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Abstract: The lung promptly responds to edemagenic conditions through functional adaptations
that contrast the increase in microvascular filtration. This review presents evidence for early signal-
ing transduction by endothelial lung cells in two experimental animal models of edema, hypoxia
exposure, and fluid overload (hydraulic edema). The potential role of specialized sites of the plasma
membranes considered mobile signaling platforms, referred to as membrane rafts, that include
caveolae and lipid rafts, is presented. The hypothesis is put forward that early changes in the lipid
composition of the bilayer of the plasma membrane might trigger the signal transduction process
when facing changes in the pericellular microenvironment caused by edema. Evidence is provided
that for an increase in the extravascular lung water volume not exceeding 10%, changes in the compo-
sition of the plasma membrane of endothelial cells are evoked in response to mechanical stimuli from
the interstitial compartment as well as chemical stimuli relating with changes in the concentration of
the disassembled portions of structural macromolecules. In hypoxia, thinning of endothelial cells, a
decrease in caveolae and AQP-1, and an increase in lipid rafts are observed. The interpretation of this
response is that it favors oxygen diffusion and hinder trans-cellular water fluxes. In hydraulic edema,
which generates greater capillary water leakages, an increase in cell volume and opposite changes
in membrane rafts were observed; further, the remarkable increase in caveolae suggests a potential
abluminal–luminal vesicular-dependent fluid reabsorption.

Keywords: air–blood barrier; plasma membrane; lipid rafts; caveolae; hypoxia; fluid load

1. Introduction

Oxygen uptake in the lung is assured by an oversized architecture of the air–blood
barrier that is essentially based on two geometrical features: a surface area approaching
100 m2 and a thickness as low as 0.5 µm [1]. Further, on morpho-functional ground,
the macromolecular assembly of the interstitial compartment, separating the endothelial
from the epithelial cell, enables the optimization of oxygen diffusion and, at the same
time, prevents any fluid leakages from the blood capillaries [2]. These features reflect the
macromolecular structure of the interstitial compartment that separates the endothelial
from the epithelial cells. All inflammatory states, of either infectious (bacterial/viral)
or sterile types (hypoxia exposure, surgery, and fluid overload), threaten the structural
integrity of the interstitial macromolecular matrix by triggering the inflammatory cascade
and, as a consequence, may cause fluid leakages from the capillary. The ensuing fluid
accumulation in the interstitial compartment and in the alveoli, depending on the severity
of the damage, hinders the process of oxygen uptake. This article is an up-to-date review
focusing on the early role of the endothelial cellular signaling response occurring at the level
of the air–blood barrier and aiming to shield the lung when facing the risk of developing
edema. Two models of edema are considered: hypoxia exposure and fluid overload. The
two models differ considering the damage induced on the macromolecular structure of
the pulmonary interstitial compartment: hypoxia leads to an increase in water and solute
permeability of the capillary barrier, while fluid overload mostly leads to a loss of the

Life 2023, 13, 1240. https://doi.org/10.3390/life13061240 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life13061240
https://doi.org/10.3390/life13061240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-4474-8059
https://doi.org/10.3390/life13061240
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life13061240?type=check_update&version=1


Life 2023, 13, 1240 2 of 14

mechanical rigidity and compactness of the interstitial compartment. The two edema
models actually share a common trait, namely the remarkable increase in the hydraulic
pressure of the interstitial fluid resulting from the initial water leak from the capillaries.
Accordingly, in both edema models, endothelial and epithelial cells are exposed to time-
dependent mechanical stress. Evidence is provided for the difference in the signaling
process eliciting a functional response aimed at buffering the specific initial perturbation
in the lung water balance caused by either type of edema. Finally, when scaling up from
cells to humans, functional considerations are put forward to link the signaling process
with the inter-individual differences in vulnerability to lung edema. A hypothesis is put
forward for potential inter-individual differences in the signaling process and/or inborn,
or diseased-acquired, morpho-functional architecture of the air–blood unit. It is hoped that
these data might help broaden the understanding of the early phase of perturbation in the
lung fluid balance that is common to all inflammatory respiratory diseases.

