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Abstract: The robust regulation of the cell cycle is critical for the survival and proliferation of
bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell
cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative
relationships. In this paper, we demonstrate that the quantification of cell size parameters using
microscopic images can be influenced by software and by the parameter settings used. Remarkably,
even if the consistent use of a particular software and specific parameter settings is maintained
throughout a study, the type of software and the parameter settings can significantly impact the
validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these
inherent characteristics of microscopic image-based quantification methods, it is recommended that
conclusions be cross-validated using independent methods, especially when the conclusions are
associated with cell size parameters that were obtained under different conditions. To this end, we
presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related
parameters using microscope-independent methods.
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1. Introduction

Growth and division are fundamental needs of all cells. During its cell cycle, a cell
needs to coordinate its growth with genome replication and cell division to achieve faithful
self-replication under various conditions. In eukaryotes, the cell cycle is divided into four
ordered phases, G1, S, G2, and M2. Multiple checkpoints exist to control the order and
timing of cell-cycle transitions through protein phosphorylation [1]. However, in bacteria,
no obvious checkpoint has been identified. During rapid growth, many bacteria can initiate
new rounds of DNA replication before the completion of the previous round, resulting in
overlapping cell cycles [2]. How bacteria achieve cell-cycle control to coordinate cell growth
with genome replication and cell division has been the subject of frequent investigations.
These investigations into bacterial cell-cycle regulation are not only helpful in controlling
bacterial growth for industrial production; they may also be instructive for building a
synthetic cell from the bottom up.

When considering the developmental history of bacterial physiology, the significant
progress in our understanding of the bacterial cell cycle is often attributed to the improve-
ment of relevant experimental methods and concepts [3], leading to the identification of
new quantitative relations and inspiring new models. For example, by developing rig-
orously quantitative experimental methods and focusing on steady-state growth instead
of the “obligatory life cycle” of the bacteria, Maaløe and Kjeldgaard were able to ensure
high reproducibility of their experiments. Based on such reproducible quantitative data,
they discovered the SMK growth law in 1958, i.e., that the population-averaged cell mass
scales exponentially with the growth rate [4]. In addition, the baby machine invented by
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Charles E. Helmstetter [5,6] facilitated the synchronization of bacterial cell populations and
enabled temporal analysis of the bacterial cell cycle [7]. By combining the baby machine
with radioactive pulse labeling, Helmstetter carefully quantified the DNA synthesis rates
of E. coli under various conditions [8,9]. These measurements provided a quantitative basis
for Helmstetter and Stephen Cooper to establish the CH model, which quantitively states
constant C and D periods of 40 and 20 min, respectively, for E. coli cells, with a doubling
time of less than 60 min [2]. The C period refers to the period between the initiation and
the corresponding termination of bacterial chromosome replication, while the D period
refers to the interval between DNA replication termination and corresponding cell division.
Subsequently, Donachie integrated the SMK growth law with the CH model and proposed
the constant-initiation-mass hypothesis [10]. This hypothesis states that the replication of
the chromosome is initiated when the ratio of cellular mass to the number of chromosome
origins reaches a growth-rate-independent constant, termed the initiation mass (mi), and
the corresponding cell division always follows DNA replication initiation by the C + D
period. As this hypothesis provides a simple interpretation of how bacterial cells coordinate
cell growth, DNA replication, and cell division, it has significantly impacted studies on the
bacterial cell cycle. However, in repeated investigations into this hypothesis over the past
few decades, both confirmation [11–17] and contradictions [18–23] have emerged.

