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Abstract: Cutaneous melanoma is a cancer with metastatic potential characterized by varying
amounts of pigment-producing melanocytes, and it is one of the most aggressive and fatal forms of
skin malignancy, with several hundreds of thousands of cases each year. Early detection and therapy
can lead to decreased morbidity and decreased cost of therapy. In the clinic, this often translates to
annual skin screenings, especially for high-risk patients, and generous use of the ABCDE (asymmetry,
border irregularity, color, diameter, evolving) criteria. We have used a new technique termed vibra-
tional optical coherence tomography (VOCT) to non-invasively differentiate between pigmented and
non-pigmented melanomas in a pilot study. The VOCT results reported in this study indicate that
both pigmented and non-pigmented melanomas have similar characteristics, including new 80, 130,
and 250 Hz peaks. Pigmented melanomas have larger 80 Hz peaks and smaller 250 Hz peaks than
non-pigmented cancers. The 80 and 250 Hz peaks can be used to quantitative characterize differences
between different melanomas. In addition, infrared light penetration depths indicated that melanin in
pigmented melanomas has higher packing densities than in non-pigmented lesions. Using machine
learning techniques, the sensitivity and specificity of differentiating skin cancers from normal skin
are shown to range from about 78% to over 90% in this pilot study. It is proposed that using AI on
both lesion histopathology and mechanovibrational peak heights may provide even higher specificity
and sensitivity for differentiating the metastatic potential of different melanocytic lesions.

Keywords: skin cancer; basal cell carcinoma; squamous cell carcinoma; melanoma; fibrosis; blood
vessels; VOCT; OCT; pigmented melanomas; non-pigmented melanomas; melanin stacking; light scattering

1. Introduction

Cutaneous melanoma is a cancer with metastatic potential characterized by varying
amounts of pigment-producing melanocytes displaying new friable vessels and stiff fibrotic
extracellular matrix [1]. It is one of the most aggressive and fatal forms of skin malignancy,
with 351,880 new cases in 2015 [2]. There is great importance in diagnosing melanoma in its
early stage since prognosis is directly proportional to the severity of the neoplasm [3]. Early
detection and therapy can lead to decreased morbidity and decreased cost of therapy [4].
In the clinic, this often translates into annual skin screenings, especially for high-risk
patients, and the use of the ABCDE evaluation of lesions (asymmetry, border irregularity,
color, diameter, evolving) criteria [4]. There are other methods clinicians use to classify
melanomas, much of which evolves from their clinical experience and expertise in the
discipline [3].

Several classifications of melanomas have been proposed for a tumor: (1) 0.8 mm or
smaller; or (2) greater than 0.8 mm; (3) with and without ulceration; and (4) if it has spread
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to one or more lymph nodes close to the initial disease site [5]. However, the use of these
classifications requires information from an excisional biopsy as opposed to being based on
non-invasive diagnoses using visual inspection and dermoscopy.

As a result, much effort has been made and continues to be expended in developing
and refining effective diagnostic algorithms to help identify melanomas and differentiate
them from nevi using asymmetry, irregularity, color variation, and size and shape [6].
However, it would save clinical time and improve patient satisfaction to have a rapid
method to screen skin lesions using a non-invasive technique.

Melanoma is the deadliest form of skin cancer. In the early stages, melanoma can be
successfully treated with surgery; however, upon metastasis, the rates of survival drop dras-
tically. Thus, early detection and accurate diagnosis are necessary for lowering mortality
and ensuring the best prognosis for patients. The diagnosis of melanoma anecdotally relies
on the generous use of dermoscopy and biopsy for suspicious lesions by dermatologists,
surgeons, and other clinicians. Although these traditional methods are cornerstones in
clinical practice, there are emerging techniques that can improve the diagnostic sensitivities
and specificities of early melanoma, optimizing lesion selection for biopsy and histopatho-
logical examination. These can give rise to early triaging to avoid unnecessary surgery and
biopsy while simultaneously improving clinical outcomes. In addition to these advances,
early recognition, detection, and treatment of melanoma remain essential. Melanoma’s
unique presentation and identification through traditional dermoscopy, computer-aided
image analysis, and, most recently, machine learning and artificial intelligence (AI) methods
require a detailed analysis. Trends in the current literature dictate that there is a need for
more quantitative staging, which may be achievable through the integration of AI and
machine learning diagnostics. As current approaches are improved upon and as novel
technologies are developed, the refined diagnostic ability will strive toward the ultimate
goal of reducing mortality by melanoma.