2. The Air–Blood Barrier in Physiological Conditions

The terminal lung units include the “extra-alveolar space” and the “true alveolar
space” [3], the latter only including the thin portion of the air–blood barrier (0.5 µm thick)
devoted to gas exchange. At the level of the air–blood barrier, a dense package of molecules
from the proteoglycan family (PG) guarantees impermeability to water and also provides
mechanical stability to the lung parenchyma. PGs consist of a core protein with one or more
covalently attached glycosaminoglycan (GAG) chains that are highly hydrophilic. The
PG family comprises the large chondroitin sulphate sub-family (>1000 kDa) that provides
stability to the collagen–elastin network component by filling the voids between these
fibrillar molecules [4,5]. Further, the heparan sulphate PG sub-family (300–500 kDa) that
extends to the intercellular clefts assures low microvascular permeability to water and
proteins [3]. All PGs act as link proteins with other molecules, as well as with the cell
surface through low-energy ionic and/or non-covalent bonds; the nature of these bonds
allows mobility between structures and avoids shear stresses during lung movements.
PGs represent a powerful shield against edema via specific physico-chemical features:
(1) being highly hydrophilic, they can capture free water to form gel; (2) the increase in
steric hindrance of the gel, coupled with the remarkable rigidity of the macromolecular
structure, results in an increase in the hydraulic interstitial pressure from the physiological
value −10 cmH2O [6] up to ~+5 cmH2O [7]. This increase remarkably offsets further
microvascular filtration. At this stage, named interstitial lung edema, the increase in
extravascular water is <10% [7]. A strict control on extravascular water is required as at the
level of the air–blood barrier, there is scanty presence of lymphatics [8]. Fluid accumulation
in the interstitial compartment would cause an increase in the intermolecular distance
at PG’s binding sites; this, in turn, would decrease the intermolecular attraction forces
according to the law of the square of the distance in the binding site. Moreover, sustained
edemagenic conditions, proceeding along an inflammatory model, lead to the production of
reactive oxygen species and activation of metalloproteases that ultimately cause remarkable
fragmentation of PGs [9–12]. Fluid overload was generated by a slow rate of saline infusion
(0.5 mL/(kg·min) [10], while hypoxic edema was obtained by exposure to 12% hypoxia for
3 h [12]. The two models differ in the sequence of matrix PG fragmentation in the air–blood
barrier. Saline infusion mainly caused the fragmentation of large chondroitin sulphate PGs
leading to an increase in tissue mechanical compliance [10]; conversely, in the hypoxia
model, the main damage involved the heparan sulphate PGs leading to an increase in water
and solute permeability [12]. When damaged PG molecules attain 60% control [12], fluid
leakages increase remarkably, and severe edema develops with a time constant of a few
minutes [13,14].

3. Early Cell Signaling in the Lung in Response to Developing Edema

Attention was focused on specialized sites of the plasma membranes that may be
considered “mobile signaling platforms”, referred to as membrane rafts (MRs), that include
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lipid rafts and caveolae [15–17]. The hypothesis was developed that early cellular signaling
might be reflected by changes in the plasma membrane’s composition of endothelial and
epithelial cells at the level of the air–blood barrier in response to interstitial edema. MRs
have a “quasi-crystalline” state and a different composition compared to the rest of the
plasma membrane, in particular concerning lipid structure [16–18]. Figure 1 shows a
possible model of the lung’s cellular response to developing edema [19].
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Figure 2. The structure of caveolae and lipid rafts. Data from [19]. 

Figure 1. Possible model of lung cellular response to the increase in extravascular water not exceeding
10%. Membrane rafts (MRs), which include lipid rafts and caveolae, are shown. Cell signaling might
be activated by mechanical stimulation caused by increased hydraulic pressure of the interstitial
fluid through rigid links (collagen I, B-integrin, and cytoskeleton), and/or chemical activation of
the MRs by fragments of matrix and basement membrane PGs (hyaluronan, perlecan, and versican).
Data from [19].