While empirical observations of bulk populations have contributed to the estab-
lishment of several quantitative relationships among bacterial cell cycle parameters, the
population-averaged cell behavior masks variation among individuals and does not re-
flect the typical behavior of single cells. Recent advances in microfluidics [24–27], high-
throughput imaging [28,29], and automated image analysis [30–32] have enlivened the
study of single-cell bacterial physiology [33] and provided novel opportunities to ex-
plore problems that are challenging at the population level, such as cell-size homeostasis.
Through the dynamic tracking of numerous cells with single-cell resolution, the universal
strategy for bacterial cell-size maintenance known as the “division adder correlation” has
been discovered [34–36]. Furthermore, the combination of single-molecule fluorescent
labeling and single-cell tracking has significantly facilitated the investigation of chromo-
some organization [37–40], replisome dynamics [22,41–43], and stochasticity or noise in the
bacterial cell cycle [44–46]. By fluorescently labeling the relevant molecules of different cell
cycle events, the cell cycle progression in individual bacterial cells can be monitored. These
long-term observations can generate a large amount of single-cell quantitative data that aid
in identifying correlations between different cell-cycle events and in uncovering quantita-
tive laws of cell-cycle control [14,17,47–49]. As an example, in 2019, Si et al. employed the
fluorescently labeled replisome protein to visualize replication cycles and investigated both
the division adder and initiation adder under various perturbations [47]. More recently,
Govers et al. quantified and analyzed broad phenotypes of the fluorescently labeled E. coli
and numerous gene deletion derivatives in various media using microscopic images, then
identified four new quantitative relations that were related to nucleoid segregation and
different steps of cell division [17].

As part of the advancements in single-cell related techniques, many types of software
tools have been developed to facilitate the high-throughput and automated extraction of
cell-cycle-related parameters of bacterial cells from microscopic images. These software
tools have been widely adopted in many studies. However, little attention has been paid
to the impact of using different software, or the same software with different parameter
settings, on the results and on the relevant conclusions. This paper demonstrates that
discrepancies exist when analyzing identical datasets with different software or with the
same software with different parameter settings. Importantly, these discrepancies can
lead to different conclusions when validating quantitative relations, even if the consistent
use of a particular software and specific parameter settings is maintained throughout a
study. Therefore, it is recommended that conclusions be cross-validated using microscope-
independent methods, and a flexible workflow is presented for this purpose.
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2. Quantification Methods Based on Microscopic Images

Due to the presence of the diffraction limit and the small size of bacterial cells, ac-
curately determining the actual boundary of bacterial cells in microscopic images can be
challenging. A variety of high-throughput software has been developed to automatically
obtain the properties of bacterial cells [32]. Generally, the pipeline for automatic cell-size
evaluation includes image brightness correction, cell segmentation, and morphology ex-
traction [30]. The cell segmentation is pivotal for high-quality cell-size characterization.
Current bacterial cell segmentation algorithms broadly fall into two categories: classical
computer vision and machine-learning-based algorithms. The former requires manual
optimization of tunable parameters through the visual inspection of segmentation results,
as was carried out by MicrobeJ [50], Oufti [51], BacStalk [52], CellProfiler [53], and Cell-
Shape [54]. Machine-learning based algorithms rely on training with labeled ground-true
data and their performance is largely dependent on the quality and size of the training
dataset. Among such algorithms, deep neural networks (DNNs) have emerged as superior
tools for cell segmentation [55,56]. As several excellent studies have comprehensively
introduced or compared these algorithms/software tools [31,32,56–59], we will not con-
duct a quantitative evaluation of their segmentation quality here. Instead, we focus on
discussing the influence of software and parameter settings on quantitative outcomes when
the segmentation results are satisfactory.

To demonstrate this, the following experimental and analytical procedures were
implemented. First, for reliable quantification of cell size, it was necessary to establish a
steady-state growth status of the cells. Otherwise, significant variations in the results of
characterizing cell-cycle-related parameters may have occurred when samples were taken
at different time points [60–62]. Therefore, we captured phase-contrast images of E. coli
K12 substr. NCM3722 grown in four different media. In brief, the steady-state growth was
established by serial dilution, as previously described [23]. The cells were immobilized
using a 1% agarose pad (prepared with 0.9% NaCl (w/v)) when OD600 reached ~0.2. The
immobilized cells were imaged within 5 min at room temperature (RT), using an inverted
microscope (IX-83, Olympus, Tokyo, Japan) equipped with a 100× oil objective (Olympus),
an automated xy-stage (ASI, MS2000), and a sCMOS camera (Prime BSI, photometrics).
Three types of software, MicrobeJ, Oufti, and BacStalk, were selected to process these
images. Various parameter settings were achieved by adjusting the auto-threshold offset
of MicrobeJ and the cellwidth and meshwidth of Oufti. For BacStalk, we used its default
setting. The satisfactory segmentation performance was verified through visual inspection
(Figure 1a) and the outlier were excluded by manual correction or filtered according to
intensity and cell area. Cell size parameters, including cell length, cell width, and cell area,
were obtained directly from the software output. In addition, we developed customized
image-processing scripts based on deep-learning algorithms. The processing pipeline can
be summarized in four steps: first, segmenting individual cells using U-Net [63,64]; second,
determining edge details using Otsu’s thresholding; third, calculating the midlines of cells
through interpolation; and last, calculating size parameters including length, width, and
area. Except for Oufti, the cell volume (V) was calculated by the software based on cell

