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Abstract: Plants are constantly faced with biotic or abiotic stress, which affects their growth and
development. Yield reduction due to biotic and abiotic stresses on economically important crop
species causes substantial economic loss at a global level. Breeding for stress tolerance to create elite
and superior genotypes has been a common practice for many decades, and plant tissue culture can
be an efficient and cost-effective method. Tissue culture is a valuable tool to develop stress tolerance,
screen stress tolerance, and elucidate physiological and biochemical changes during stress. In vitro
selection carried out under controlled environment conditions in confined spaces is highly effective
and cheaper to maintain. This review emphasizes the relevance of plant tissue culture for screening
major abiotic stresses, drought, and salinity, and the development of disease resistance. Further
emphasis is given to screening metal hyperaccumulators and transgenic technological applications
for stress tolerance.
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1. Introduction

Plant tissue culture satisfies large-scale plant propagation needs and is an essential tool
facilitating other biotechnology applications in plant improvement space [1–3]. In addition,
its importance as a tool and direct application in fundamental studies relating to plant
biology, biochemistry, and molecular biology is well recognized. Today, the world popula-
tion has reached an alarming 8 billion people. Providing food and products, of which the
majority is plant-based, has become one of the biggest challenges in front of the human
race in this era, while the unprecedented climate change challenges are bigger than ever
before [4–6]. Various climatic changes as a result of global warming greatly influence agri-
culture systems around the globe. This includes severe environmental pressures, drought,
extreme heat or cold climate, floods, salinity, and exposure to toxic compounds [4]. Human
activities in the current production-based economy also contribute toward changes in soil
and environmental conditions due to the accumulation of toxins and chemical elutes re-
leased to the environment in production processors [7]. The flip side of this is the reduction
in agricultural production, flagging food security due to the decrease in plant growth and
development due to various environmental stress factors and the decline and scarcity of
suitable agricultural land.

The focus on plant stress-related research has gained substantial momentum over the
last four decades, especially on the impact of stress factors such as water deficiency, extreme
temperatures, salinity, exposure to toxic compounds, inadequate or extreme radiation,
plant infection with pathogens, and pest outbreaks [8,9]. Screening plants for various biotic
and abiotic stress conditions is vital in breeding and selecting elite varieties. Most plant
screening trials for stresses are conducted under field conditions, yet very challenging to
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manage, both physically and economically, and subject to various risks due to dynamic
external environments.

Plant tissue culture provides an effective, efficient, and comparatively economical
platform to screen plants for biotic and abiotic stresses. Plant cell and tissue culture,
also known as in vitro culture, is based on the cell theory of Schwann and Schleiden (1838)
and the ideas of Gottlieb Haberlandt at the beginning of the 20th century [10]. In vitro plant
tissue culture is based on cells’ “totipotency” or “total potential”. Theoretically, every cell
can become a fully grown plant when provided with suitable conditions. Totipotency has
been better described as the ability of any fully functional components of plants to undergo
dedifferentiation and redifferentiate to form an organized tissue, structure, and eventually
a whole organism [11,12]. Based on this phenomenon, whole plants develop when plant
cells or tissues are provided with specific nutrients and optimal growth conditions under
an in vitro sterile environment. In vitro culture of plants under defined culture media
composition with the ability to impose variables with no external environmental influence
while maintaining control environment parameters offers the opportunity for more efficient
screening for desirable characteristics. This is also applied to test tolerance to selective
agents such as toxins and antibiotics. Utilization of in vitro selection can considerably
shorten the time and cost of the selection process under selection pressure with minimal
environmental interaction. Conducting in vitro screening for stress will not replace but
complement field selection resulting in better insight and outcome. Moreover, it can be
used as an early evaluation platform to understand and provide direction with justification
for the further need for field evaluation. As with any technique or procedure, in vitro
screening for stress tolerance has its challenges. The biggest challenge is the requirement
for reliable and established tissue culture protocols for specific plant species. Another issue
is the lack of correlation between the mechanisms of tolerance operating at the cellular
or tissue level in cultured cells to those of whole plants. Epigenetic adaptation can also
interfere with the results as non-tolerant cells may have an epigenetic adaptation during
in vitro culture process [13–15]. This type of epigenetic adaptation can be overcome using
a short-term or one-step in vitro selection process.

