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Abstract: Recent studies have demonstrated the prognostic value of spot urinary sodium (UNa+) in
acutely decompensated chronic HF (ADCHF) patients. However, data on the prognostic role of UNa+

and spot urinary chloride (UCl−) in patients with advanced HF are limited. In the present prospective
pilot study, we examined the predictive value of UNa+ and UCl− concentration at baseline, at 2 h
and at 24 h after admission for all-cause mortality and HF rehospitalization up to 3 months post-
discharge. Consecutive advanced HF patients (n = 30) admitted with ADCHF and aged > 18 years
were included in the study. Loop diuretics were administered based on the natriuresis-guided algo-
rithm recommended by the recent HF guidelines. Exclusion criteria were cardiogenic shock, acute
coronary syndrome, estimated glomerular filtration rate < 15 mL/min/1.73 m2, severe hepatic dys-
function (Child–Pugh category C), and sepsis. UNa+ at baseline (Area Under the Curve (AUC) = 0.75,
95% Confidence Interval (CI) (0.58–0.93), p = 0.019) and at 2 h after admission (AUC = 0.80, 95%
CI: 0.64–0.96, p = 0.005) showed good and excellent discrimination, respectively. UCl− at 2 h after
admission (AUC = 0.75, 95%CI (0.57–0.93), p = 0.017) demonstrated good discrimination. In the
multivariate logistic regression analysis, UNa+ at 2 h (p = 0.02) and dose of loop diuretics at admission
(p = 0.03) were the only factors independently associated with the study outcome. In conclusion,
UNa+ and UCl− may have a prognostic role in hospitalized advanced HF patients.

Keywords: urinary; spot; sodium; chloride; advanced heart failure; loop diuretics; prognosis

1. Introduction

Acute heart failure (AHF) refers to the rapid or gradual onset of symptoms and/or
signs of HF, severe enough for the patient to seek urgent medical intervention, leading to an
unplanned hospital admission or an emergency department presentation [1]. Congestion, a
typical finding in acute decompensated chronic HF (ADCHF), refers to signs and symptoms
of extracellular fluid accumulation that result in increased cardiac filling pressures [2]. Since
sodium (Na+) and water retention in the extracellular space are responsible for the increase
in venous return and cardiac filling pressures, intravenous loop diuretics are used to
ameliorate symptoms of fluid overload in patients with ADCHF [3,4]. In particular, loop
diuretics inhibit the Na+-K+-2Cl− symporter at the ascending loop of Henle and have
the most potent diuretic effect, promoting the excretion of Na+ and chloride (Cl−) [5,6].
Therefore, not surprisingly, loop diuretics form the backbone of diuretic therapy in ADCHF,
being used in over 90% of patients [7].
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Traditionally, the estimation of decongestion is based on the findings from the clinical
examination (symptoms and/or signs), urine output, weight loss, blood levels of natriuretic
peptides and renal function (i.e., creatinine/urea), which is not optimal [8,9]. According
to the latest guidelines, the dose of intravenous loop diuretics should be adjusted based
on the spot urinary Na+ (UNa+) concentration (natriuresis-guided treatment) in order
to be achieved timely and successful decongestion [1]. It has been reported that early
treatment with intravenous loop diuretics is associated with lower in-hospital mortality
in AHF [10]. In this regard, a number of recent studies have demonstrated the prognostic
value of UNa+ concentration in patients presenting in the emergency department (ED)
with ADCHF [9,11–14], while less is known about the spot urinary chloride (UCl−) [15,16].
Nevertheless, data on the role of UNa+ and UCl− concentration in advanced HF patients,
a population of HF patients who exhibit frequent rehospitalizations and poor survival,
are limited [17,18]. Furthermore, the appropriate use of diuretics in advanced HF remains
challenging since those patients frequently have low blood pressure, deteriorating renal
function, diuretic resistance and electrolyte disturbances.

Starting from the idea that the early risk stratification of advanced HF patients may
result in better classification of those patients, timely administration of decongestive thera-
pies and improved outcomes, the present pilot study investigated the prognostic value of
spot urinary electrolytes (Na+ and Cl−), at various time points (i.e., at admission before
the administration of loop diuretics, at 2 and 24 h after the administration of diuretics) and
their association with unfavorable clinical events in a small cohort of advanced HF patients
hospitalized for ADCHF.