Lipid rafts are essentially lipid-based domains. Caveolae are flask-shaped invagina-
tions of the plasma membrane with a diameter of ~70 nm (Figure 2); they are protein-based
domains due to the presence of caveolin [17,18].
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Endothelial and epithelial cells are kept flat in a highly deformed state due to their
strong attachments to the neighboring cells and the extracellular matrix. Accordingly,
their “hard-wired” cytoskeleton might allow them to respond promptly to forces/pressures
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applied on their surface or changes in cellular volume based on the “tensegrity” concept [20].
Furthermore, the cytoskeleton can contribute to mechano-transduction by transmitting
and modulating tension through rigid links involving B-integrin and collagen I as well
as focal adhesion with adjacent cells and with the extracellular matrix [21]. MRs are
highly movable, dynamic structures that further respond to changes in the concentration of
disassembled portions of interstitial macromolecules including PGs (hyaluronan, versican,
and perlecan) [22], an event occurring in a sustained edemagenic condition. Finally, the
activation of these sites may be stimulated by the increase in water traffic. The hypothesis
holds that changes in the lipid composition of the bilayer of the plasma membrane might
contribute to triggering the signal transduction process involving MRs [23]. In both edema
models, epithelial and endothelial cells are exposed to mechanical forces relating to the
remarkable increase in hydraulic pressure of the interstitial fluid. In both models, data
were acquired up to 3 h from the onset of the edemagenic condition.

4. Differences in Cellular Morphology Comparing the Two Edema Models: Hydraulic
Type and Hypoxia Exposure

Figure 3A shows the thin portion of the air–blood barrier (the so–called “true alve-
olar space”), ~0.5 µm thick, simply made of endothelium (EN), epithelium (EP), and an
intervening fused basement membrane (BM) representing the interstitial compartment;
one plasmalemmal vesicle (PV, caveolae) is shown. Figure 3B shows that up until 3 h of
hypoxia exposure, only an apparent thinning of the air–blood barrier occurred, with no
increase in the number of caveolae. Conversely, Figure 3C shows that in the hydraulic type
of edema caused by 3 h of saline infusion, the endothelial cell volume increased and the
luminal side was highly irregular due to the increased number of cytosolic caveolae. In
line with this finding, phospholipid phosphorous in the plasma membrane was found to
increase, allowing an increase in its overall development [24]. Here, a specific involvement
of caveolae in cases of perturbation in lung fluid balance is described; however, one should
recall that caveolar expression is implicated in a variety of physiological and pathophys-
iological processes concerning the uptake/release of metabolites. Further, alterations or
defects in caveolar function are associated with inflammatory states relating to immunolog-
ical responses as well as the development of diseases such as cancer and cardiovascular
and neurological disorders [25].
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Figure 3. Ultrastructural appearance (TEM image, magnification ×66,000) of the thin portion of
the air–blood barrier in control (A), after 3 h of hypoxia (B), and in hydraulic edema caused by
3 h of infusion of 0.5 mL/kg of saline solution. (C) CL, capillary lumen; AS, alveolar space; EN,
endothelium; PV, plasmalemmal vesicle (caveolae); BM, basement membrane; EP, epithelium. Scale
bar = 0.5 µm. Data from [24].
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Data from Figure 4A confirm the tendency of endothelial cells to decrease the cytoplas-
mic volume on hypoxia exposure becoming thinner, relative to the control; the opposite
occurred in case of hydraulic edema (Figure 4B).
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Figure 4. Surface and volume densities (Sv and Vv) for endothelial cells on hypoxia exposure (A)
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In hydraulic edema confocal fluorescence images of Caveolin-1immunostaining (data
from rabbit lungs) [22] confirmed its remarkable increase (Figure 5B), relative to the control
(Figure 5A).
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Figure 5. Confocal fluorescence images of Caveolin-1 immunostaining in frozen sections of lung
parenchyma in hydraulic edema (A), relative to control (B); scale bar 12 µm. Data from rabbits [22].

Figure 6 shows that, on hypoxia exposure, a progressive translocation of Caveolin-1
was observed from plasma membrane to cytoplasm with full intracellular localization at
24 h; this response is opposite to that occurring in the hydraulic edema [26].