Melanoma is an important concern in public health, both in the United States and
worldwide. Incidence rates in the United States have doubled between 1982 and 2011,
and the annual cost of treating newly diagnosed melanomas is forecasted to triple by
2030 [7]. Sun-protective behaviors, including sunscreen application and wearing sun-
protective clothing, can reduce skin cell damage due to exposure to harmful ultraviolet
(UV) radiation.

Melanoma also has many faces, which often obscures the initial identification of atypi-
cal lesions for further investigation [7]. There is great importance in diagnosing melanoma
in its early evolution since the prognosis is directly proportional to the severity of the neo-
plasm [6,7]. Early detection and treatment can lead to decreased morbidity and decreased
cost of therapy [8]. The routine method to evaluate an atypical lesion is biopsy, followed by
histopathological examination [8]. The challenge lies in identifying suspicious lesions at
the earliest time possible in their evolution. Recent research reflects the need to focus on
quantifiable markers and non-invasive methods for early melanoma diagnosis in hopes
of avoiding unnecessary biopsy interventions, thus preventing associated complications
such as infection and scarring [9]. These analyses also support the application of preci-
sion medicine to melanoma, as the literature suggests the future of the early detection
of melanoma lies in a multi-pronged approach, which includes targeted surveillance of
high-risk patients using imaging techniques with the integration of artificial intelligence
systems [9–11]. This research is of utmost importance and relevance as melanoma and other
skin cancers remain of high incidence and mortality in the United States and worldwide.

1.1. Central Features in Early Diagnosis

Within the past 30 years, the diagnosis and recognition of early melanoma have
evolved. In the 1990s, dermoscopy was the main tool for examining cutaneous subsurface
features [7,8]. In the 2000s and up until now, newer techniques using computer-aided
analyses and digital diagnostics are emerging technologies to supplement the clinician’s
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eye [10,11]. There are also significant differences in diagnoses based on whether the lesion
is pigmented or non-pigmented [11].

Non-pigmented or “amelanotic” melanomas can present in a range of colors, from pink
or red to purple or colorless [3]. These lesions are often diagnosed using dermoscopy, with
a close examination of vascular patterns; however, it is difficult to visualize vessels with
sufficient precision solely using dermoscopy [7]. Thus, there is a need for an alternative,
non-invasive technique that would allow for the examination of deeper subsurface vessel
architecture.

In 1985, an acronym termed “ABCD” (asymmetry, border irregularity, color variation,
diameter >6 mm) was devised to educate physicians and the public to recognize the
early clinical presentation of pigmented melanoma [3,12]. However, based on clinical
experience, these features were found to be most strongly associated with lesions greater
than 6 mm [3]. Thus, these guidelines are useful in diagnosing a subset of melanomas:
early, thin neoplasms that are otherwise mistaken for benign pigmented lesions [8].

Atypical melanocytic lesions are benign, pigmented lesions that contain abnormal cells
but have the potential to progress into a melanoma [11]. These lesions are often difficult
to differentiate from melanoma; however, melanoma can have distinct features, including
ulceration, depth for staging, and texture [3]. This is a significant limitation as color
characteristics and staging are subjective and qualitative in nature. In the clinic, these lesions
are typically examined using the ABCD criteria, then excised and sent for histopathological
examination to determine the definite diagnosis [3,12]. Thus, quantifiable and non-invasive
tools are necessary to avoid unnecessary excision and associated complications such as
infection and cosmetic scarring [9].

Lesion evolution is also a critical feature in cutaneous melanoma and has led to
the advancement of the initial ABCD criteria to include “E” for “evolving” [3,12]. This
enhancement is of special importance in diagnosing nodular lesions, which often present
at more advanced stages as smaller lesions [3,12]. The ABCDE tool is a straightforward,
memorable method that has educated the public, non-dermatologists, and dermatologists
alike on the cardinal features of melanoma.

