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Abstract: A deep diffractive neural network (D2NN) is a fast optical computing structure that has
been widely used in image classification, logical operations, and other fields. Computed tomography
(CT) imaging is a reliable method for detecting and analyzing pulmonary nodules. In this paper,
we propose using an all-optical D2NN for pulmonary nodule detection and classification based on
CT imaging for lung cancer. The network was trained based on the LIDC-IDRI dataset, and the
performance was evaluated on a test set. For pulmonary nodule detection, the existence of nodules
scanned from CT images were estimated with two-class classification based on the network, achieving
a recall rate of 91.08% from the test set. For pulmonary nodule classification, benign and malignant
nodules were also classified with two-class classification with an accuracy of 76.77% and an area
under the curve (AUC) value of 0.8292. Our numerical simulations show the possibility of using
optical neural networks for fast medical image processing and aided diagnosis.

Keywords: pulmonary nodules; all optical; deep diffractive neural network; aided diagnosis;
real time

1. Introduction

Artificial intelligence has become a highly researched and widely discussed topic
in recent years. Deep neural networks have been utilized to solve various tasks such
as natural language processing [1–3], image classification [4–6], object detection [7–10],
semantic segmentation [11–13], etc. As the complexity and size of deep neural networks
increase, more parameters need to be computed, which requires more time to process the
input data. However, real-time processing tasks such as autonomous driving [14,15] are
highly demanded, presenting a challenge to traditional parallel computing devices, e.g.,
graphics processing units (GPUs). Despite significant advantages in GPU technology in
recent years, it is increasingly difficult to achieve further developments with silicon-based
processing technology.

Optical neural networks represent a new and exciting direction in deep learning
architecture, utilizing the propagation of light waves and modulation of the light field
with optical devices to achieve ultra-fast computational speeds. Recent research has pro-
posed various structures, including optical convolution networks [16,17], Mach–Zehnder
interferometer-based optical networks [18–20], optical spiking neural networks [21,22], and
diffractive deep neural networks (D2NNs) [23–37]. Due to D2NNs’ simple structure with
high parallel operation and low cost, there has been significant interest in D2NN research
over the past few years, including increasing the networks’ computation ability [24–29]
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and robustness [30–32]. For instance, Li et al., proposed a differential diffractive network to
enhance classification accuracy [24]. Zhou et al., used multiple photoelectric and electro-
optic conversions to provide non-linear computation and improve the network’s inferential
ability [26]. Moreover, various problems have been solved by D2NNs, such as image
classification [23,33], filtering [34,35], logical operations [36,37], object detection [25,26], etc.

Medical imaging provides images of the human body’s internal organs. The image
processing plays a crucial role in diagnosing various diseases. Computed tomography (CT)
imaging is one of the best methods for detecting and analyzing pulmonary nodules. In
recent years, deep learning has been applied to CT image analysis, including pulmonary
nodule detection [38–40] and classification [39,41,42], demonstrating its effectiveness in
this field. Experiments using D2NNs have been discussed in many research papers. Lin
et al., reported that a 3D-printed optical diffractive layer can modulate a Terahertz light
source and be composed into all-optical D2NNs, which were further applied for MNIST
and Fashion-MNIST datasets [23]. Chen et al., presented optical diffractive units for visible
wavelengths fabricated by a multi-step photolithography–etching method [43]. Luo et al.,
showed that the optical diffractive layers could be fabricated with a metasurface structure
with 400 nm diffractive units to modulate visible light [44]. These studies demonstrated
the feasibility of using all-optical networks in experiments.

In this paper, we propose the use of an all-optical D2NN for pulmonary nodule
detection and classification to increase the speed of image processing and reduce waiting
times for patients. The Lung Image Database Consortium image collection (LIDC-IDRI)
dataset was used to train and test the network. In the numerical simulation, pulmonary
nodule detection achieved a recall rate of 90.47% through the classification of whether
pulmonary nodules existed or not. Using the trained all-optical network, slices of lung CT
images were scanned to obtain information on the pulmonary nodules’ positions. For the
pulmonary nodule classification, the network was adopted to classify benign and malignant
nodules, achieving an accuracy of 76.77% and an area under the curve (AUC) of 0.8292,
indicating the possibility of using all-optical neural networks in medical image processing.
Furthermore, by combining the network with optical non-linear materials for advanced
computation, the computing power and accuracy of the network can be further improved,
indicating the possible uses of all-optical D2NNs in fast medical-image-aided diagnosis.