Data from Figure 7 show a linear relationship between caveolar expression and vol-
ume of the endothelial cells; the expression of caveolae increased in hydraulic edema and
decreased in hypoxia exposure.
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in Caveolin-1. Note the five-fold increase in AQP-1 in hydraulic edema and its quasi-
disappearance on hypoxia exposure.
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Data from experimental models also indicate that the changes in the two forms of MRs
are in opposite directions when comparing the two types of edema: caveolae increase and
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lipid rafts decrease in hydraulic edema, while the opposite occurs in hypoxia exposure [19,24].
This trend was confirmed by estimating the change in Caveolin-1 and of CD55 (marker of
lipid rafts) in A549 alveolar human cells and in an alveolar cell line from human excised
lungs (A30) exposed to hypoxia for up to 24 h [26]. The above data clearly indicate that, in
developing interstitial edema, a significant re-modeling of the expression of MRs occurs,
confirming that they behave as highly dynamic structures, potentially providing a prompt
signaling platform responding to changes in the pericellular microenvironment.

A gene expression analysis was carried out in the hydraulic model of the edema.
Cytokines TNFα and MT1 (a stress-response molecule) were up-regulated, representing
a pro-inflammatory response; interestingly, IFNγ, a molecule leading to an increase in
permeability and apoptosis, was down-regulated, a response clearly aimed at preserving
the low permeability of the endothelial barrier. Further, MT1 genes (acting as antioxidant
agents) markedly increased their expression, as well as bFGF [27]. In A549 and A30 cells
exposed to 5% hypoxia for up to 24 h, a modest increase in mRNAs expression for CD55
and a slight decrease in Caveolin-1 were observed, which is in line with the morphological
evidence [24].

5. Functional Comparison between the Hydraulic and the Hypoxic Model of Edema

An attempt can be made to relate the cellular response to the functional implications of
the two types of edema at the organ level, considering the challenging data from Figure 8 in
particular. The two models of edema investigated share the increase in interstitial pressure
and a limited increase in extravascular water (<10% of control); however, one has no
indications on the actual water flow among compartments. Recent extensive computational
modeling of interstitial fluid in lung edema provided fluid velocity (Reynolds number
averaging 0.006) and pressure profiles at capillary and interstitial levels, but no flows [28].
Flows could be estimated by multiplying the velocity by the surface through which the flow
occurs. This estimate is difficult to compute; however, it is logical to admit that it is expected
to vary in relation with the degree of recruitment of the capillary network. One can actually
compare the two models of edema concerning this point. In the hydraulic type, left atrial
pressure was almost doubled relative to the control [29], likely implying a recruitment of the
capillary network and a possible increase in capillary pressure. These factors would cause a
greater filtration rate compared to the hypoxia model where pre-capillary vasoconstriction
would actually cause the de-recruitment of the capillary network.

The question is then: can one find a reason to justify the opposite signaling response
when comparing the two edema models? A possible answer might consider what would be
the most appropriate functional response to buffer the specific initial perturbation in lung
water balance caused by either model of edema. In the case of the hydraulic type of edema,
it is tempting to hypothesize that the increase in expression of caveolae might contribute
to a polarized abluminal–luminal vesicular fluid reabsorption. This phenomenon would
be favored by an increased expression of AQP-1, which is known to increase the water
permeability of alveolar epithelial and endothelial cells [30]. So, in this kind of edema, the
increase in water permeability at the endothelial level would favor the caveolar-dependent
fluid drainage. The increase in volume of the endothelial cells involves complex K-Cl co-
transport regulation and may well relate to changing plasma membrane stretching [31,32].
This interpretation fits with greater trans-vascular flows in hydraulic edema. It is not known
how far the abluminal–luminal vesicular fluid reabsorption can balance the microvascular
filtration; clearly, such an equilibrium becomes unbalanced toward edema when cellular
integrity (both endothelial and epithelial) is disrupted.