1.2. Dermoscopy

Traditional dermoscopy uses a lighted magnifier as a hand-held device, allowing
for quick visual analysis of subsurface features of skin lesions [13]. These lesions and
structures are first identified by the clinician’s unaided eye and often include networks,
streaks, or veils that are characteristic of melanoma [13]. Dermoscopes usually result in
10-fold magnification of the skin, which greatly improves the visualization of epidermal
and papillary dermal features [3]. A systematic review revealed that there was an increase
in sensitivity and specificity from 71% to 90% when using dermoscopy as opposed to the
unaided eye [3]. However, the efficacy of this tool requires experience, namely, in the first
step of identifying lesions to be further investigated. After dermoscopy, a decision tree
often follows, in which the clinician evaluates the lesion for potential biopsy [3]. If deemed
potentially melanocytic, there is a scoring system that allows for the classification of the
lesion as benign, suspicious, or malignant [7,9]. There are a few hallmarks that distinguish
a malignant lesion from a benign pigmented lesion, which include atypical pigmented
networks, streaks, globules, asymmetry, and blue-white features [8,9].

Dermoscopy is often used in conjunction with other clinical measures, including the
ABCDE criteria and pattern analysis, along with the examination of color, architecture,
homogeneity, and symmetry [3,13]. Still, the efficacy of these tools requires clinician
expertise, especially in initial identification [3]. There are also notable handicaps associated
with dermoscopy, one being its potential inability to detect very early and “featureless”
melanomas [3,14].
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1.3. Computer-Augmented Image Analysis

Computer-assisted melanoma diagnosis was first introduced in the 1990s [15]. Some
of the most widely used computer-augmented tools include assisted dermoscopes, which
use computer software to overlay with a previous image, which is especially helpful in a
follow-up setting [15]. There are also methods that use total-body photography, creating
a digital map that picks up on certain pigmented lesions to be further examined [16].
Other tools utilize empirical databases for comparison, along with fiber-optic imaging and
ultrasound technology [2,3].

The basis of these methods is often image capture, which can be used in follow-up
skin examinations as baseline comparisons in skin screenings or when suspicious changes
are identified [17–19]. However, there is no clear method offering complete accuracy in
melanoma diagnosis, and clinician expertise is still essential.

1.4. Digital Dermoscopy, AI, and Machine Learning

Computerized methods have recently been implemented in clinical practice as assistive
tools in making melanoma diagnoses [17]. These tools allow for the better quantification of
differences between melanoma and other atypical cutaneous lesions rather than relying
on qualitative measures that vary based on the clinician’s determination [18]. Digital
dermoscopy has improved the sensitivities and specificities of selecting lesions for biopsy
since the computerized system can obtain additional data to what is seen by the naked eye
and under dermoscopy [3,17].

Multispectral digital dermoscopy and image analysis is a subset of digital dermoscopy
based on the increased depth penetration of light related to its wavelength [3,19]. Images
are captured at varying wavelength bands, and the data obtained from different depths
are used for computer analysis and comparison against a network of historical images [20].
The computer then classifies the lesion and can indicate a biopsy recommendation [20,21].
This tool allows for rapid analysis of deeper cutaneous features, some of which explore up
to 2 mm below the skin’s surface [22].

There are also laser-based tools that are non-invasive ways to examine and image
lesions in vivo and in real-time [21]. Some of these methods are at a high enough reso-
lution to allow the visualization of epidermal and papillary dermal architecture without
performing a biopsy [21]. This is a major focus of current research, and novel techniques
are constantly being developed.

There has also been recent work on the integration of digital methods with AI net-
works [2,23]. For instance, the multispectral dermoscopy method has recently been mod-
ified to integrate artificial neural systems to improve its diagnostic ability [3,19]. These
are more objective tools that can better control inter-operator variability, thus serving as
excellent screening techniques [20,21]. The use of AI in medicine is continuously growing
and, if embraced by clinicians, can strongly augment clinical decision-making and also
increase access to care [23,24]. The integration of AI and machine learning in melanoma
detection has the strong potential to foster a more ordered, quantitative, and non-invasive
approach to recognizing and diagnosing atypical lesions [24,25].

