which can clearly display the distribution position
of each exon and intron in its own gene.

We found that intron–exon organization and distribution is different among the 23 SiM-
RLK genes (Figure 4), but the genes in each subfamily usually have similar exon–intron
organization and distribution. For example, all the genes in subfamilies I and II are intron-
free except for SiMRLK4, which contains only one intron. Similarly, we note that the
genes in subfamily III have 12 or 13 introns. In addition, the intron–exon organization and
distribution of subfamily IV and V genes is very similar, with 20 to 23 introns (Figure 4).
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The duplication of a single gene, a segment of a chromosome or the entire genome
itself is crucial to the evolution of a gene family in biology, because the emergence of new
genes and their new biological functions depends on these genes or chromosome segments
generated by duplication [42]. We tested the duplicated regions that were present in all
members of the SiMRLK family to verify if there were the events of genes or chromosome
fragments duplication that were present during the evolution of the family. The results
revealed that 19 SiMRLK pairs of the duplicated region exist in the SiMRLK family genes
(Figure 5), signifying that evolutionary events may take part in the evolution of SiMRLK
genes in foxtail millet.
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3.4. Transcriptional Profiles of SiMRLK Family Genes under Abiotic Stresses and Phytohormone

To explore whether SiMRLKs are involved in the response to abiotic stresses, qRT-
PCR were carried out to investigate the transcript levels of SiMRLK gene family members.
It is exhaustively difficult to describe the expression profiles of all 23 SiMRLK genes;
therefore, six SiMRLK members of the SiMRLK gene family (SiMRLK1, SiMRLK3, SiMRLK7,
SiMRLK11, SiMRLK19 and SiMRLK23) were assessed. As shown in Figure 6, under drought
stress, the transcript levels of SiMRLK1, SiMRLK3, SiMRLK7 and SiMRLK19 were up-
regulated, whereas that of SiMRLK11 was down-regulated. The expression levels of
SiMRLK1, SiMRLK19 and SiMRLK23 were higher than 0 h (control) at most of the test
points, while the transcriptional levels of SiMRLK7 and SiMRLK11 were down-regulated
at most test points under salt stress. The expression of SiMRLK7 was significantly up-
regulated at 9 h and slightly up-regulated at the remainder of the time points. Moreover,
some SiMRLK members (SiMRLK7 and SiMRLK19) were down-regulated at all tested time
points, while the other four SiMRLKs showed different transcription levels at different time
points under cold stress. The results indicate that although the expression patterns of genes
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vary under different stresses, the transcription levels of all tested SiMRLK genes undergo
significant changes after being subjected to drought, salt, and cold stresses. The difference is
that the transcription levels of most genes are up-regulated after being subjected to drought
and salt stress, while the transcription levels decrease after being subjected to cold stress.
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We also tested the transcription levels of six tested SiMRLKs after exogenous appli-
cation of phytohormone ABA, SA, GA, and MeJA (Figure 7). The expression levels of
all tested genes are significantly up-regulated at the early time points after exogenous
application of phytohormone ABA and then decreased. Application of phytohormone SA
significantly up-regulated the expression levels of all tested SiMRLK genes at the most
points, except SiMRLK1 at 24 h and SiMRLK7 at 12 h. In addition, the transcript level
of SiMRLK7 was strongly stimulated by exogenous GA, while the expression changes of
other genes, although up-regulated, were relatively weak. Moreover, exogenous MeJA
applications also affected the transcriptional level; especially SiMRLK3 and SiMRLK11 were
up-regulated at all the tested points. These results indicate that members of the SiMRLK
family may be involved in hormone signaling pathways.
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4. Discussion

MRLKs, also named as CrRLK1L kinases, are widely present in organisms and
have multiple important biological functions [16,23,43–45]. In plants, it was further re-
ported that MRLK proteins plays an important role in plant growth [46,47], cell wall
integrity [16], fertilization [48], hormone signal transduction [14,17,49], and immune and
stress response [16,24,45]. The MRLK genes have been identified in the genomes of Ara-
bidopsis [47], rice [18,19,47], cotton [50], tobacco [21], soybean [51], pear [52] and apple [53].
So far, however, there have been no reports on the members of this family in foxtail millet.
In the present study, a total of 23 SiMRLK genes, which are distributed on seven of all nine
chromosomes in the foxtail millet genome, were identified through a genome-wide analysis
(Figure 1 and Table 1).