2. Materials and Methods
2.1. Study Population

Consecutive patients hospitalized for ADCHF in a tertiary University Hospital from
15 September 2022 to 15 November 2022 and aged > 18 years were included in the study.
Exclusion criteria were cardiogenic shock, acute coronary syndrome, estimated glomerular
filtration rate < 15 mL/min/1.73 m2, severe hepatic dysfunction (Child–Pugh category
C), and sepsis (Figure 1). All patients enrolled were on a natriuresis-guided algorithm
recommended by the recent HF guidelines [1]. UNa+ and UCl− were collected at baseline
(before the administration of loop diuretics) with the use of urine catheter, at 2 h after the
loop diuretic administration (2 h after admission) and thereafter at various time points
during hospitalization based on the abovementioned algorithm.

The evaluation of the patients at admission included clinical assessment, laboratory
blood and urine tests, as well as echocardiography. UNa+ and UCl− were measured with
the use of the Roche Hitachi cobas 8000 (cobas ISE) on samples obtained at different time
points of hospitalization. N-terminal pro-b-type natriuretic peptide (NT-proBNP) was
measured with the use of Radiometer’s AQT90 FLEX immunoassay analyzer, while blood
gas with GEM PREMIER 3000 Analyzer (Instrumentation Laboratory). Blood tests were
measured with the use of the Roche Hitachi cobas 8000 (cobas c 702) on samples obtained
for standard-of-care evaluation. Finally, echocardiography was performed within 1 h after
admission in accordance with current recommendations, with the use of eSaote MyLabX6
echo machine [19]. The left ventricular ejection fraction (LVEF) was calculated with the
use of two-dimensional echocardiography by implementing the biplane method of disks
summation technique [19]. The loop diuretic used in the present study was furosemide.

This study conformed to the principles outlined in the Declaration of Helsinki and
was approved by the Ethics Committee of the University of Thessaly (protocol code: 349).
All patients provided written informed consent.
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Figure 1. Study flowchart.

2.2. Definitions

Advanced HF was defined based on the following criteria despite optimal medical
treatment [1]:

1. Severe and persistent symptoms of HF [NYHA class III (advanced) or IV] within the
last 6 months;

2. LVEF ≤ 30%;
3. Persistently high (or increasing) BNP or NT-proBNP values and severe left ventricular

diastolic dysfunction or structural abnormalities;
4. Episodes of pulmonary or systemic congestion requiring high-dose i.v. diuretics (or

diuretic combinations) or episodes of low output requiring inotropes or vasoactive
drugs or malignant arrhythmias causing >1 unplanned visit or hospitalization in the
last 12 months.

If chronic HF deteriorates, either suddenly or slowly, the episode may be described
as ‘decompensated’ HF. This can result in hospital admission [1]. HF hospitalization was
defined as a hospitalization requiring at least an overnight stay in hospital caused by onset
or substantive worsening of HF symptoms and/or signs requiring the augmentation (an in-
crease in the dose or frequency of administration) of oral medications or new administration
of intravenous (IV) HF therapy, including inotropes, diuretics or vasodilators [20]

2.3. Outcomes

The study outcome combined all-cause mortality and/or HF rehospitalization. The
study follow-up was 3 months post-discharge.

2.4. Statistical Analysis

The normality of the data was assessed using D’Agostino–Pearson test. A two-tailed
unpaired t-test and Mann–Whitney U-test were performed for parametric and nonparamet-
ric continuous data, respectively. A chi-square test was performed for categorical variables.
We assessed the discrimination (i.e., the ability to separate those who did from those who
did not die/rehospitalized) of the urine electrolytes (Na+ and Cl−) at baseline, after 2 and
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24 h. Discrimination was assessed by generating receiver-operating characteristic (ROC)
curves and by calculating the area under the ROC curve (AUC). The AUC was determined
by calculating the 95% confidence intervals and compared using nonparametric paired
tests, as described by DeLong et al. [21]. We defined poor, good and excellent model
discrimination with the AUC of <0.70, 0.70–0.79 and 0.80–1.00, respectively [21]. Repeated
measures analysis of variance (ANOVA) was conducted in order to explore the changes
in Na and CL over the follow-up period. Bonferroni correction was used for the pairwise
time comparisons. A logistic regression analysis was performed for the events. In order
to find factors independently associated with prognosis, multiple logistic regression was
conducted in a stepwise manner with all-cause mortality or HF rehospitalization at 3
months as dependent variable. Differences were considered significant (rejection of the
null hypothesis) with a p < 0.05. All data were analyzed using Microsoft® Excel 365 16.66.1
(Microsoft, Redmond, Washington, DC, USA) and Prism® Graphpad 9.5.0 for Mac (Graph-
Pad Software, San Diego, CA, USA) as well as SPSS 28 (IBM Corp. Released 2021. IBM
SPSS Statistics for Windows, Version 28.0. Armonk, NY, USA: IBM Corp)