length (L) and width (W) and the formula V = 4
3 π

(
W
2

)3
+ π

(
W
2

)2
(L − W), assuming that

E. coli is a cylinder with hemispherical polar caps. All of these size parameters, which
represent the population-averaged values for more than 4500 cells in each growth condition,
are listed in Table 1.
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Figure 1. Different software and different parameter settings can yield divergent conclusions. (a) 
The detected contours of cells grown in MOPS medium with glutamine as the sole carbon with 
different parameters and software are shown by yellow lines. With MicrobeJ, we took auto-threshold 
offset = −200 and auto-threshold offset = 100 as an example. For Oufti Set1, we set cellwidth of cells 
grown in MOPS + glutamine, MOPS + alanine, MOPS + glycerol, and MOPS + glucose at 8, 9, 9, and 
12, and for Oufti set2, we set cellwidth at 9, 9, 10, 11. The values of meshwidth were set to the corre-
sponding cellwidth plus 2. The additional parameters are documented in Supplementary Materials 
Table S1 and were maintained consistently for both Set1 and Set2. (b) The relative initiation mass 
obtained by different software and different parameter settings. The relative initiation mass was 
calculated based on cell volume data obtained with different software and different parameter set-
tings, and the population-averaged oriC number (see Section 3). The horizontal dashed line repre-
sents the average relative initiation mass for cells in four growth conditions. 
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and parameters employed. Upon calculating the relative initiation mass based on cell vol-
ume data obtained via MicrobeJ, with an auto-threshold offset set to −200, we found a 
gradual increase in relative initiation mass as growth rates increased from 0.1 to 0.9 h−1, 
with cells grown in MOPS + glucose exhibiting a notable ~50% increase, compared to cells 
in MOPS + glutamine. This implied that the initiation mass was not constant, but growth-
rate-dependent (Figure 1b, left panel). However, divergent conclusions may emerge when 
adopting an auto-threshold offset setting of 100. In that case, the calculated relative initiation 
mass varied by only ~10% between cells grown in MOPS + glucose and MOPS + glutamine 
(Figure 1b, second panel). When using Oufti for image processing, adjustments to cell 
width and mesh width parameters yielded similar discrepancies. The relative initiation 
mass displayed a growth-rate-dependent or growth-rate-independent pattern, depending 
on whether parameter Set1 or Set2 was used, respectively, for image processing (Figure 

Figure 1. Different software and different parameter settings can yield divergent conclusions. (a) The
detected contours of cells grown in MOPS medium with glutamine as the sole carbon with different
parameters and software are shown by yellow lines. With MicrobeJ, we took auto-threshold offset
= −200 and auto-threshold offset = 100 as an example. For Oufti Set1, we set cellwidth of cells grown in
MOPS + glutamine, MOPS + alanine, MOPS + glycerol, and MOPS + glucose at 8, 9, 9, and 12, and
for Oufti set2, we set cellwidth at 9, 9, 10, 11. The values of meshwidth were set to the corresponding
cellwidth plus 2. The additional parameters are documented in Supplementary Materials Table S1
and were maintained consistently for both Set1 and Set2. (b) The relative initiation mass obtained
by different software and different parameter settings. The relative initiation mass was calculated
based on cell volume data obtained with different software and different parameter settings, and the
population-averaged oriC number (see Section 3). The horizontal dashed line represents the average
relative initiation mass for cells in four growth conditions.

Table 1. Cell features quantified with different software or parameters.