1.5. Differentiation between Pigmented Lesions

The differentiation of cutaneous lesions is important, especially when discerning pig-
mented basal cell carcinoma (BCC) and melanoma. BCC and melanoma arise from different
locations within the epidermis and can have different visual characteristics, which can
sometimes be discerned by the unaided eye [26]. BCC originates in the basal cell layer
of the epidermis; however, melanoma arises from malignancy in the melanocytes within
the deepest part of the epidermis and typically presents as a pigmented mole [27]. The
distinct locations of these malignancies often correlate with their unique presentations.
However, pigmented BCC and melanoma can be more difficult to differentiate, and often,
dermoscopy is used for more detailed examination [6]. Under dermoscopy, pigmented
BCC is characterized by arborizing vessels, blue/grey ovoid nests, and leaf-like regions of
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the lesion [26]. However, melanoma under dermoscopy presents blue/white veils, atypical
vascular patterns, and irregular globules [27,28], and thus, excisional biopsy is performed
to obtain a definite diagnosis [7,8]. Current research focuses on improving the ease and ac-
curacy of diagnostic tools for identifying melanomas, some of which rely on computerized
methods, artificial intelligence (AI), and machine learning. Still, there is a need for further
research to develop additional diagnostic tools to enhance the differentiation and diagnosis
of pigmented BCC and melanoma [26].

1.6. New Diagnostic Technologies Including Vibrational Optical Coherence Tomography (VOCT)

Novel technologies are being developed, including computer-augmented image analy-
sis, AI, and machine learning, to effectively screen for early melanoma [29]. The integration
of these methods can improve the sensitivities and specificities of current diagnostic tools,
thus optimizing lesion selection for biopsy and histopathological examination [29]. These
methods can give rise to early triaging to avoid unnecessary surgery and biopsy while
simultaneously improving clinical outcomes. By using AI and machine learning, diagnostic
tools can capture images and data from the lesion, which can be used for computer analysis
and comparison against a network of historical images [23]. Non-invasive and quantitative
methods are currently under development; they utilize lasers and sound waves to deter-
mine the depth and subsurface architecture of the lesion, which can differentiate melanoma
from nevi [29]. These tools have the potential to greatly improve visual diagnosis and
dermoscopy as they allow for the rapid and standardized analysis of deeper cutaneous
features, which can then inform the targeted need for biopsy and surgery [8].

A new method termed vibrational optical coherence tomography (VOCT) has been
developed to non-invasively characterize the type and margins of skin cancers [1,8,30–32].
VOCT provides a quantitative vibrational spectrum that can be used to identify cellu-
lar components, blood vessels, dermal collagen, and fibrosis. New peaks associated
with cancerous cells, new friable blood vessels, and cancer-associated fibrosis have been
identified [1,8,30–32]. Fingerprints of actinic keratosis (AK), basal cell carcinoma (BCC),
squamous cell carcinoma (SCC), and melanoma were shown to be significantly differ-
ent from each other at a 0.95 confidence level [1]. The purpose of this paper is to test
the hypothesis that “pigmented” and “non-pigmented” melanomas can be quantitatively
differentiated from each other using VOCT.

2. Methods
2.1. Subjects

Normal skin (n = 80) was studied in vivo and in excised skin cancer biopsies (n = 100)
in vitro using VOCT after informed consent was obtained, as reported previously [1,8,30–32].
The control subjects studied ranged in age from 21 to 71 years old. Tissue biopsies were
studied from patients undergoing excisional therapies with a melanoma diagnosis, as
described previously [1,8,30–32].

Pigmented (n = 18) and non-pigmented (n = 55) melanomas were studied after ex-
cisional biopsies were collected. Routine dermatological and pathologic examinations
resulted in a diagnosis of melanoma. Mechanovibrational data on normal skin, melanomas,
basal cell carcinomas (BCCs), and squamous cell carcinomas (SCCs) were taken from a
recently published paper [1].