3. Results
3.1. Baseline Characteristics

The characteristics of the study population are presented in Table 1. The cohort con-
sisted of elderly patients (mean age 73 years), whereas half of them (n = 15, 50%) were
females. The majority (70%) of patients were in New York Heart Association (NYHA)
III, while the rest were in NYHA IV, and the mean NT-proBNP was approximately
13,320 pg/mL, mirroring the advanced stages of HF. Renal function was mildly to moder-
ately impaired, whereas hematocrit, hemoglobin and blood electrolytes were within the
normal range. The mean baseline left ventricular ejection fraction was low (37.3%), and
the inferior vena cava was dilated (24 mm). Regarding medical treatment, the majority of
patients were on β-blockers and loop diuretics, whereas approximately half of them were
on ACE inhibitors/ARBs, ARNis or MRAs. The box plots of UNa+ and UCl− and the urine
output at various time points are depicted in Figure 2, Figure 3 and Figure S1, respectively.
UNa+ and UCl− had significant changes over the follow-up period (PANOVA < 0.001). More
specifically, after Bonferroni correction, it was found that at 2 h, both UNa+ and UCl− were
higher compared to their values at admission (p < 0.001 and p < 0.001, respectively) and at
24 h (p = 0.020 and p = 0.050, respectively).

Table 1. Characteristics of the study population.

Demographics Number of Patients, n = 30

Female, n (%) 15 (50)

Mean age, years (SD) 73 (13)

Sodium Consumption, n (%) 28 (100)

Systolic arterial pressure, mmHg (SD) 126 (25)

Diastolic arterial pressure, mmHg (SD) 77 (17)

Heart rate 88 (21)

NYHA class, n (%)

I 0 (0)

II 0 (0)

III 21 (70)

IV 9 (30)
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Table 1. Cont.

Demographics Number of Patients, n = 30

Comorbidities

Hypertension, n (%) 9 (30)

Diabetes Mellitus, n (%) 8 (26.7)

Coronary Artery Disease, n (%) 8 (26.7)

Dyslipidemia, n (%) 5 (16.7)

Valvular disease (at least moderate), n (%) 6 (20)

Arterial blood gases

pH 7.44 (0.06)

pO2, mm Hg (SD) 63 (20)

pCO2, mm Hg (SD) 42 (10)

HCO3, mmol/L (SD) 20 (8)

Lactate, mmol/L (SD) 1.3 (1.1)

Blood tests

Hematocrit, % (SD) 38.5 (6.8)

Hemoglobin, g/dL (SD) 12.2 (2.3)

Platelets, K/µL (SD) 261 (100)

Prothrombin Time, sec (SD) 19.4 (9.3)

International Normalized Ratio (SD) 1.6 (0.8)

Activated Partial Thromboplastin Clotting
Time, s (SD) 31 (5)

Fibrinogen, mg/dL (SD) 344 (81)

C-reactive protein, mg/dL (SD) 2 (3)

Glucose, mg/dL (SD) 137 (47)

Urea, mg/dL (SD) 80 (50)

Creatinine, mg/dL (SD) 1.4 (0.7)

K+, mmol/L (SD) 4.6 (0.5)

Na+, mmol/L (SD) 135.4 (6.9)

NT-proBNP, ng/L (SD) 13319.6 (9577.2)

Iron, mg/dL (SD) 106.6 (63.7)

Ferritin, ng/mL (SD) 159.2 (134.4)

Urine collection

Baseline (admission)

Spot Na+, meq/L (SD) 55.9 (34.5)

Spot Cre, mg/dL (SD) 18.5 (15.3)

Spot Cl−, meq/L (SD) 90.7 (28.4)

At 2 h

Spot Na+, meq/L (SD) 90.2 (30.4)

Spot Cre, mg/dL (SD) 19.4 (15.5)

Spot Cl−, meq/L (SD) 90.6 (28.3)
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Table 1. Cont.