2. Methods
2.1. Dataset

The LIDC-IDRI dataset is a well-known database of thoracic CT scans and diagnostic
results related to lung cancer [41,42]. In this dataset, 4 experienced thoracic radiologists
analyzed the details of pulmonary nodules to classify them into 5 categories, with higher
numbers indicating more serious nodules diagnosis. All the information were recorded
in the XML files. In this work, the CT scans’ XML files were used to locate the pulmonary
nodules and extract their diagnostic results.

2.2. All-Optical Diffractive Deep Neural Network

An all-optical D2NN is a novel approach that combines multiple optical diffractive
layers, as illustrated in Figure 1. In this approach, the light field propagates in free space,
and its phase and amplitude are modulated by a diffractive device, such as a spatial light
modulator (SLM), liquid-crystal volume phase plates [45], or 3D-printed layers. According
to the Huygens–Fresnel principle [46], the light field can be considered as many secondary
wave sources, and the resulting propagation can be computed by the envelope influence
of all secondary waves. The propagation of the secondary wave can be computed using
scalar diffraction theory, such as the Rayleigh–Sommerfeld diffraction theory [46], and the
impulse response can be expressed as:

wl
i(x, y, z) =

1
2π

z− zi
r

(
1
r
− jk

)
exp(jkr)

r
, (1)
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where k = 2π/λ is the wave vector, λ is the wavelength, i refers to the i-th neurons in the l-th
layer, and the distance between the current neuron and the i-th neuron in the l-th layer is given by

r =
√
(x− xi)

2 + (y− yi)
2 + (z− zi)

2. The imaginary unit is represented by j =
√
−1. The

diffractive layer modulation can be expressed as tl
i(xi, yi, zi) = al

i(xi, yi, zi)exp(jϕl
i(xi, yi, zi)),

where al
i(xi, yi, zi) and ϕl

i(xi, yi, zi) represent the amplitude and phase modulation factors,
respectively. These factors are considered as trainable parameters in the neural network. The
light field ul

i(xi,yi, zi) in the i-th neurons in the l-th layer can be express as:

ul
i(xi,yi, zi) = tl

i(xi,yi, zi)·∑k ul−1
k wl−1

k , (2)

The angular spectrum method used in training the networks describes light field
propagation in Fourier space, reducing the operation time in the training section [46]. Thus,
Equation (2) can be written as follows:

ul
i(xi,yi, zi) = tl

i(xi,yi, zi)·F−1
(

Ul−1(u, v)exp(j2πγ∆z)
)

, (3)

where Ul−1(u, v) = F
(

ul−1(x, y, z)
)

is the Fourier transform of the output light field in
the (l − 1)-th layer, ∆z is the axial distance between the l-th layer and (l − 1)-th layer, and
γ =
√

1/λ2 − u2 − v2.
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Figure 1. Schematic diagram of all-optical D2NN. The CT image, which serves as the input of the network,
is clipped to a size of 50× 50 pixels (as shown in red square region) and modulated for the amplitude of
the light field. The detectors at the designed positions record the intensity of the output field.