Features 1 Medium 2 MicrobeJ MicrobeJ Oufti Oufti
BacStalk

Custom
−200 100 Set1 Set2 Scripts 3

Length
(µm)

Glutamine 1.85 ± 0.44 2.16 ± 0.47 2.03 ± 0.47 2.04 ± 0.47 2.25 ± 0.48 2.11 ± 0.54

Alanine 2.22 ± 0.59 2.51 ± 0.67 2.38 ± 0.56 2.38 ± 0.56 2.63 ± 0.66 2.35 ± 0.45

Glycerol 2.61 ± 0.67 2.94 ± 0.72 2.77 ± 0.65 2.78 ± 0.64 3.04 ± 0.69 2.79 ± 0.88

Glucose 2.73 ± 0.65 2.97 ± 0.68 2.81 ± 0.67 2.80 ± 0.66 3.11 ± 0.67 2.88 ± 0.60

Width 4

(µm)

Glutamine 0.55 ± 0.06 0.75 ± 0.06 0.52 ± 0.03 0.55 ± 0.03 0.79 ± 0.06 0.55 ± 0.05

Alanine 0.61 ± 0.06 0.81 ± 0.06 0.57 ± 0.02 0.57 ± 0.02 0.83 ± 0.06 0.60 ± 0.05

Glycerol 0.67 ± 0.08 0.88 ± 0.08 0.60 ± 0.03 0.64 ± 0.03 0.90 ± 0.07 0.65 ± 0.05

Glucose 0.79 ± 0.08 0.96 ± 0.08 0.72 ± 0.04 0.69 ± 0.03 1.00 ± 0.07 0.74 ± 0.06

Area
(µm2)

Glutamine 0.94 ± 0.26 1.51 ± 0.37 1.04 ± 0.25 1.10 ± 0.27 1.17 ± 0.26 1.02 ± 0.22

Alanine 1.28 ± 0.36 1.90 ± 0.54 1.35 ± 0.33 1.35 ± 0.33 1.47 ± 0.36 1.25 ± 0.24

Glycerol 1.66 ± 0.48 2.46 ± 0.66 1.64 ± 0.42 1.74 ± 0.43 1.86 ± 0.44 1.60 ± 0.30

Glucose 2.03 ± 0.52 2.70 ± 0.67 2.00 ± 0.51 1.92 ± 0.49 2.13 ± 0.47 1.90 ± 0.39
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Table 1. Cont.

Features 1 Medium 2 MicrobeJ MicrobeJ Oufti Oufti
BacStalk

Custom
−200 100 Set1 Set2 Scripts 3

Volume 5

(µm3)

Glutamine 0.39 ± 0.13 0.85 ± 0.24 0.44 ± 0.11 0.49 ± 0.13 0.96 ± 0.25 0.46 ± 0.13

Alanine 0.59 ± 0.19 1.15 ± 0.37 0.63 ± 0.16 0.63 ± 0.16 1.26 ± 0.36 0.59 ± 0.12

Glycerol 0.85 ± 0.31 1.62 ± 0.51 0.80 ± 0.22 0.90 ± 0.23 1.74 ± 0.48 0.84 ± 0.26

Glucose 1.21 ± 0.37 1.92 ± 0.56 1.18 ± 0.31 1.09 ± 0.29 2.18 ± 0.57 1.11 ± 0.25
1 The length, width, area, volume presented in the table correspond to the average value of these parameters of
the cells in the population. 2 Four media refers to MOPS media with glucose, glycerol, alanine, or glutamine as the
sole carbon source, with corresponding growth rates of 0.93 ± 0.06, 0.65 ± 0.02, 0.52 ± 0.01, 0.11 ± 0.02 h−1,
respectively. 3 The custom scripts have been made openly available and can be accessed through the link provided
in Supplementary Materials Table S1. 4 MicrobeJ provides the mean width of the cell as the cell width. BacStalk
employs the maximum width of the cell body and our custom scripts used the fitted mean cell width. In Oufti, we
defined cell width by the mean width of cell mesh, as Oufti does not directly provide cell width. 5 For Oufti, we
used the cell volume directly provided by the software instead of that calculated by the length and width.

It is apparent that the absolute values of cell-size parameters, such as cell length, cell
width, area, and volume, are affected by the software and the parameter settings. Therefore,
investigators should use consistent criteria, including the same software and parameter
settings, to process microscopic images in a study. However, we questioned whether this
alone was sufficient to produce conclusive results.