Demographics Number of Patients, n = 30

At 24 h

Spot Na+, meq/L (SD) 78.98 (30.58)

Spot Cre, mg/dL (SD) 44.73 (36.24)

Spot Cl−, meq/L (SD) 71.35 (32.37)

Urine output at 6 h, mL (SD) 1676.67 (616.9)

Urine output at 24 h, mL (SD) 3985.42 (1384.5)

Cardiac echo

LVEDD, mm (SD) 54.8 (8.9)

LVEF %, (SD) 37.3 (15)

Left Atrium, mm (SD) 51.4 (6.6)

TDI RV S wave velocity, cm/sec (SD) 9.2 (1.7)

RVSP, mm Hg (SD) 51 (14)

IVC, mm (SD) 24 (4.5)

Medical treatment

b-blocker, n (%) 24 (80)

ACE-inhibitor/ARB/ARNI, n (%) 16 (53.3)

MRA, n (%) 12 (40)

Loop Diuretic, n (%) 23 (76.7)

Dose of loop diuretic (furosemide) at
admission (mg) 118.0 (80.7)

SGLT-2 inhibitor, n (%) 5 (16.7)
NYHA: New York Heart Association, N-terminal pro-b-type natriuretic peptide: NT-proBNP, LVEDD: left
ventricular end–diastolic diameter, LVEF: left ventricular ejection fraction, TDI: tissue doppler imaging, RV: right
ventricle, RVSP: right ventricular systolic pressure, IVC: inferior vena cava, ACE: angiotensin-converting enzyme,
ARB: angiotensin receptor blockers, ARNi: angiotensin receptor-neprilysin inhibitors, MRA: mineralocorticoid
receptor antagonists, SGLT-2 inhibitor: Sodium–glucose Cotransporter-2 inhibitor.
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3.2. Study Outcomes

The combined study outcome (all-cause death and HF rehospitalization) was met in
15 (50%) patients during the study follow-up.

UNa+ at baseline (area under the curve (AUC) = 0.75, 95% Confidence Interval (CI)
(0.58–0.93), p = 0.019) and at 2 h after loop diuretic administration (AUC = 0.80, 95% CI
(0.64–0.96), p = 0.005) showed good and excellent discrimination, respectively (Figure 4).
On the contrary, UNa+ at 24 h was not of prognostic value (AUC 0.74, 95% CI (0.50–0.97),
p = 0.056) (Figure S2).
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Figure 4. Receiver operating curve (ROC) for the combined endpoint of all-cause mortality and HF
rehospitalization (A) for the admission spot urinary Na+, (B) for spot urinary Na+ at 2 h, (C) for the
admission spot urinary Cl−, (D) for spot urinary Cl− at 2 h.
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Interestingly, the optimal cut-off value for the admission UNa+ was ≤49 meq/L,
with 73.3% sensitivity and 66.7% specificity. Patients with UNa+ ≤ 49 meq/L exhibited
5.5 times higher risk for the study outcome compared to those with UNa+ > 49 meq/L
(Odds Ratio = 5.50, 95% CI (1.15–26.41), p = 0.033). The optimal cut-off value for the UNa+

at 2 h was ≤95.5 meq/L, with 73.3% sensitivity and 73.3% specificity. Patients with UNa+ at
2 h ≤95.5 had 7.56 times higher risk of all-cause mortality or HF rehospitalization compared
to those with UNa+ at 2 h >95.5 meq/L (Odds Ratio = 7.56, 95% CI (1.50–38.15), p = 0.014).