Studies on plant biodiversity, especially crop species, have increased tremendously
over the years in search of better and more resilient crops despite breeding attempts.
The research focused on plant improvement and selection has taken a massive hype
for searching elite species for new and better chemicals, disease resistance, productivity,
and consumer preference. This review elaborates on how in vitro culture is utilized to
screen plant species for different biotic and abiotic stress evaluation studies with examples
of a broad variety of crop species. The focus is on in vitro screening for the main stresses:
drought, salinity, and disease resistance. This review also highlights other uses of in vitro
screening for the identification of metal accumulators and stress-tolerant transgenic plant
development with further discussion on the pros and cons of specific studies and the
effectiveness of the in vitro culture tools utilized as fast and cost-effective alternative in
plant screening.

2. In Vitro Screening of Drought Tolerance

Drought affects plant growth and development, reflecting plants’ productivity [16,17].
Drought stress impacts crop performance at several phases in the plant’s life cycle, from
emergence to maturity, including seed germination, vegetative growth, and reproduc-
tive development, ultimately affecting the quality and quantity of the harvest. Drought,
especially in arid and semi-arid regions, causes significant agricultural losses [18]. Under
drought stress, several molecular, biochemical, physiological, morphological, and ecological
characteristics and processes of plants are affected due to the triggering of stress-responsive
factors [19]. As a result, the productivity and quality of plants diminish in water-deficient
situations. Growth stages, age, plant species, drought intensity, and duration of drought
period are the primary determinants for the responses elicited by the plant in response to
drought stimuli.
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Plants process various mechanisms to adopt, tolerate, or resist drought conditions. How-
ever, the ability and the level of tolerance/resistance differ among and within plant species,
especially when genetic variability exists due to outcrossing or natural mutation [16,19–21].
Drought responses are governed by activating signal transduction pathways linked with
molecular networks to elicit survival or adaptation mechanisms [20]. In general, drought
causes a reduction in soil moisture and results in reduced water potential in root cells [17].
For many decades, breeding and selection for drought tolerance or resistance have been
major research areas for many crop species i.e., rice, maize, and sorghum [22–27]. However,
screening for drought in field conditions requires a substantial amount of resources (land,
labor, and energy), which is costly, and is associated with challenges in relying on nature for
stable environmental conditions to efficiently and effectively replicate data in expressing
exact genotype [21].

In vitro applications for drought screening can be a smart and easy method compared
to field studies. The strategy to apply drought conditions in vitro is to impose similar
conditions created at cellular levels when plants are subjected to drought in the field envi-
ronment. Under abiotic stress, plants accumulate solutes or osmolytes within the cell due
to less water availability. Therefore, high molecular weight solutes such as sucrose, sorbitol,
mannitol, and poly-ethylene glycol (PEG) are suitable candidates to impose physiological
drought under in vitro conditions [28–32]. In addition, these osmolytes stabilize proteins
and cell membranes’ structure during dehydration stress conditions [33,34].

Contrary to drought stress, which induces osmotic stress in plants, accumulating
these chemicals reduces osmotic potential, preserving cellular turgor and enhancing water
absorption [20,35]. Moreover, they play a crucial function in protecting plant cells from
oxidative stress by removing reactive oxygen species [20,32,35]. It has been shown that
sucrose accumulates in plant tissues under drought stress [36–38]. PEG, sucrose, mannitol,
and sorbitol have been the main chemicals for imposing osmotic pressure in vitro. PEG has
reportedly been used to impose physiological drought in plants [28,29,39,40]. This high
molecular weight chemical is an inert, non-penetrating osmoticum that decreases the water
potential of nutritional solutions without being taken up by the plant or phytotoxic. Since
PEG does not reach the apoplast, it drives water from the cell wall and interior. Therefore,
PEG solutions resemble dry soil more closely than low molecular weight chemicals, which
permeate the cell wall with solute. PEG is not used in the cellular metabolism of plants,
but it does induce water stress by lowering the water potential of nutrient solutions, hence
inhibiting plant development in vitro [28,39,41]. It has no harmful or toxic effects on the
plant; nonetheless, it restricts plant development by lowering the water potential of the
culture medium, such as water deficit soil, preventing cultured explants from absorbing
water [42]. Mannitol and sorbitol have been usually used as osmotic pressure regulators in
plant in vitro cultures while utilized as a carbon source [43]. Several studies have applied
PEG, mannitol, and sorbitol for in vitro drought screening studies (Table 1).