In this study, we investigated the feasibility of using visible light as the light source
for the all-optical D2NN. The He-Ne laser with 632.8 nm wavelength was selected for the
networks with 5 diffraction layers in our numerical experiments. The neuron distribution
of the diffractive layers was set to 200 × 200 (40,000 neurons per layer, and the size of each
layer is 0.8 mm× 0.8 mm) and 400× 400 (160,000 neurons per layer, and the size of each layer
is 1.6 mm × 1.6 mm) for detection and classification tasks, respectively. The axial distance
between adjacent layers, including the detection plane, was set to 10 mm. Although the
diffractive angle is not large enough to achieve full connectivity in the classification task [43], a
sufficient number of neurons are obtained in the diffractive layers to modulate the secondary
wave field created by the previous layer, and the networks still have a considerable number of
trainable connections for training.
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For our experiments, we clipped the CT images into 50 × 50 pixels and resized them
using nearest interpolation to 200 × 200 pixels and 400 × 400 pixels. In the training section,
we set a batch size of 64 and the learning rates to 0.005 and 0.001 for pulmonary nodule
detection and classification, respectively. The networks were trained for 120 epochs, and
then we analyzed its inference performance on the blind test set. The results of the networks
are indicated with the maximum intensity in the designed regions of the detecting plane,
presenting the real-time computing results.

2.3. Pulmonary Nodule Detection

The network model was trained to detect the presence of nodules in CT images from the
LIDC-IDRI dataset. Images were clipped around the center of each nodule and labeled as
nodule regions, while images of the same size without nodules were also clipped and labeled
as no-nodule regions. The number of images in both classes was balanced for training, and
the dataset was divided into validation, test, and training sets in the ratio of 8:17:75.

During the training section, the propagated light amplitudes in 2 output detection
regions were normalized by using A′i = Ai/(A0 + A1 + b0) + b1(i = 0, 1), where Ai is the
sum amplitude of light field in the i-th detector, and b0 and b1 are 2 bias factors. The regions
without nodules may have a large dark area, and the light intensity in detectors may be
close to zero; thus, the factors b0 and b1 were applied in the normalization equation. The
softmax cross-entropy loss was applied to optimize the network, as described in Equation
(4) below [33]:

Lcrossentropy = −
[

Alabel
0 log(

exp(A′0)
exp(A′0 + A′1)

) + Alabel
1 log(

exp(A′1)
exp(A′0 + A′1)

)

]
, (4)

The networks were trained to classify nodules by scanning the entire CT image slices
(see Figure 2). Equation (5) was applied to analyze the output of the network, obtaining the
probability of nodules’ existence as the score:

score =
A′i

A′0 + A′1
(i = 0, 1). (5)
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Figure 2. (a) Schematic diagram of scanning the slice of the CT image with the trained networks.
(b) Training results of the networks and confusion matrix in test results. (c) Distribution of scores for
nodules in the test set.
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2.4. Pulmonary Nodule Classification

The location and classification of the nodules are provided in XML files, which divide
the nodules into 5 classes (labeled 1–5). Benign nodules were labeled as “1” or “2”, while
malignant nodules were labeled as “4” or “5”. Nodules labeled as “3” were discarded. To
prepare the images for training, the images were clipped to a size of 50 × 50 pixels, using
the same method as mentioned in Section 2.3. The cases were also divided into validation,
test, and training sets, with a ratio of 8:17:75, respectively. In addition, traditional data
augmentation methods, such as rotating and flipping the images, were utilized to increase
the number of images in the training set.

During the training process, the intensities of the 2 detectors in the output planes were
also evaluated by using factor α, as follows:

A′i = α
Ai

max(A0, A1)
(i = 0, 1), (6)

where A0 and A1 are the sum amplitudes in the 2 detectors’ regions. The mean square error
loss function (7) was applied to optimize the network as follows [23]:

Lmse = (A′0 − αAlabel
0 )

2
+ (A′1 − αAlabel

1 )
2
. (7)

3. Results

Figure 2a,b present the training section of the networks and the accuracy of the network
on the validation set converging after a few epochs, respectively. The detailed results are
presented in the first two rows in Table 1. The networks’ accuracy in the test set is 89.67% in
the two-class classification, and the recall rate reaches 91.08%. The dataset can also be split
into 10 parts with 10-fold cross validation, indicating that the mean accuracy in 10 folds is
89.72%, which is close to the performance in the test set. The score of each nodule in the test
set was calculated to determine the existence possibility of the nodules. Figure 2c shows the
distribution of scores, indicating that most nodules have a score higher than 0.7. In this case,
the threshold of the score can be set higher than 0.5, and, at the same time, most of the regions
can be detected with a correct result. The outputs of the networks were obtained from two
detectors in the detection plane by comparing the amplitude of the light. In Figure 3a,b, the
real-time inference results are shown, and the classification results can be clearly obtained by
simply comparing the intensity in two detections directly.