UCl− at 2 h after admission (AUC = 0.76, 95%CI (0.58–0.94), p = 0.017) demon-
strated good discrimination (Figure 4). The optimal cut-off value for the UCl− at 2 h
was ≤99.8 meq/L, with 86.7% sensitivity and 66.7% specificity. Patients with UCl− at
2 h ≤ 99.8 meq/L had 13 times higher odds for all-cause mortality or HF rehospitalization
compared to those with UCl− at 2 h >99.8 meq/L (Odds Ratio = 13, 95% CI (2.08–81.48),
p = 0.006). On the contrary, UCl− at baseline (AUC 0.69, 95% CI (0.49–0.89), p = 0.081) and
at 24 h (AUC 0.66, 95% CI (0.43–0.90), p = 0.193) was not of prognostic significance (Figure 4
and Figure S3). The homoscedasticity plots are shown in Figures S4 and S5.

A univariate logistic regression analysis revealed the factors that were associated with
the study outcome (Table 2). These were the UNa+ at admission (p = 0.02) and at 2 h
(p = 0.01), the UCl− at 2 h (p = 0.02), urine output at 6 h (p = 0.01) and the dose of loop
diuretic at admission (p = 0.01). The multivariate logistic regression analysis, in a stepwise
manner, revealed that UNa+ at 2 h and loop diuretic dose at admission were the only
independent factors for the study outcome (Table 3).

Table 2. Univariate logistic regression.

Variable Odds Ratio 95% CI p-Value

Age 1.04 0.98, 1.10 0.21

Systolic arterial pressure 0.99 0.97, 1.03 0.95

Diastolic arterial pressure 0.97 0.92, 1.02 0.24

NYHA III 0.37 0.07, 1.92 0.23

Heart rate 0.96 0.91, 1.00 0.05

Hypertension 1.37 0.28, 6.60 0.69

Diabetes Mellitus 4.33 0.70, 26.53 0.11

Coronary Artery Disease 1.00 0.19, 5.04 1.00

Dyslipidemia 5.09 0.49, 52.28 0.17

Valvular disease
(at least moderate) 1.00 0.16, 5.98 1.00

pH 0.39 0.30, 0.55 0.89

pO2 1.00 0.96, 1.04 0.98

pCO2 1.06 0.97, 1.19 0.24

HCO3 1.09 0.96, 1.32 0.31

Lactate 1.20 0.53, 3.76 0.68

Hct 1.04 0.94, 1.17 0.46

Hgb 1.09 0.78, 1.54 0.61

Plt 1.00 0.99, 1.00 0.61

PT 1.07 0.97, 1.22 0.23

INR 2.22 0.71, 11.15 0.23

APTT 1.07 0.91, 1.27 0.41
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Table 2. Cont.