To this end, we considered the validation of the constant-initiation-mass hypothesis
as an example here. This hypothesis proposes that the initiation mass, which refers to the
cellular mass per oriC at the time of replication initiation, remains constant at different
growth rates. To validate this hypothesis, investigators should assess the initiation mass of
wild-type cells cultivated in diverse growth media exhibiting varying growth rates. The
assessment of initiation mass can be carried out by employing time-lapse images of cells
that have been fluorescently labeled to indicate replication initiation events, or by utilizing
snapshot images in combination with techniques that facilitate the quantification of the
population-averaged oriC number. Here, we employed the latter method, since we already
had the cell volume data in four different growth media. The population-averaged oriC
numbers were quantified by analyzing the DAPI-stained samples of run-out experiments
with flow cytometry, as described previously [23].

The conclusion regarding the validation of the constant-initiation-mass hypothesis is
affected by the software and parameter settings utilized for the analysis of the microscopic
images. We calculated the initiation mass (mi) based on the widely used equation [65],
mi =

V
o × 1

ln2 , where V and o are the population-averaged cell volume and the oriC number,
respectively. As shown in Table 1, the absolute value of the cell volume, i.e., V, is largely
affected by the software and parameter settings. Thus, the absolute value of mi is also
subject to these effects. More importantly, as the relative cell volume across different growth
conditions is also influenced by the software and parameter settings, the relative initiation
mass across the four media exhibited different trends depending on the software and
parameters employed. Upon calculating the relative initiation mass based on cell volume
data obtained via MicrobeJ, with an auto-threshold offset set to −200, we found a gradual
increase in relative initiation mass as growth rates increased from 0.1 to 0.9 h−1, with
cells grown in MOPS + glucose exhibiting a notable ~50% increase, compared to cells in
MOPS + glutamine. This implied that the initiation mass was not constant, but growth-
rate-dependent (Figure 1b, left panel). However, divergent conclusions may emerge when
adopting an auto-threshold offset setting of 100. In that case, the calculated relative initiation
mass varied by only ~10% between cells grown in MOPS + glucose and MOPS + glutamine
(Figure 1b, second panel). When using Oufti for image processing, adjustments to cell
width and mesh width parameters yielded similar discrepancies. The relative initiation
mass displayed a growth-rate-dependent or growth-rate-independent pattern, depending
on whether parameter Set1 or Set2 was used, respectively, for image processing (Figure 1b,
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third and fourth panel). Since the Set1 and Set2 in Oufti can produce almost the same cell
length, the observed change in trends was mainly attributed to the variation in cell width.
These findings suggest that the constancy of initiation mass can be influenced by software
and parameter settings. Given that the time-lapse imaging approaches for quantifying the
initiation mass also need to calculate the cell volume based on microscopic images, the
effect of software and parameter settings are expected to be same.

Collectively, these results strongly imply that when drawing conclusions that rely
heavily on comparing the sizes of cells cultured under different growth conditions, using
the same software and consistent parameter settings for image analysis is not sufficient to
produce conclusive results, and additional efforts are required to enhance the credibility of
the conclusion. One possible solution is to calibrate the parameter settings of the specific
software using standard nanoparticles with a known diameter that is comparable to the cell
width. However, it is noteworthy that variations in the optical properties of bacterial cells
and nanoparticles can still give rise to inconsistencies. Therefore, we recommend cross-
validation of the conclusions, whenever possible, using techniques that are not dependent
on microscopic images.

3. Quantification Methods Not Reliant on Microscopic Images

This section provides an overview of microscope-independent techniques that are
capable of measuring the cell size, the cellular oriC number, and the initiation mass. By
integrating these methods, we introduced a flexible workflow for concurrently quantifying
these parameters (Figure 2). This workflow can be utilized either individually or for the
corroboration of findings obtained from microscopic images.
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Figure 2. A workflow for simultaneous quantification of multiple parameters at the population level.
(a) Establishment of the steady-state growth by serial dilution. (b) Verification of the steady-state
growth by monitoring the growth rate of total biomass and cell number. The cell number (red
lines) and cell mass (black lines) growth curves can form two parallel lines in semi-log plots if the
steady-state growth has been achieved. (c) OD measurement. (d) Cell counting by flow cytometry.
(e) Quantification of averaged cellular oriC number by runout experiments.

To establish a steady-state growth, bacteria should be maintained in exponential
growth for at least 10 generations via serial dilution (Figure 2a), and the growth rates of
the total biomass and the cell numbers should be monitored to verify the steady-state
growth (Figure 2b). Once the steady-state growth is established and verified, samples for
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quantifying cell-cycle-related parameters can be taken at any time point, as the average cell
composition per cell is expected to be constant [66].