Following hypoxia exposure, the reduction in the endothelial cytoplasmic volume
would decrease the overall thickness of the air–blood barrier and, moreover, silencing the
expression of AQP-1 would limit trans-vascular fluid fluxes. These adaptive responses can
obviously be regarded as aimed at favoring oxygen diffusion conductance. Furthermore,
early signaling in hypoxia elicits precapillary vasoconstriction [33]. The functional signifi-
cance of this reflex is to prevent the increase in hydraulic capillary pressure that represents,
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by and large, the more dangerous edemagenic factor [13]. Vasoconstriction implies the
inhibition of potassium channels in smooth muscle cells, the activation of voltage-gated
calcium channels, and the ensuing increase in cytosolic calcium [34]. Direct transpleural
imaging in experimental animals allowed the time course of vasomotion in pulmonary
microvessels (diameter < 100 nm) to be followed in response to 12% oxygen. Figure 9
shows a computer-generated capillary perfusion pattern with a color-coded log-scale for
different alveolar–capillary network [33]. The vasoactive response was found to vary
among lung regions; the blue color corresponds to the closure of microvessels in regions
where an interstitial edema was preferentially developing. The figure also shows that color
switching toward yellow corresponds to an increase in capillary flow, revealing blood flow
re-direction from edematous toward intact lung regions [33].
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identify, respectively, arteriolar accesses and venular exits. The color panels show the capillary blood
flow at different time points (baseline, 30 min, and 120 min of hypoxia exposure). Data from [33].

A fractal geometry analysis showed that small asymmetries along the branching
system might account for heterogeneity in both airway flow and blood flow distribution
in terminal units [35]. The last paper also confirmed that regional lung perfusion reflects
the complex interaction between vascular and surrounding alveolar pressures, particularly
when local vasoconstriction occurs in response to hypoxia.

It has been reported that in edemagenic conditions, precapillary arterio-venous shunts
are also activated upstream of the alveolar district [36–38]; this reflex response decreases
capillary perfusion and therefore represents a further protection against the development
of edemas.

Other factors are activated to signal hypoxia exposure. There are indications that ox-
idative stress is sensed in the lung by vagal unmyelinated afferent C-fibers originating from
the so-called juxta-alveolar J-receptors, likely responding to the mechanical stimulation
following the increase in tissue pressure in developing interstitial edemas [39]. Evidence
has also been provided for the involvement of the mitochondrial electron transport chain as
an oxygen sensor [40]. Further, mitochondria in smooth muscle cells of pulmonary artery
act as oxygen sensors that transduce redox signals to regulate cellular ion channels and
enzymes ultimately controlling hypoxic pulmonary vasoconstriction [41].

6. The Human Air–Blood Barrier Facing Edemagenic Conditions

Scaling up from cells to humans is a difficult, though necessary, step. It is well known
that the adaptive response to edemagenic conditions impacts the control of lung extravas-
cular water at the level of the air–blood barrier and, as a consequence, on the efficiency of
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the oxygen diffusion–transport function [42–44]. Oxygen uptake in the air–blood barrier
reflects the complex interaction between oxygen membrane diffusion capacitance, blood-
capacity (Hb), and capillary blood flow. The latter critically depends upon the degree of
precapillary vasomotion and the increase in cardiac output, which are both elicited by
hypoxia; accordingly, two more factors ought to be considered dealing with the oxygen
equilibration along the capillary network: blood transit time and blood velocity [44]. The
complex matching of all these factors reflects the efficiency of oxygen uptake in the lungs.
Efficiency is known to vary remarkably among individuals, depending on the individual
response to edemagenic conditions. A characteristic example is the exposure to hypoxia
(high altitude), as one can partition HAPE-R (High Altitude Pulmonary Edema-Resistant)
subjects from HAPE-S (High Altitude Pulmonary Edema-Sensitive) subjects [45]: the latter
show a greater increase in pulmonary artery pressure, suggesting a stronger precapil-
lary vasoconstriction as a defensive mechanism to decrease the perfusion of the capillary
network and, at the same time, avoid an increase in capillary pressure [13,33,44].

In principle, the vulnerability to edemas and the loss of efficiency in gas exchanges
may be related to the following: (1) the failure of the signaling process, and (2) individual
adaptive response to the edemagenic condition relating to (3) deficient inborn or diseased-
acquired morpho-functional structure of the air–blood unit. The first case seems unlikely
to occur as precapillary vasoconstriction, the main shield against edema, has been reported
to be much stronger in HAPE-S subjects [46].