Variable Odds Ratio 95% CI p-Value

FIB 0.99 0.98, 1.00 0.22

CRP 0.88 0.63, 1.15 0.39

Glucose 1.00 0.99, 1.02 0.76

Urea 1.01 1.00, 1.04 0.11

Creatinine 1.55 0.53, 5.31 0.44

K 0.76 0.15, 3.52 0.73

Na 0.92 0.80, 1.02 0.16

NT-proBNP 1.00 1.00, 1.00 0.27

Iron 1.00 0.994, 1.01 0.35

Ferritin 0.99 0.99, 1.00 0.33

Baseline Spot Na 0.97 0.94, 0.99 0.02

Spot Na 2 h 0.95 0.91, 0.99 0.01

Spot Na 24 h 0.98 0.95, 1.01 0.20

Baseline Spot Cre 1.04 0.99, 1.12 0.20

Spot Cre 2 h 1.05 0.98, 1.13 0.10

Spot Cre 24 h 0.99 0.96, 1.01 0.55

Baseline Spot Cl 0.97 0.95, 1.0 0.06

Spot Cl 2 h 0.96 0.92, 0.99 0.02

Spot Cl 24 h 0.98 0.96, 1.01 0.33

Urine output 6 h 0.99 0.996, 0.999 0.01

Urine output 24 h 1.00 0.99, 1.00 0.16

LVEDD 1.02 0.91, 1.16 0.71

LVEF 1.00 0.95, 1.05 0.90

Left Atrium 1.08 0.93, 1.30 0.37

TDI RV 0.46 0.18, 0.88 0.05

RVSP 1.01 0.96, 1.07 0.65

IVC 1.04 0.88, 1.24 0.67

b-blocker 2.36 0.36, 15.45 0.36

ACE-inhibitor/ARB/ARNI 1.00 0.23, 4.19 1.00

MRA 3.14 0.68, 14.50 0.14

Loop Diuretic - - 0.99

Dose of loop diuretic at admission 1.01 1.00, 1.02 0.01

SGLT-2 inhibitor 5.09 0.49, 52.28 0.17
NYHA: New York Heart Association, N-terminal pro-b-type natriuretic peptide: NT-proBNP, LVEDD: left
ventricular end–diastolic diameter, LVEF: left ventricular ejection fraction, TDI: tissue doppler imaging, RV: right
ventricle, RVSP: right ventricular systolic pressure, IVC: inferior vena cava, ACE: angiotensin-converting enzyme,
ARB: angiotensin receptor blockers, ARNi: angiotensin receptor–neprilysin inhibitors, MRA: mineralocorticoid
receptor antagonists, SGLT-2 inhibitor: Sodium–glucose Cotransporter-2 inhibitor.
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Table 3. Multivariate logistic regression.

Variable B OR 95% CI p-Value

Spot Na 2h −0.04 0.95 0.91, 0.99 0.02

Loop diuretic dose at admission 0.01 1.01 1.00, 1,02 0.03

4. Discussion

The current study is the first to provide concurrent insight into the predictive value of
UNa+ and UCl− as a response to diuretic treatment in advanced decompensated hospital-
ized HF patients who were on the natriuresis-guided therapy algorithm. Main findings
may include the following (1) UNa+ at baseline showed good discrimination, (2) UNa+ 2 h
after admission demonstrated excellent discrimination and was independently associated
with the study outcome, (3) UCl− at 2 h after admission demonstrated good discrimination
for the combined outcome of all-cause mortality and rehospitalization during the follow up
(3 months) for hospitalized patients with advanced HF, (4) UNa+ and UCl− at 2 h after the
administration of iv loop diuretics were both significantly higher compared to their values
at admission.

There is increasing evidence that higher urinary Na+ concentration during treatment
for acute HF is related to a better prognosis, higher possibility of achieving euvolemia and
shorter hospitalizations [11,22]. However, few data are available for Na+ excretion during
an acute decompensation of patients with advanced HF. The present study attempted to
highlight the significance of electrolyte status and associated neurohormonal activation
in the fragile advanced HF patient. In particular, it showed that the administration of
high-dose loop diuretics at admission (mean dose of furosemide 118.0 mg) led to significant
UNa+ and UCl− increase at 2 h, compared to their baseline values. Diuretic resistance (a
failure to increase fluid and Na+ output sufficiently to relieve volume overload despite
escalating doses of a loop diuretic) is a frequent finding among advanced HF patients and
it is associated with poor prognosis [23,24]. Therefore, timely identification (with the use of
spot urine electrolytes) of patients with the highest risk of HF rehospitalization and death
may lead to earlier and more intense decongestive therapy and better outcomes.

There is evidence that the assessment of UNa+ concentration in acute HF is a more
accurate prognostic marker than urine output. Interestingly, in the present study, urine
output collected at 6 and 24 h after admission was not associated independently with the
study outcomes. So far, Testani et al. demonstrated that UNa+ at 1–2 h corresponds to
the total Na+ concentration in a 6-h urine collection, allowing for a prompt assessment
of response to diuretic treatment and individualized titration [25]. Similarly, Collins et al.
underscored the predicting utility of early evaluation of natriuresis (total urine Na+), 1 h
after diuretic administration, in correspondence to the clinical outcome of in-hospital
worsening HF [12]. Our protocol included assessment of baseline urine Na+ (at admission)
as well as evaluation at the predetermined point of 2 h after the loading dose of diuretics.
It is one of few studies to evaluate baseline levels of urinary Na+ as well as early Na+

excretion, both demonstrating efficacy as discriminating factors. The good prognostic
ability of low levels of baseline urinary Na+ comes in agreement with a previous study
by Martens et al. that underscored low levels of urinary Na+ in chronic HF patients as a
means of foreseeing acute decompensation [26].