Table 1. Application of different chemicals of in vitro screening for drought tolerance.

Plant Species Marial Screened under In Vitro
Conditions In Vitro Screening Method Reference

Soybean
(Glycine max)

Cultivars: B 3731, MLG 2999, MSC
8606,Tidar

Immature cotyledons were used
as explant/Somatic

embryogenesis

Subjected to 15% PEG 6000.
The application of PEG was

terminated after the plants were
28 days old.

[39]

Soybean
(Glycine max)

Cultivars: JS335, JS9305

Calli/cell clumps/embryoids rose
from the immature and mature
embryonic axis and cotyledons

Subjected to discontinuous
exposure to a lethal dose of 20%

PEG6000
[40]
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Table 1. Cont.

Plant Species Marial Screened under In Vitro
Conditions In Vitro Screening Method Reference

Durum wheat
(Triticum durum)

Cultivars: Waha, Oued Zenati, Djenah
Khetifa

Immature embryo-derived calli Subjected to 10% and 20% PEG
6000 [44]

Durum wheat
(Triticum durum Desf.)

Cultivars: Karim, Sebou, Ourigh, Anouar
Immature embryo-derived calli Subjected to 10% and 20% PEG

10000 [45]

Sorghum
(Sorghum bicolor L. Moench) Embryogenic callus Subjected to a range of 0–15%

PEG 8000 [46]

Wheat
(Triticum aestivum)
Cultivar: GA-2002

Immature embryo-derived calli Subjected to a range of PEG 6000 [47]

Wheat
(Triticum aestivum)

Cultivars: Sakha 8, Sakha 69, Giza 157,
Sids 1, West bred, Falke, Hahn/Turaco,

and Kauz/Gen

Immature embryo-derived calli Subjected to a range of Mannitol [48]

Tagetes
(Tagetes minuta)

Calli-derived from cotyledon
explants Subjected to a range of Mannitol [49]

Sweet leaf
(Stevia rebaudiana)

Nodal shoot/micro propagated
shoots Subjected to a range of PEG 6000 [50]

Potato
(Solanum tuberosum)

27 CIP different cultivars
Nodal cuttings Subjected to a range of Sorbitol [51]

Rice
(Oryza sativa)

Cultivars: PA U 201 and PR 116
Embryogenic calli Subjected to a range of (0–2%)

PEG 6000 [52]

Potato
(Solanum tuberosum)

Cultivars: IWA-1, IWA-3, IWA-5
Well-sprouted microtubers Subjected to a range of Sorbitol

and PEG 6000 [30]

Rice
(Oryza sativa)

Cultivars: IR 18351-229-3, IR 3185-6-3-3-2,
SR 26-B, Nona Bokra, and C 14-8

Seed-derived calli Subjected to a range of PEG 6000 [53]

Ground nut
(Arachis hypogaea)

Cultivars: TMV2, JL24
Hypocotyl-derived calli Subjected to a range of PEG (0.0,

0.4, 0.6, 0.8 and 1.0 MPa) [54]

Brown mustard
(Brassica juncea Czern)
Cultivars: RW-85-59

Cotyledon-derived calli Subjected to a range of Mannitol [55]

Coconut
(Cocos nucifera)

Variety: Sri Lanka tall
Embryo cultures Subjected to a range of PEG 6000

(1–5%) [56]

Sugarcane
(Saccharum sp.)

Cultivars: R570 and CP59-73
Calli cultures Subjected to a range of Mannitol [57]