2.2. Measurement of Resonant Frequency

Measurements on normal skin in vivo and on melanoma excisional biopsies in vitro
were made using an OQ Labscope 2.0 instrument modified with a 2-inch-diameter speaker
placed about 2.5 inches from the tissue to be studied, as described previously [1,8,30–32].
Raw image data were collected using the Labscope instrument [1,8,11–32]. The measured
resonant frequencies were converted into elastic modulus values using a calibration equa-
tion (Equation (1)) [1,8,30–32]. A normalized weighted displacement value was generated,
as discussed previously [1,8,30–32]. Sample component displacements are inversely related
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to the modulus (E) in MPa of the tissue elements, where fn is the resonant frequency and d
is the sample thickness in m.

E × d = 0.0651 × (fn)2 + 233.16 (1)

Histopathology was conducted by a dermatopathologist after routine processing.
Histopathology was compared to the distribution of resonant frequency peaks, as described
previously [1]

2.3. Machine Learning Analysis

Different machine learning algorithms were implemented and compared. The accuracy
of the machine learning algorithms was optimized using a logistic regression model, as
described previously [1]. Three distinct datasets were inputted into the algorithm. The
datasets used were for different melanomas, where each melanoma was compared to
normal skin (controls). Using these measurements, the sensitivity and specificity were
calculated based on Teventhan [33] and compared to machine learning results for basal cell
carcinoma and squamous cell carcinoma.

2.4. Statistics

The resonant frequencies of normalized peak heights of normal skin and pigmented
and non-pigmented melanoma were compared using an unpaired one-tailed Student’s
t-test. All p-values were considered significant if they were less than 0.05.

3. Results

Figure 1 shows a camera image (A) of normal skin along with a color-coded OCT (B)
image. Note that the color-coded OCT image shows the stratum corneum in bright yellow
and the layers between the basal epithelium and stratum corneum in yellow and pink. The
papillary collagen layer is shown in blue. A plot of pixel intensity versus sample depth
is shown in C, determined from a scan of the OCT image. Note that the pixel intensity
decreases almost linearly throughout the normal skin once the light reaches the depth of
the stratum corneum.

In contrast, Figure 2 shows camera (A) and color-coded OCT images (B) of a “non-
pigmented” melanoma. Note in A the presence of a hair follicle. A plot shows pixel
intensity versus depth for a non-pigmented melanoma (C). Note that the pixel intensity
versus depth is much lower than that observed for normal skin (Figure 1C) and drops very
rapidly after the light penetrates the surface of the lesion. The low pixel intensity of the
“non-pigmented” melanoma indicates that the melanin in the lesion scatters additional
light compared to the melanin in normal skin. At a wavelength of 840 nm, melanin does
not absorb infrared light [26], so the difference must be a result of light scattering and not
light absorption.

In comparison, a “pigmented” melanoma is shown in Figure 3, while the camera
image (Figure 3A) clearly shows a large dark-pigmented region. The color-coded OCT
image (B) of the pigmented melanoma does not look significantly different from that of
the “non-pigmented” melanoma since both have lesion areas denoted by black spots. A
plot of pixel intensity versus depth for the pigmented melanoma is shown in Figure 3C.
Note that the pixel intensity of the surface of the pigmented melanoma is lower than that of
the normal skin and the non-pigmented melanoma, suggesting that the melanin particles
have different stacking densities in the pigmented melanoma than the non-pigmented
melanoma. Previous studies have modeled how the size and shape of melanoma particles
influence their optical properties [34–36].

Figure 4 is normalized weighted displacement data obtained from VOCT measure-
ments on normal skin, non-pigmented melanomas, and pigmented melanomas. The
statistical significance of the weighted displacement at different frequencies is listed in
Table 1. Note that the differences between normal skin and melanomas are a result of
differences in the 50, 80, 130, and 250 Hz peaks, as reported previously [1,14].
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Figure 3. Camera (A) and color-coded OCT (B) images of a pigmented melanoma and a plot of pixel 
intensity versus depth (C) determined from a scan of the OCT image. Note the decreased pixel in-
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Figure 3. Camera (A) and color-coded OCT (B) images of a pigmented melanoma and a plot of
pixel intensity versus depth (C) determined from a scan of the OCT image. Note the decreased
pixel intensity versus depth compared to normal skin (Figure 1C) and non-pigmented melanoma
(Figure 2C).
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Figure 4. Normalized weighted displacement data obtained from VOCT measurements on normal
skin, non-pigmented melanoma, and melanoma. The statistical significance of the weighted displace-
ment at different frequencies is listed in Table 1. Asterisks on bars note statistical differences between
peak heights.