To our concern, so far, only one prospective study concerning UNa+ and response to
diuretic treatment in advanced HF was conducted, however, including only ambulatory HF
patients in a short surveillance time. Spot urine samples were obtained at first voided urine
after loading dose of diuretics and compared to total urine output at three hours, and the
values were correlated to 30-day hospitalization or emergency department visit. Specifically,
a cut-off of 65 mmol/h and a urine output of less than 1200 mL were associated with 69%
rate of hospitalization in 30 days [17]. Our study included patients with decompensated
advanced HF, and urinary Na+ was evaluated at admission and at 2 h and 24 h after
administration of loop diuretics. Insertion of the urinary catheter at all patients at admission
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in our protocol and subsequent evaluation of UNa+ at 2 h excluded the possibility of pre-
diuretic residual urine, yet differentiating it from the aforementioned study.

It could be anticipated that linear UNa+ excretion in advanced HF patients, who typi-
cally come up with longer hospitalizations, would correlate to clinical outcome, duration
of efficient decongestion and mortality. Nevertheless, UNa+ at 24 h failed to demonstrate a
further discrimination value (AUC = 0.74, p = 0.056), reinforcing the position that timely and
tailored administration of loop diuretics is of utmost importance regarding all-cause mor-
tality and rehospitalizations for advanced HF patients. This observation fills a knowledge
gap, as data on advanced HF natriuresis is scarce due to a lack of studies, and emphasizes
the value of prompt optimal dosing. Interestingly, UNa+ at 2 h and initial diuretic dose
administration were the only independent factors for the study outcome.

The evaluation of UNa+ as a biomarker of response to HF treatment has been gaining
ground in the last few years [4]. In the present study, we attempted to evaluate the excretion
of electrolytes in a critically ill patient with advanced HF. Taking into consideration that
conventional markers such as glomerular filtration rate (GFR) or NT-proBNP have failed to
correspond to acute HF outcome, we purposely attempted to incorporate a biomarker that
correlates to water and extracellular volume handling without being affected by glomerular
function, which may be variously aggravated in advanced HF patients. In the present
study, both markers of renal function (i.e., urea and creatinine), as well as NT-proBNP, were
not associated with the study outcome.

While longitudinal profiles of UNa+ in hospitalized HF patients have been evaluated,
little is currently known concerning the prognostic significance of UCl− [14,27]. Cl− is
among the key electrolytes that participate in fluid homeostasis. Although so far neglected,
Cl− is the main regulator of the macula densa, the region of renal juxtaglomerular apparatus
that senses NaCl and fluid status [28,29]. It should be emphasized that the action of Cl−

on the lately detected with-no-lysine (K)- WNK protein kinase evolves in enhanced water
and electrolytes reabsorption via upregulation of the Na+-K+-Cl− cotransporter, possibly
elucidating a mechanism of diuretic resistance in HF [30]. Our study shows for the first
time that UCl− derived soon after loop diuretic administration can discriminate patients
with advanced HF at high risk for ominous clinical outcomes. Specifically, a cut-off value
of ≤99.8 meq/L distinguished patients with 13 times higher odds of all-cause mortality or
HF rehospitalization in 3 months. Our findings are in agreement with a recent small study
highlighting serum and urine Cl− indices as an even better estimator of neurohormonal
activation than Na+ indices in acute HF, correlating firmly to plasma renin activity [31].