3. In Vitro Screening of Salinity Tolerance

Salinity in soil and water is the most critical constraint that affects plant growth and
development [58,59]. Due to osmotic or ionic stress or nutritional imbalance, salinity stress
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has a deleterious effect on plant development [60–62]. Arid and semi-arid environments
are characterized by accumulating large quantities of salts in the soil [63]. Although many
remedial and management procedures are utilized to make salt-affected soils suitable for
agriculture, they are exceedingly costly and do not offer lasting answers to the salinity
problem. Therefore, salinity stress has gained considerable traction over the past few
decades due to the vast experimental evidence from what has occurred in nature regarding
the evolution of highly salt-tolerant ecotypes of various plant species [64–66], as well as
the remarkable progress made in improving various agronomic traits through artificial
selection [67]. Plant tissue culture is the most efficient method for enhancing and producing
salt tolerance in plants. By utilizing plant cell and tissue culture, it is possible to focus on the
physiological and biochemical processes crucial to the cell and contribute to the alterations
brought about by salt stress. Using two in vitro culture methods, salt-tolerant plants
have been obtained through cell and tissue culture procedures. The first method involves
selecting mutant cell lines from cultivated cells, followed by plant regeneration using these
cells (somaclones). The second method is the in vitro screening of plant germplasm for
salt tolerance, which has been successfully used in durum wheat [68]. Doubled haploid
lines generated from pollen culture of salt-tolerant F1 hybrid parents have the potential
to enhance salt tolerance [69,70]. Somaclonal variation and in vitro-induced mutagenesis
can create variability from which crop plants can be improved. Examples of other in vitro
selections for increased resistance to salt stresses are shown in Table 2. Enhancing resistance
to both hyper-osmotic stress and ion toxicity may also be accomplished by molecular
breeding of salt-tolerant plants employing molecular markers or genetic engineering.

Table 2. In vitro selection for increased resistance to salt stresses.

Plant Species Marial Screened under In Vitro
Conditions

In Vitro Screening/
Mutagenesis Method Reference

Limnophila aromatica (Lamk.) Merr. In vitro organogenesis from nodal
explant

Nodal explants subjected to callus
formation on a series of NaCl

concentrations 0–100 mM
[71]

Bacopa monnieri (L.) Wettst. In vitro organogenesis from nodal
explant

Nodal explants subjected to callus
formation on a series of NaCl

concentrations 0–100 mM
[71]

Aubergine
(Solanum melongena)

Cultivar: Bonica
Leaf segment-derived calli Callus formation on a series of

NaCl concentrations 40–120 mM [72]

Sweet potato
(Ipomoea batatas)

Cultivar: Shiroyutaka
Embryogenic calli Callus formation on a series of

NaCl concentrations 25–200 mM [73]

Potato
(Solanum tuberosum)

Cultivars: Kennebec, Norchip, Red
Pontiac, Russet Burbank, Russet

Norkotah, and Superior

Stem cuttings, Leaf rachis
originated callus-derived cell

cultures

Callus formation on a series of
NaCl concentrations 0.25–0.5 M [74]

Canola
(Brassica napus)

Cultivars: Bingo Torpe, Conny and
Siberian.

Hypocotyls and
Cotyledonary-derived calli

Callus formation on a series of
NaCl concentrations 4000, 8000,

12,000, and 16,000 ppm
[75]

Tomato
(Solanum lycopersicom)

Cultivars: Nora, PS-10, Peto, Roma
Hypocotyl-derived calli

Callus formation on a series of
NaCl concentrations 5, 50, 75,

and 100 mM
[76]

Chrysanthemum (Chrysanthemum
morifolium Ramat.) Cultivar: Maghi

Yellow
Ray floret-derived calli

Callus formation on a series of
NaCl concentrations 50, 75 and

100 mM
[77]
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Table 2. Cont.

Plant Species Marial Screened under In Vitro
Conditions

In Vitro Screening/
Mutagenesis Method Reference

Sour Orange
(Citrus aurantium L.) Embryogenic calli Callus formation on a series of

NaCl concentrations 100–300 mM [78]

Sugarcane
(Saccharum sp.)

Cultivar: CP65-357
Young leaf-derived callus Callus formation on a 68 mM

NaCl concentration [79]

Bamboo
(Dendrocalamus strictus Nees) Embryogenic calli

Callus formation on a series of
NaCl concentrations 50, 100, 150,

200, and 250 mM
[80]

Carrot
(Daucus carota subsp. sativus L.)

Cultivars: Dolanka and two Iranian
landraces (DAL and NL)

Protoplasts Protoplast culture in a series of
NaCl concentrations 10–400 mM [81]

Rice
(Oryza sativa L.)