Table 1. Statistical significance differences between resonant frequency peaks for normal skin, non-
pigmented melanoma, and pigmented melanoma. The resonant frequency of normal cells (50 Hz),
new cancer-associated cells (80 Hz), dermal collagen (100 Hz), new blood vessels (130 Hz), and
new fibrotic tissue (250 Hz) are derived from the results of previous studies [1]. p-values in red are
statistically different for pigmented and non-pigmented melanomas based on an unpaired one-tailed
Student’s t-test.

Normal
Skin

Pigmented
Melanoma

Non-Pigmented
Melanoma

50 Hz

Normal Skin - 0.051 0.00004

Pigmented Melanoma - 0.31

80 Hz

Normal Skin - 3 × 10−10 2.9 × 10−7

Pigmented Melanoma - 1.4 × 10−5

100 Hz

Normal Skin - 0.17 0.025

Pigmented Melanoma - 0.23

130 Hz

Normal Skin - 0.003 6.2 × 10−9

Pigmented Melanoma - 0.1

250 Hz

Normal Skin - 0.46 0.00002

Pigmented Melanoma - 0.005
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Table 1 lists the statistical comparisons between the resonant frequency peak heights
for normal skin, non-pigmented melanoma, and pigmented melanoma. The data shown
indicates that non-pigmented and pigmented melanomas can be differentiated from normal
skin based on the 80 and 250 Hz peak heights. Table 2 lists a statistical comparison between
the pixel intensity for non-pigmented and pigmented melanomas. The pixel depth at which
pigmented lesions scatter the infrared light, preventing it from returning to the detector,
is greater than that observed for non-pigmented lesions, suggesting that the melanin
packing density is greater in pigmented versus non-pigmented melanomas. Table 3 shows
differences in sensitivity and specificity calculated from mechanovibrational data and
machine learning techniques. VOCT data can be used to differentiate between different
types of skin cancers non-invasively, with between 78% and 92% accuracy.

Table 2. Thickness comparison between non-pigmented and pigmented melanomas measured using
optical coherence tomography images and pixel intensity versus depth plots. p-values of statistical
differences were calculated using an unpaired one-tailed Student’s t-test. Data shown indicates
that pigmented melanomas scatter more light than non-pigmented melanomas, indicating that the
melanin stacking in pigmented melanomas is different from that of pigmented melanomas. This is
probably due to the tighter packing of the melanin pigment in pigmented melanomas.

Average SD

Pigmented Melanoma 256 µm 29.4 µm

Non-Pigmented Melanoma 277 µm 30.1 µm

p-value: 0.007

Table 3. Results of machine learning to define the specificity and sensitivity of skin cancer diagnosis
compared to normal skin.

BCC SCC Melanoma

Sensitivity 90.9% 91.6% 83.33%

Specificity 87.50% 87.50% 77.77%

4. Discussion

The incidence of melanoma is increasing annually in the US and the world. In Europe,
the incidence rate is 10–25 new melanoma cases per 100,000 inhabitants; in the USA, it is
20–30 per 100,000, and in Australia, it is 50–60 per 100,000 [37]. In recent years, there has
been a dramatic increase in melanomas.

With 178,560 cases of melanoma diagnosed in 2018 in the United States, resulting in
9320 deaths, this disease demands more attention [37]. Some consensus reviews suggest
that thin melanomas, up to 0.8 mm in tumor thickness, do not require further imaging
diagnostics [37]. However, the incidence of melanoma is increasing worldwide, especially
in light-skinned people that have excessive sun exposure, suggesting that more attention
to development of new screening techniques may be useful. In this paper, we report
that non-pigmented and pigmented melanomas are similar in their mechanovibrational
spectrum peaks, while they appear to differ in their light-scattering properties. This may
reflect differences in the stacking of melanin particles in the lesion.