Sodium–glucose co-transporter-2 inhibitors (SGLT-2) inhibitors, a novel drug class,
inhibit the SGLT-2 receptors predominantly expressed in the proximal tubule of the nephron;
thus, they induce glycosuria and natriuresis and have been shown to reduce the combined
endpoint of all-cause mortality and HF rehospitalization in chronic HF patients irrespective
of the LVEF [32–36]. However, recent studies revealed that these drugs might also be
beneficial in hospitalized HF patients. In particular, the EMPA-RESPONSE-AHF study
showed that the SGLT-2 inhibitor empagliflozin was safe, increased urinary output and
reduced a combined endpoint of worsening HF, rehospitalization for HF or death at 60 days,
compared to placebo [37]. Furthermore, the randomized EMPULSE demonstrated that more
patients treated with empagliflozin had a clinical benefit compared with placebo (stratified
win ratio, 1.36; p = 0.0054), meeting the primary endpoint (a hierarchical composite of
all-cause death, number of HF events and time to first HF event, or a 5 point or greater
difference in change from baseline in the Kansas City Cardiomyopathy Questionnaire
Total Symptom Score at 90 days) [38]. Nevertheless, an interesting recent meta-analysis
of two observational and six randomized studies reported conflicting results concerning
the true efficacy of SGLT-2 inhibitors in acute HF patients, including “hard” surrogate
endpoints [32]. Whether the UNa+ can be used as a prognostic marker and its potential
cut-off values in patients already receiving SGLT-2 inhibitors needs to be investigated in
future studies. Interestingly, in the present pilot study, 16.7% of patients were on SGLT-2
inhibitors at admission.
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All patients enrolled in the present study were on a natriuresis-guided therapy algo-
rithm. In other words, the administration of loop diuretics, as well as their dosage, was
based on the UNa+ values [1,5]. Interestingly, the pragmatic urinary sodium-based treat-
ment algoritHm in acute heart failure (PUSH-AHF) trial will reveal whether natriuresis-
guided therapy, using a pre-specified stepwise diuretic treatment approach, improves
natriuresis and clinical outcomes in patients with acute HF [39]. From the perspective
of the clinician, a two-dimensional, contemporaneous assessment with two biomarkers
(UNa+ and UCl−) that both demonstrate a good discriminatory ability can minimize the
possibility of a random finding while being timesaving and easily obtainable.

Patients with advanced HF have different characteristics from those of the ADCHF
population [40–42]. For example, an analysis from the Acute Decompensated Heart Fail-
ure National Registry (ADHERE) revealed that patients with advanced HF tended to be
younger (69.6 vs. 72.8 years), were more often males (65% vs. 49%) and were more likely
to have hyperlipidemia/dyslipidemia (65% vs. 41%) and coronary artery disease (73% vs.
57%) compared to those with ADCHF [40]. Furthermore, in patients with advanced HF,
symptoms appear to be more related to fatigue and less to fluid status/volume overload
than in patients with ADCHF [40]. Lastly, a patient with advanced HF may often exhibit
episodes of ADCHF, but not all patients with ADCHF have advanced HF.

5. Study Limitations

This study has some limitations: (a) The present work was a non-randomized, single-
center study, and therefore, the risk of bias and confounding cannot be excluded, despite
multiple adjustments. However, the current study was prospective in nature, and the main
advantage of prospective over retrospective cohort and case-control studies is that baseline
exposure status is correctly assessed, not only recalled, reducing the risk of selection
bias [43]. Furthermore, all patients were on the same natriuresis-guided therapy. (b) The
number of patients enrolled was relatively small; however, the present was a pilot study,
patients were closely monitored, and none was lost during follow-up. (c) Currently, there is
no universal definition of advanced HF [44]. In the present work, advanced HF was defined
based on recent guidelines [1]. Lastly, only 16.7% of patients were on SGLT-2 inhibitors at
admission, mirroring the currently low global prescription rate of this drug category in HF
populations [45–47].

6. Conclusions

Recent studies have reported the prognostic value of UNa+ in ADCHF patients, while
less is known about the role of UCl− in the same population of patients. The present pilot
work adds to the existing literature by demonstrating that UNa+ and UCl− may predict
the combined short-term outcome of all-cause mortality and HF rehospitalization in a
small cohort of hospitalized advanced HF patients who followed the same loop diuretic
treatment algorithm. UNa+ at 2 h after admission was associated independently with
prognosis. Whether early risk stratification of advanced HF patients with the use of UNa+

and UCl− leads to better outcomes needs to be elucidated in the future. Larger studies are
urgently needed.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/life13030698/s1, Figure S1: Box plots of the urine out-
put at 6 and 24 h after admission; Figure S2: Spot urinary Na+ at 24 h. (AUC 0.74, 95%CI (0.50–0.97),
p = 0.056); Figure S3: Spot urinary Cl− at 24 h. (AUC 0.66 (0.42–0.89), p = 0.193); Figure S4: Ho-
moscedasticity plot for spot urinary Na+ at various time points. E: events, NE: non-events; Figure S5:
Homoscedasticity plot for spot urinary Cl− at various time points. E: events, NE: non-events.
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