We analyzed the phylogenetic relationships of 23 SiMRLKs and 17 AtMRLKs (Figure 2).
The results showed that the 40 MRLKs can be divided into five groups according to the
results of phylogenetic relationships. Members of group I, II and III were composed of
AtMRLKs and SiMRLKs, indicating these SiMRLKs may be orthologous to AtMRLKs and
have similar biological functions (Figure 2). Meanwhile, the Group IV and V members
contain only SiMRLK proteins, suggesting that these SiMRLKs are slightly more distantly
related to AtMRLKs and may have some novel biological functions in addition to those
of AtMRLKs.

By analyzing the gene and protein structure of millet SiMRLK family members, it was
found that members of each subfamily have similar structures. First, the distribution of
motifs among members of the same subfamily is also conservative (Figure 3). For instance,
motifs 1, 2, 3, 5, and 6 are widely present in all family members and are arranged in the
order of motifs 5-2-1-3-6 from the N-terminal to the C-terminal, which are the motifs that
only subfamilies I and II contain and are arranged in this order. Motifs 8-5-2-1-3-6 in order
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appeared in subfamily III. Meanwhile, motifs 8-10-4-7-5-2-1-3-6 existed in subfamily IV,
and motifs 8-10-9-4-7-5-2-1-3-6 arrangement in subfamily V (Figure 3 and Table S2). Second,
the distribution and number of intron–exons are conserved among the members of the
same subfamily. For example, all genes in subfamily I and II, excluding SiMRLK4, possess
intronless.There are 12 or 13 introns in the genes of Subfamily III, and 20–23 introns in the
subfamily IV and V genes (Figure 4). Third, 19 duplicated pairs are detected in the SiMRLK
gene family in foxtail millet (Figure 5). These results suggested that gene duplication events
may play an important role in the functional diversification of SiMRLK family genes in
foxtail millet. Overall, members of the same subfamily of the SiMRLK family have similar
intron–exon distribution and conserved motif arrangement, and duplication events also
exist among the genes in this family, revealing a close evolutionary relationship among
members of the SiMRLK family in foxtail millet.

Research has discovered that FER positively participates in and regulates auxin and
brassinosteroid responses [54,55], facilitates the cross-talk between hormones and RALF
peptides in cell growth and stress responses [56,57], and integrates with hormone signaling
to regulate plant growth, immune and stress responses [58–62]. Here, we noted that
the transcription levels of the majority of tested SiMRLK family genes are significantly
affected by abiotic stress and plant hormones, suggesting that these SiMRLKs may play a
key role in response to abiotic stress in plants, and also participate in hormone signaling
pathways. However, the functional mechanism of the SiMRLK family in millet and its
possible biological contribution need further molecular physiological experiments.

5. Conclusions

In this study, 23 SiMRLK members were identified and renamed according to the
chromosomal distribution and grouped into five subfamilies based on phylogenetic re-
lationships. By analyzing the structural characteristics of SiMRLK family members, we
found that the members of each subfamily possess a similar structure, such as similar motif
composition and conserved intron–exon distribution. Synteny analysis suggests that gene
duplication events may be involved in the diversification process of SiMRLKs function in
foxtail millet. The expression profiles of the SiMRLK genes, evaluated through qRT-PCR,
suggest that the SiMRLK genes are responsive to a number of plant hormones and may
play a key role in responding to multivariable abiotic stress. These results indicate that
members of the SiMRLK family may play an important role in plant responses to abiotic
stresses and hormone signal transduction.
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www.mdpi.com/article/10.3390/life13061302/s1; Table S1. Analysis of physicochemical properties
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foxtail millet. Table S3. Primer sequences for qRT-PCR used in the study.
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