Most histological diagnoses involving melanocytic lesions can be made with a high
level of certainty; however, there exists a subset of melanocytic neoplasms that can be
difficult to classify as benign or malignant based on conventional microscopic analysis.
These lesions are often referred to as atypical melanocytic proliferations [38]. Today, many
primary melanomas have a diameter of less than 5 mm, and early diagnosis of these cancers
is important. It may be important to further characterize the light-scattering properties
of different melanomas to discern if “non-pigmented” melanomas have smaller pigment
aggregates. In this study, we report that the light-scattering properties of pigmented
and non-pigmented melanomas appear to be different, suggesting that evaluation of
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melanin particle stacking may be an important diagnostic clue to the early diagnosis of
non-pigmented melanomas.

Although uncommon, malignant melanoma (MM) accounts for less than 2% of all
melanomas; early diagnosis of MMs is of vital importance for appropriate management and
a successful outcome. The inability to recognize unusual MM variants is a real challenge
for clinicians and pathologists and has a critical impact on patients [38]. The size, shape,
and melanin aggregate content may provide clues to differentiate benign lesions from
potential metastatic cancers. However, other non-invasive techniques besides dermoscopy
and visual inspection may be needed to diagnose the melanin content of a skin lesion
effectively and non-invasively.

When used by specialists, dermoscopy is better at diagnosing melanoma compared
to the inspection of suspicious skin lesions by eye. Dermoscopy use is prevalent among
dermatologists; with appropriate training, dermoscopy may also be used by primary care
physicians who perform skin examinations for the purpose of detecting skin cancer [39].
Dermoscopy is more accurate when interpreted with the patient present rather than using
dermoscopy images [40]. It allows an early diagnosis of melanoma, increasing the percent-
age of melanomas that can be detected at a diameter less than 6 mm [41]. However, it may
be necessary to measure lesion light-scattering properties non-invasively to make more
definitive conclusions about the presence of a non-pigmented melanoma before it grows to
a diameter and depth of more than 0.5 mm.

In reviewing the literature, different histological forms of melanomas have been
identified based on color, shape, type of blood vessel, and other descriptive methods;
however, these measures are difficult to use to quantitatively characterize skin cancers.
Quantitative characterization of skin cancers would lead to more precise staging and more
precise analysis using machine learning and artificial intelligence (AI). In addition, using
AI conducted on both lesion histopathology and mechanovibrational peak heights may
provide even higher specificity and sensitivity for skin cancer diagnosis and staging.

While both types of melanomas have similar characteristics, including new 80, 130,
and 250 Hz peaks, pigmented melanomas have larger 80 Hz and smaller 250 Hz peaks,
suggesting differences in melanin pigment particle type and size. The 80 and 250 Hz
peaks are quantitative characteristic differences between pigmented and non-pigmented
melanomas; however, further research characterizing pigment particle types and sizes
may provide more information on establishing differences between pigmented BCC and
melanomas. While the sensitivity and specificity of differentiating skin cancers from normal
skin ranged from about 78% to 92% in our studies, additional data on each of these lesions is
needed to be able to better differentiate between pigmented BCC and different melanocytic
lesions.

5. Conclusions

While both pigmented and non-pigmented melanomas have similar characteristics,
including new 80, 130, and 250 Hz VOCT peaks, pigmented melanomas have larger
80 Hz and smaller 250 Hz peaks. The 80 and 250 Hz peaks can be used as quantitative
characteristics to identify differences between different melanomas. While the sensitivity
and specificity of differentiating skin cancers from normal skin range from about 78% to
92%, additional data on each of these lesions is needed to improve sensitivity and specificity
to be able to differentiate pigmented BCC from other melanocytic lesions non-invasively.
In addition, the use of AI, conducted on lesion histopathology, mechanovibrational data,
and pigmented lesion light-scattering properties, may provide better identification and
typing of melanocytic skin lesions.
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