Cultivars: KDML and LPT
Embryogenic calli Callus formation on a series of

NaCl concentrations 1–2% [82]

Durum wheat
(Triticum turgidum var. durum) Immature embryogenic calli

Callus formation on a series of
NaCl concentrations 0.3, 0.6, 0.9,

1.2, 1.5, 1.8, and 2.1% w/v
[68]

4. In Vitro Screening of Disease Resistance

Plant diseases cause substantial revenue loss in agriculture due to lost or poor per-
forming plants when infected. Thus, breeding and selection for disease resistance are at
the forefront of crop science. Various air, soil, and water-borne fungal, bacterial, viral,
and mycoplasma diseases affect commercial crops, especially in monoculture and chemi-
cally fertilized environments. Therefore, studying and screening for disease tolerance and
resistance are routine operations. Often such investigations require specialized conditions
and highly controlled setups to minimize the risk of an unintentional spread of diseases to
the outside environment causing disease outbreaks for major agricultural crops. In vitro se-
lection using pathogenesis-related proteins, antifungal peptides, or phytoalexin production
can help select elite-resistant varieties. This method is simpler and cheaper than generating
plants through transgenic technology, which is costly, time-consuming, and more challeng-
ing to commercialize due to policy and social acceptance barriers. Exposing organogenic or
embryogenic calli, shoots, somatic embryos, or cell suspensions to pathogen toxins, culture
filtrate, or the direct pathogen can effectively screen plant samples for pathogen resistance
in vitro. In Table 3, such in vitro screening studies are listed for various crop species.

Table 3. In vitro selection for increased resistance to biotic stresses.

Plant Species Marial Screened under In Vitro
Conditions

In Vitro Screening/Investigation
Method Reference

Lycoris radiata Callus induced from meristem
tissue of dried bulbs

Wounding stress imposed to
analyse the accumulation of

galantamine content as a measure
of abiotic stress response in plants

[83]

Ground nut
(Arachis hypogaea)

Cultivars: VRI-2, TMV-7
Immature leaf-derived calli Culture filtrate of Cercosporidium

personation [84]
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Table 3. Cont.

Plant Species Marial Screened under In Vitro
Conditions

In Vitro Screening/Investigation
Method Reference

Femminello’ lemon (Citrus
limon L.) Burro. f.

Tarocco’ orange (Citrus sinensis L.
Osb.)

Nucellar calli Culture filtrate and toxin of Phoma
tracheiphila [85]

Turmeric
(Curcuma longa)
Cultivar: Suguna

Non-embryogenic
propagule-derived calli

Culture filtrate of Pythium
graminicolum [86]

Cotton
(Gossypium hirsutum L.)

Cultivar: SVPR 2

Hypercotyl-derived somatic
embryos

Culture filtrate of Fusarium
oxysporum and Alternaria

macrospora
[87]

Sugarcane
(Saccharum sp.)

Cultivars: CoJ 88 and CoJ 64

Apical
spindle tips-derived calli

Culture filtrate of Colletotrichum
falcatum [88]

Wheat
(Triticum aestivum)

Varieties: Sumai 3 (P1), Mianyang 11 (P2),
and their reciprocal F1 hybrids

Embryo-derived calli Deoxynivalenol [89]

grapevine
(Vitis vinifera L.)

Cultivar: Chardonnay

Proembryogenic masses derived
calli Culture filtrate of Elsinoe ampelina [90]

Populus nigra × trichocarpa Internode-derived callus,
Somaclonal selection Culture filtrate of Septoria musiva [91]

Sweet orange
(Citrus sinensis Osbeck)

embryogenic callus mutagenesis
with EMS by somaclones tolerant

Culture filtrate of Xanthomonas
citri subsp. citri [92]

Peach
(Prunus persica)

Cultivars: Sunhigh, Redhaven
Embryo-derived calli Culture filtrate of Xanthomonas

campestris pv. pruni [93]

Some research suggests that rather than the success of screening, somaclonal variation
occurring during the tissue culture process is a probable factor in disease-resistant be-
havoir [91–94]. A combination of a chance mutation in vitro with in vitro selection pressure
appears to delay and confound the later examination of plants produced by these methods.
In such an attempt by Vos et al. (2000), they grew tens of thousands of standard seedlings
in culture and screened in vitro for resistance to guava wilt disease [95]. This is the most
impressive example of such in vitro screening study for disease resistance. This accelerated
the discovery of potentially resistant plants, saving the South African guava industry.