The population-averaged cellular mass (m), which is closely related to the cell volume,
can be characterized by dividing the total biomass by the total cell numbers of the pop-
ulation. Dry weight and OD are two common metrics for quantifying bacterial biomass.
Compared with the dry weight measurement, determining the OD of liquid cultures with a
spectrophotometer was more convenient (Figure 2c). Plate counting and flow cytometry
(Figure 2d) are two methods for the absolute enumeration of bacterial cells. The plate count-
ing often requires serial dilution of the cell culture to ensure a countable range of colony
numbers (25–250 colony forming units, or CFU, bacteria on a standard petri dish) [67].
Compared with plate counts, flow cytometry requires sophisticated hardware, but it is a
faster and more accurate technique for measuring cell densities. For an apparatus with a
controllable sample flow rate, e.g., CytoFLEX (Beckman Coulter), the cell concentration of
samples can be conveniently measured with appropriate dilution and staining methods [23].
If the sample flow rate of the flow cytometer is unknown, suspensions of microspheres
with standard densities must be used as references [68]. It is worth noting that, although
the forward scatter (FSC) determined by flow cytometry can also reflect the relative size of
the cell, it is difficult to compare the FSC obtained from different instruments, even when
using the same parameter settings [23].

The population-averaged cellular oriC number (o) can be determined through a run-out
experiment and, by combining this with m, the initiation mass (mi) can also be obtained. To
carry out a run-out experiment, cephalexin and rifamycin were added to the cell suspension
to inhibit cell division and DNA replication initiation, respectively. Cells were then allowed
to grow under the same culture conditions for 2–3 mass doubling time to complete the
on-going replication [23]. Consequently, the number of fully replicated chromosomes after
run-out was equal to the number of oriC at the time of the addition of the compounds
(Figure 2e). After fixation with 70% ethanol and staining with appropriate DNA dye (such
as DAPI), the samples of the run-out experiments could be analyzed with flow cytometry or
a fluorescence microscope. It should be noted that, rifamycin-resistant replication initiation
will invalidate the run-out experiment in several genetic backgrounds [69,70], and the
mechanism for this resistance is still unclear. According to derivation process presented
in [65], once we have o and m for cells in a steady-state growth status, mi can be calculated
using the following equation: mi =

m
o × 1

ln2 .
Consider the aforementioned validation of the constant-initiation-mass hypothesis

as an example. Both m and o are found to be positively correlated with the growth rates.
Specifically, when compared with cells grown in MOPS + glutamine, the m and o of cells
grown in MOPS + glucose increased 2-fold and 1-fold, respectively (Figure 3a,b). As a
result, rather than remaining constant, the initiation mass (mi) was growth-rate-dependent.
It increased continuously as the growth rates increased, exhibiting a ~50% increase in cells
grown in MOPS + glucose compared to those cultivated in MOPS + glutamine (Figure 3c),
which was comparable to the result obtained based on microscopic images using MicrobeJ
with the auto-threshold offset set to −200. Therefore, it can be concluded that the initiation
mass of E. coli K12 substr. NCM3722 cells is not constant, but dependent on the growth rate
when grown within the range of 0.1 to 0.9 h−1.

Two points should be noted at the end of this section. First, as the optimal approach
may vary depending on the individual characteristics of each case, in this study, we did not
intend to endorse the utilization of any specific software or parameter setting for accurately
quantifying cell volume based on microscopic images. Second, the presented microscope-
independent workflow was derived from our daily practice and may be limited, to some
extent, by our scope of knowledge or the available instruments. Other well-established
methods that have not been mentioned in the current workflow can certainly be adopted
for cross-validation purposes or used directly to address certain scientific questions.
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4. Conclusions

Microbiology is primarily an experimental science, and the use of different experi-
mental methods may sometimes generate conflicting conclusions for the same scientific
question. Therefore, researchers should understand the pros and cons of the various meth-
ods to effectively design experiments and to evaluate results. In this paper, we found
that the application of different software and different parameters for image analysis can
yield variations in both the absolute and relative sizes of cells grown in various conditions,
leading to divergent conclusions. Therefore, it is of paramount importance to employ
microscope-independent approaches to cross-validate the conclusions drawn solely from
image analysis, especially when it comes to a quantitative comparison of cell volume across
various perturbations.
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