Further, the adoption of the Multiple Inert Gas Exchange Technique (MIGET) [47]
that enables the estimation of regional vasoconstriction in HAPE-S leads to a dissociation
of perfusion with ventilation in developing edema: the unavoidable consequence was
an incomplete equilibration of blood with alveolar O2 partial pressure. Regional lung
perfusion reflects the complex interaction between vascular and peri-vascular pressure [33]
as well as alveolar distending pressure, particularly when local vasoconstriction occurs
in response to hypoxia [35]. Considering vasoconstriction as a defensive reflex shielding
against edema formation, the finding of remarkable regional differences in vasoconstriction
can be interpreted as the existence of potentially leaky sites along the microvascular district;
accordingly, local signaling seems to be an efficient mechanism to protect against the local
development of edemas.

7. Heterogeneity in Alveolar Morphology

Much interest was raised concerning point two and three above, aiming to detect
individual structural/morphological features as well as inter-individual differences in the
adaptive response to edemagenic conditions. Data in healthy humans showing a greater
vulnerability to edema enabled a description of the specific morphological features of the
terminal alveolar units. One such feature is the ratio of lung capillary blood volume (Vc)
to the diffusion capacity of the alveolar membrane (Dm) [48]. These macro-parameters
can be estimated from a common pneumological evaluation of lung diffusion properties.
The functional significance of this ratio is that of comparing the overall surface of the
capillary network (potentially providing microvascular filtration) with the extension of
the overall surface area (available for gas diffusion). The distribution of the Vc/Dm ratio
in the population studied was found to be normal, varying from ~1 to ~6 [44]. Based
on computational modeling, the case of a high Vc/Dm is compatible with an alveoli of
smaller diameter, implying a greater number of alveoli per unit lung volume [48]. The
advantage of an alveoli of small radius (“the best possible acinus”) was also derived from
numerical computational models as it would optimize oxygen diffusion [49,50]. One may
add that a structural lung design based on small alveoli (the case of high Vc/Dm) offers
a further advantage concerning the control of lung fluid balance. In fact, on geometrical
ground, the overall capacitance of the interstitial peri-capillary compartment is larger
compared to the case of high Vc/Dm [33]: the advantage is that in edemagenic conditions,
more fluid can be hosted in the interstitial compartment preventing alveolar flooding.
Subjects with a low Vc/Dm ratio had both an impairment of the oxygen diffusion and signs
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of perturbation in the lung fluid balance when exposed to highly edemagenic conditions
(work in hypoxia, PIO2 90 mmHg) [51]. Furthermore, in these subjects, the limitations of O2-
diffusion led to a marked increase in cardiac output. The consequence of this cardiovascular
response was the increase in blood velocity and the shortening of the blood transit time
in the capillary district: the former increases the shear rate, which notably contributes to
increasing microvascular permeability [52]; the latter prevents full equilibration of blood
with alveolar PO2 [44].

Concerning point three above, a higher inborn microvascular permeability may also
be hypothesized considering the morphological heterogeneity of the alveolar–capillary unit.
Alveolar heterogeneity, which is likely to occur following any type of lung inflammation,
alters the mechanical equilibrium between adjacent alveoli and, in turn, also the control
of the extravascular fluid balance. Heterogeneity of alveolar size has been documented in
experimental animals in physiological conditions [53,54] and found to reflect considerable
differences in alveolar mechanical properties [54]. Yet, the clearance of alveolar edema can
occur as long as the interstitial macromolecular assembly retains its mechanical integrity. A
good example is alveolar fluid clearance in newborn rabbits at term [55]. Conversely, the
reabsorption capacity is lost when the interstitial matrix is largely immature, in the case
of premature rabbits [56], or largely disassembled [2]. Heterogeneous fragmentation of
the molecular interstitial structure has been described in experimental lesional lung mod-
els [4,57]. Further, when heterogeneity ranges from alveolar atelectasis to over-distension,
the inter-alveolar tissue stresses act to accelerate edema spreading on recruitment/de-
recruitment of the respiratory units during the breathing cycle [58–61]. Large heterogeneity
in alveolar size also occurs in human emphysema, a pathology characteristically exposed
to the risk of edema [62].