Table 1. Nodule Detection Task Results in Validation and Test Sets.

Work Accuracy (%) Recall
(Sensitivity) (%) Precision (%) F1 Score MMC

Trained with 1:1 ratio
(validation set) 89.54 90.96 88.44 0.8968 0.7911

Trained with 1:1 ratio
(test set) 89.67 91.08 88.58 0.8981 0.7937

Trained with 1:4 ratio
(validation set) 92.67 69.66 91.68 0.7917 0.7586

Trained with 1:4 ratio
(test set) 92.86 70.07 79.68 0.7218 0.8585

MMC: Matthews Correlation Coefficient.

The trained networks were also applied to scan the CT image slices to search and
detect nodules. The existence probability of the nodules was determined by the score of
the clipped CT images, and a threshold was selected to assess the presence of nodules.
Although there are many false-positive points in the results, almost all the nodules could
be detected based on the networks’ recall as shown in Figure 3c. Meanwhile, increasing
the threshold can discard many false-positive points. However, the recall rate also reduced
to 77.60% with a threshold of 0.7. Additionally, many regions without nodules are not
included in the dataset, which also further influences the result. To balance the difference
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ratio of images with and without nodules, the ratio was set to 1:4 to train and test the
networks again. The training results and the confusion matrix are shown in Figure 4a,
indicating the classification ability of the networks. The last two rows in Table 1 provide the
detailed results of this trained network. The average accuracy in 10-fold cross validation is
92.49%, which is close to the accuracy in the test set (92.86%). The scan result is shown in
Figure 4b, and the false-positive points are much less than before. However, the recall rate
is also reduced to 70.07%, meaning that just 70.07% of the nodules are detected in the test
set. In this case, both the threshold setting and the ratio of positive and negative samples
influenced the result of the networks’ performance.
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Figure 3. (a,b) Amplitude of the light field in forward inference results for negative and positive
samples in the test set, respectively. The left image represents the input image, and the right image
shows the amplitude of the light field in the two detectors’ regions (as marked in red squares) in
the output plane. The number “0” and “1” present the possibilities of negative and positive class,
respectively. (c) Scan result of CT images. The white points on the images represent the regions that
possibly have nodules, while the black points on the images represent the regions that have almost
no nodules. The red square region shows the center of nodules in ground truth.

The networks were also used to classify nodules into benign and malignant categories.
Figure 5a shows the training results, where the loss decreases quickly, and the network
converges after a few epochs of training. Table 2 shows the performance of the trained
network in the validation and test sets. The accuracy in the test set is 76.77%, and the
recall rate reaches 65.97%, which is slightly different from that of the validation set. The
reason may be that some difficult classified singular malignant nodules, were split in the
validation set and there was not enough data to validate the performance of the trained
network. Furthermore, 10-fold cross validation was performed, showing that the max
accuracy reaches 79.43% with a mean accuracy of 74.59%. The confusion matrix and ROC
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curve in the test set are shown in Figure 5b, with an AUC of 0.8292, indicating the credible
classification result. The field distribution is shown in Figure 5c,d, when the images were
inferred on the networks, with the left detector representing benign nodules and the right
detector representing malignant nodules. The real-time output is the label of the region
with the highest intensity.
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Figure 4. (a) Training section and confusion matrix in the test set of the dataset, whose ratio of nodules
to non-nodules is 1:4. (b) Scan results of CT images. The white points on the images represent the
regions that possibly have nodules, while the black points on the images represent the regions that
have almost no nodules. The red square region shows the center of nodules in ground truth.
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Figure 5. (a) Training results of nodule classification. (b) Confusion matrix and receiver operating
characteristic (ROC) curve for the inference result in the test set. (c,d) Amplitude of the light field in
forward inference of benign and malignant nodules, respectively. The left image represents the input
image, and the right image shows the amplitude of two detectors’ regions in the output plane.
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Table 2. Nodule Classification Task Results in Validation and Test Sets.