5. In Vitro Screening of Metal Hyperaccumulators

Phytoremediation is a novel and cost-effective method for removing hazardous heavy
metals (Pb, Cd, Cu, Zn, etc.) and organic contaminants from water and soil [7]. There
are now accessible biotechnologies for better comprehending plants’ mechanism of heavy
metal absorption and examining their potential for remediation enhancement [96]. On the
other hand, metal accumulators are highly beneficial and trendy as food supplements
or for recouping rare and expensive metal elements for cosmetics and other uses [97].
When studying the tolerance of plant cells to hazardous substances, in vitro cultures pro-
vide several advantages [98]. In this regard, in vitro screening is a preliminary technique
for assessing woody plant materials since it reduces the time required for growth and
treatment and the amount of space necessary for the tests. Since it is conducted under
controlled conditions, plant tissue culture is one of the most dependable procedures used
in fundamental research to establish the metabolic capacity of plants [99]. Research on
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phytoremediation typically uses several plant tissue cultures as model plant systems. Some
examples of these cultures are calli, cell suspensions, and hairy roots. When it comes to
research on the inherent metabolic capacities of plant cells and their ability to tolerate toxic-
ity, in vitro cultures provide several benefits to the otherwise unavailable experimentation
process. In the quest for fundamental information about plants, the capacity to determine
the specific contributions that plant cells make to the process of pollutant absorption and
detoxification in the absence of interference by microbes is of special value. However,
the final objective of such studies is to develop a realistic phytoremediation technology.
In that case, it is necessary to understand the inherent limitations in using in vitro cultures
as a representative of entire plants in the field. It is highly likely that the bioavailability
of contaminants and the processes of pollutant uptake and metabolite distribution will
be significantly different in the two systems. This can lead to qualitative and quantitative
differences in metabolic profiles and tolerance characteristics. In order to gain complete
understanding or to identify an effective species in phytoremediation through chemical
accumulation, it is necessary to use intact rooted plantlets in tissue culture conditions
for screening studies. However, several studies have shown that plant tissue culture is a
handy tool in the field of phytoremediation surveys (Table 4). The findings obtained from
tissue cultures may be utilized to make predictions regarding the reactions of plants to
environmental toxins, as well as to enhance the design of future traditional whole plant
tests, which in turn helps to lower their overall costs.

Table 4. In vitro selection for increased resistance to hyperaccumulators.

Plant Species Tissue Culture Method Stress Reference

Potato
(Solanum tuberosum L.)

Cultivar: Iwa

Micropropagation
in vitro cell line selection Cadmium [100]

Foxtail millet
(Setaria Italica)

Leaf base and mesocotyl
explant-derived calli Zinc [101]

Rice
(Oryza sativa L.) Embryo-derived calli Aluminium [102–104]

Brassica campestris cv. M27
Brassica juncea cv. Pusabold Cotyledon-derived calli Zinc [105]

Jungle rice
(Echinochloa colona) Leaf base-derived calli Chromium, Nickel [106]

Tobacco
(Nicotiana tabacum L.)

Cultivar: Xanthi
Leaf-derived calli Copper [107]

Mustard
(Brassica juncea) Hypocotyl-derived calli Cadmium [108,109]

Silver poplar
(Populus alba) Microshoot cultures Cadmium, Copper [110]

Prunella vulgaris Shoot-tip explants Cadmium, Zinc [111]

Downy oak
(Quercus pubescens) Seedlings Cadmium, Copper [112]

Silver poplar
(Populus alba) Microshoots culture Arsenic, Copper, Cadmium, Zinc [113]

Flax
(Linum usitatissimum L.)

Cell culture/Calli/shoot-tip
culture Cadmium [114–116]

6. Stress Tolerance through Transgenic Technology

Genetic modification technology for agriculturally important plant species has achieved
major advances in the last decade. The development of transgenic plants with desirable
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characteristics, such as tolerance to biotic and abiotic stress, is a reality. Plant characteristics
are altered much faster than ever by utilizing a wide variety of approaches through gene
transfer and gene editing [2,4,117]. The technique for tissue regeneration through tissue
culture is a prerequisite in such processes, and it is vital.

Genetic transformation has been proposed for several decades as a quick way to
modify the morphological characteristics of an organism. Plant genetic transformation
techniques can be classified as direct and vector-based, introducing transgenic DNA to the
host organism. Direct genetic transformation refers to the direct introduction of transgenic
DNA to a plant cell. The most used techniques are biolistics and biological vectors that use
Agrobacterium tumefaciens-mediated transformation [2].