8. Conclusions and Summary of Unknown Points to Be Addressed in Future Studies

Studying the early phase of edemagenic conditions allowed us to identify the innate
response of the lung to counteract the perturbation of water balance. The indications are
that the response is triggered via mechanosensing evoked by the increase in interstitial
pressure following the initial increase in capillary leak. This conclusion is in line with the
concept of coupling “time-dependent mechanosensory with context-specific adaptive responses to
rebalance the cell homeostatic state” [63]. The message from these studies is that as long as
the integrity of the macromolecular structure is preserved, the increase in extravascular
water is kept within 10%. A further indication is that the lung can resist for a long time in
this condition.

A point to be addressed is how to ”merge’ these results with human” clinical data
on severe forms of lung edema as well as with data from experimental models of lung
lesions. The first important observation is that routine clinical assessments of patients
are unable to detect the early phase of increased extravascular fluid in the lungs [64].
This point is crucial considering that the time constant for developing severe edema is a
matter of minutes [13,14]. Valid help would come from an in vivo estimate of vascular
permeability [65]. It is of interest to recall the recently proposed methods allowing to relate
the time course of edema based on water evaporation from exhaled air [66].

The reported clinical heterogeneity of ARDS [67,68] raised the point of inter-individual
differences in lung vulnerability concerning edema. This concept is actually supported
by the finding of a correlation between individual morpho-functional features of the
terminal alveolar units and the degree of lung water perturbation when facing edemagenic
conditions [44,48].

Concerning the recovery from severe lung lesions, further points have been addressed.
In the case of sepsis-induced lung injuries, novel regulators of the inflammatory

response have been proposed [69]. In models of lung ischemia/reperfusion injuries, the
point of alleviating endoplasmic reticulum stress in alveolar epithelial type II cells has
been considered [70].
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Considering high-altitude pulmonary edema, it was possible to identify a distinct,
specific subset of monocyte linked with down-regulation of HIF-1α that might be implicated
in the development of the disease [71]. Further, in response to hypoxia, non-classical
monocytes in the lung have been identified that can sense hypoxia and promote vascular
remodeling, leading to the development of pulmonary hypertension [72].

At the therapeutic level, an interesting report focuses on the role of ropivacaine to
inhibit/prevent pressure-induced lung endothelial hyperpermeability [73]. Further, soy
isoflavone has been proposed to reduce pulmonary edema in a dose-dependent man-
ner [74]. Mesenchymal stem cell therapies are also reported as promising therapeutic
agents in ARDS [75].

Considering the transition from the early postlesional inflammatory stage to the
subsiding phase leading to and remodeling of the lung structure, the role of ulinastatin was
shown to promote the process of efferocytosis, namely the clearing process of apoptotic
neutrophils operated by macrophages to favor repair [76].

Finally, remodeling of the extracellular matrix has been considered a long-range effect
of increased microvascular permeability leading to post-injury lung fibrosis [77,78].

One can speculate about the fact that pulmonary hypertension progressively develops
as a consequence of pulmonary fibrosis [79]. One could hypothesize that the functional
response to high microvascular permeability (either inborn or acquired) might stimulate
fibrosis deposition on the precapillary side, aiming to protect the capillary network from
over-perfusion and an increase in hydraulic pressure. Accordingly, the progressive limita-
tion of capillary blood flow could represent a long-term adaptive response shielding against
the risk of lung edema. This interpretation is in keeping with the finding of a decrease in
the density of microvessels in idiopathic fibrosis [80]. The counterpart of this defensive
adaptive response is that fibrosis is due to become a case of maladaptive compensation
as it leads, over time, to an increase in right-ventricular afterload. The pathogenesis of
pulmonary fibrosis is currently the object of growing interest to prevent the progression of
the disease. The role of trans-differentiation of lung fibroblasts into myofibroblasts prolif-
eration and the ensuing extensive deposition of extracellular matrix are key challenging
points from a therapeutic point of view [81–83].
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