Work Accuracy (%) Recall
(Sensitivity) (%) Precision (%) F1 Score MMC

Validation set 67.13 51.35 77.08 0.6164 0.3706
Test set 76.77 65.97 79.68 0.7218 0.5323

MMC: Matthews Correlation Coefficient.

4. Discussion

In this paper, we present the model of an all-optical deep diffractive neural network,
which was trained and employed to perform nodule detection and classification tasks using
the LIDC-IDRI dataset. The nodule detection task involved determining whether nodules
were present or not, which was achieved with an accuracy of 87.78% and a recall rate of
90.47%. The trained networks were further used to scan CT image slices to detect nodules.
Although the recall ratio in this study is similar to that of others, as shown in Table 3, it
should be noted that traditional deep learning methods considered the whole size of CT
images in the training section while our network only focuses on the partial section of
CT images and considers only the centers of nodules as the targets. This explains why
many false-positive points were detected in this study. Despite the performance of our
all-optical network being slightly poorer than that of other computer-based methods, the
classification of benign and malignant nodules achieved an accuracy of 76.77%, with an
AUC of 0.8292, as shown in Table 4. The performance of the all-optical network could be
improved by incorporating more non-linear computing sections. Overall, the simulation
results demonstrate the potential of all-optical neural networks in real-time processing of
medical images for aided diagnosis.

On the other hand, the network can be fabricated in experiments using optical devices,
and its inference process can achieve speeds similar to light flight [23]. The network can be
divided into three parts: the light source, optical diffractive layers, and detectors. The light
source is the input of the network, while the optical diffractive layers modulate the light
field to perform designed computation. The optical diffractive layers can be fabricated
using a 3D-printed technique [23], multi-step photolithography–etching method [43], or
metasurface technique [44]. The number of modulation units (trained parameters) does not
affect the inference speed of the network, as the speed of light is constant. The detectors
collect the final intensity of light, and once the input image is loaded, the distribution of
light intensity can be directly seen at the detectors immediately, which represents the result
of the network processing. Since the all-optical network has a forward inference speed
similar to light, it has been reported in many fields [34–37,49–51].

Table 3. Comparison with Other Studies in Nodule Detection Task.

Study Recall (Sensitivity) (%) Runtime

Ali et al. [38] 58.9 DPPU
Harsono et al. [39] 94.12 DPPU

Cao et al. [40] 92.5 DPPU
Ours trained with 1:1 ratio 91.08 Real time
Ours trained with 1:4 ratio 70.07 Real time

DPPU: Depend on the performance of processing unit.

In addition, the computation power of all-optical networks is currently limited due to
the lack of non-linear computing. However, integration with optical non-linear materials,
such as magneto-optical traps [52] and photo-refractive crystals [53], provides the possibility
to enhance the computation power and further improve the precision of nodule detection
and classification. Moreover, as manufacturing processes continue to develop, it may
be possible to fabricate an integrated device that can address both nodule detection and
classification, provided that non-linear materials can be incorporated into the device.
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Hopefully, this approach of using all-optical fast computation devices in medical image
real-time processing for aided diagnosis will soon become a reality.

Table 4. Comparison with Other Studies in Nodule Classification Task.

Study Accuracy (%) Recall (Sensitivity) (%) Specificity (%) AUC Runtime

Song et al. [41] 82.59 83.96 81.35 0.884 DPPU
Nibali et al. [47] 89.90 91.07 88.64 0.9459 DPPU
Zhao et al. [48] 82.2 NA NA 0.877 DPPU

Apostolopoulos et al. [42] 92.07 89.35 94.80 0.9208 DPPU
Ours 76.77 65.97 85.85 0.8292 Real time

DPPU: Depend on the performance of processing unit.
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