Genetic transformation through biolistics can transform any totipotent plant cell, from
which cell lines, tissues, or whole plants can be created. However, it has the disadvantage
that the transformation can be transient and generate chimeric plants (non-transformed
cells within the plant), in addition to the requirement of expensive equipment and low
transformation efficiency [118]. On the other hand, the most studied and used vector-
based transformation method is through infection of Agrobacterium tumefaciens, a natural
plant pathogenic bacterium capable of incorporating a DNA region (Ti plasmid of the
Agrobacterium tumefaciens) into the plant genome. This system does not require specialized
equipment and thus is inexpensive, and the number of transformation events per cell is lim-
ited. However, limitations exist due to plant regeneration challenges from the transformed
callus cells [119–121].

The methods of introducing foreign DNA or changing plant genomes have been up-
dated for the use of more defined transformation systems such as the “Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) -associated protein 9 (Cas9) systems”.
This system is powerful to allow specific genetic edits to change genomes according to the
need. The CRISPR/Cas9 system is based on the immune system of bacteria adapted to eu-
karyotic systems, including plants [122,123], whose principle is the RNA–DNA interaction
to search for the sequence genomics [124,125].

Not all plant tissue types and species are conducive to the above transformation
methods. An explant can be a variety of tissues, depending on the particular plant species
and its regenerative ability. Table 5 below lists several studies conducted to achieve abiotic
and biotic resistance through genetic transformation. Identification of a suitable tissue
culture approach to maximize the transformation efficiency with higher regeneration of
transformed cells is critical. Different approaches are illustrated in Figure 1.

Table 5. Examples of attempts to improve abiotic stress tolerance in crop plants through genetic
transformation.

Crop Trait Trasformation Tissue Type Reference

Apple
(Malus domestica Borkh.)

Cultivar Royal Gala.
Herbicide resistance Callus/Organogenesis [126]

Apple
(Malus domestica)

Cultivar: Mailing 26
Resistance to Erwínía amylovora Callus/Organogenesis [127]

Apricot
(Prunus armeniaca)

Cultivar: Kecskemeter
Plum pox virus resistance Callus/Organogenesis [128]

European plum
(Prunus domestica)
Cultivar: Stanley

Papaya ringspot virus resistance Callus/Organogenesis [129,130]

Maize
(Zea mays) Salt resistance Embryo culture/Organogenesis [131]



Life 2023, 13, 780 10 of 16

Table 5. Cont.

Crop Trait Trasformation Tissue Type Reference

Rice
(Oryza sativa) Salt resistance Callus/Organogenesis [132]

Chickpea
(Cicer arietinum)

Cultivar: C 235 (desi type)
Drought resistance Callus/Direct organogenesis [133]

Colt cherry
(Prunus avium × pseudocerasus) Salt and drought resistance Protoplast [134]

Pistachio
(Pistacia vera)

Cultivar: Sarakhs
Drought resistance Somatic embryogenesis [135]
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and genetic transformation of plants. Starting from explants under selection mediums, direct organo-
genesis can be achieved (A and B) or indirect organogenesis (C and D) through an intermediate
callus phase. Further, callus can be used to form intact plantlets through an embryonic pathway or in
suspension culture directly or via protoplast culture techniques in genetic transformation attempts.
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Different combinations of culture type and transformation protocol are used depend-
ing on the plant species and cultivar. In some species, various culture types and regenera-
tion methods can be used, which enables a wide variety of transformation protocols to be
utilized. However, there is no choice over culture type and regeneration method in other
species, limiting the applicable transformation protocols [136].

7. Summary

Salinity, drought, water logging, heat, frost, and mineral toxicities limit commercial
agricultural productivity. Biotechnology can bring in solutions to increase crop productivity.
Tissue culture-based in vitro selection and mutagenesis have become a viable and affordable
method for stress-tolerant plant development. Current research supports the notion that
in vitro screening is an alternative and a support platform for stress tolerance screening
for drought, salinity, and chemical toxicity. Further, in vitro culture permits accurate
modification and assessment of stress variables, identifying stress-tolerance genes and
metabolic pathways. Expanding research into this area of science will ensure more efficient
and effective screening methodologies for the future of sustainable agriculture.
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