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Abstract: Diffuse intrinsic pontine glioma (DIPG) carries an extremely poor prognosis, with 2-year
survival rates of <10% despite the maximal radiation therapy. DIPG cells have previously been shown
to be sensitive to low-intensity electric fields in vitro. Accordingly, we sought to determine if the
endoscopic endonasal (EE) implantation of an electrode array in the clivus would be feasible for the
application of tumor-treating fields (TTF) in DIPG. Anatomic constraints are the main limitation in
pediatric EE approaches. In our Boston Children’s Hospital’s DIPG cohort, we measured the average
intercarotid distance (1.68 ± 0.36 cm), clival width (1.62 ± 0.19 cm), and clival length from the base
of the sella (1.43 ± 0.69 cm). Using a linear regression model, we found that only clival length and
sphenoid pneumatization were significantly associated with age (R2 = 0.568, p = 0.005 *; R2 = 0.605,
p = 0.0002 *). Critically, neither of these parameters represent limitations to the implantation of a
device within the dimensions of those currently available. Our findings confirm that the anatomy
present within this age group is amenable to the placement of a 2 × 1 cm electrode array in 94% of
patients examined. Our work serves to demonstrate the feasibility of implantable transclival devices
for the provision of TTFs as a novel adjunctive therapy for DIPG.

Keywords: clivus; diffuse intrinsic pontine glioma (DIPG); endoscopic endonasal surgery;
intratumoral modulation therapy; tumor-treating fields (TTF)

1. Introduction

Diffuse intrinsic pontine gliomas (DIPG), a subset of diffuse midline gliomas that are
H3K27 altered, as classified by the fifth edition of the WHO’s Classification of Tumors of
the Central Nervous System (CNS), are highly fatal pediatric brainstem tumors for which
there are no curative treatment options [1,2]. As such, the prognosis remains dismal, with a
2-year survival rate of <10% despite maximal radiotherapy [1,3]. A litany of experimental
therapeutics is being trialed for DIPG, with some encouraging early results having recently
emerged from clinical trials utilizing adoptive cell transfer and immunovirotherapy [4–8].

An emerging treatment for high-grade gliomas is electrotherapy, a unique modal-
ity in which tumor cells are exposed to low-intensity (1–3 V) intermediate frequency
(100–500 kHz) electric fields capable of inhibiting tumor cell growth [9,10]. There are mul-
tiple described applications of intermediate frequency electrotherapy, including pulsed
electric fields, which induce electroporation, and tumor-treating fields (TTF) [9]. TTF
are alternating current electric fields which are created by externally fixed arrays on the
scalp, the arrangement of which can be individualized [11,12]. The mechanism of action
remains controversial; however, the prevailing hypothesis is the disruption of mitosis in
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dividing malignant cells [10,11]. Intratumoral modulation therapy (IMT) is a derivative
approach of TTF which involves the local delivery of low-intensity sinusoidal intermediate-
frequency electric fields by means of implanting field-generating electrodes within targeted
tissue [12,13]. A report by Deweyert et al. attempted to evaluate the potential role of
this intratumoral modulation therapy in DIPG via an in vitro pilot study [14]. The re-
sults demonstrated marked susceptibility of DIPG cells to low-intensity electric fields,
with a significant impact both as mono- and multimodal therapy, thus warranting further
investigation [14].

It is, however, prudent to note that the intra-axial implantation of electrodes is associ-
ated with a number of non-negligible risks, the foremost of which is an injury to surround-
ing eloquent structures, particularly in highly functional tissue such as the brainstem [15,16].
In addition, permanently implanted intra-axial hardware poses its own associated limi-
tations and risks, including infection, migration, and/or dysfunction, any of which may
require revision surgeries and prolonged hospital stays [15,17]. With current electrode
technology, tissue coverage achieved by an IMT electrode is limited, which also would
require the placement of multiple electrodes to cover larger lesions [14]. Finally, another
critical constraint of an internally implanted system is the question of MRI compatibility, a
crucial modality in the management/monitoring of patients with brain tumors.

Due to such limitations, the current clinical usage of tumor-treating fields (TTF)
in CNS cancers has been confined to external systems, such as the transcranial scalp
electrode system commercially available by Optune, in the management of glioblastoma
(GBM) [11,12]. The results of TTF in GBM are encouraging, with a 2.7-month and 4.9-month
increase in progression-free survival (PFS) and overall survival (OS) observed, respectively,
when used in combination with current therapeutic standards [11,12]. However, one of the
inherent limitations in the setting of transcranial field generation is the depth of targeted
tissue and the insulating effect of the skull [18,19]. Clinical evidence has demonstrated that
field intensity delivered to the site of the tumor is correlated with overall survival [18–20].
Accordingly, one active area of research in TTF is cranial remodeling interventions, in which
the calvarial bone is either surgically thinned and/or burr holes or small craniectomies are
strategically placed either during the initial tumor resection or re-resections with the aim of
enhancing TTF penetrance and intensity [20–22].

To our knowledge, there is no published data regarding the treatment of DIPG patients
with TTF due in part to the various anatomical and engineering challenges defined above.
Given encouraging in vitro data and the need for focused, non-toxic pediatric therapies, a
deeper investigation of this modality is warranted. As such, we sought to clarify the practi-
cability of placing an implantable array in close proximity to the pons using a transnasal
corridor. This concept involves a hybrid approach taking advantage of the anatomical
location of DIPG and is centered on the implantation of an intracranial extra-dural electrode
embedded within the clivus, just ventral to the pons. To accomplish this proof-of-concept
study, we evaluated the anatomical feasibility of endoscopic endonasal placement of TTF
electrodes in pediatric DIPG. The feasibility of this approach represents an integral step
in the process of developing a clival electrode form factor and investigating clival TTF
as a novel treatment method for DIPG, with the ultimate goal of further evaluating this
technology in a clinical setting.

2. Materials and Methods

We retrospectively reviewed patients from our institution who presented with a
clinical, radiographic, and histologically confirmed diagnosis of DIPG, from 2010 to 2022.
An algorithm was used to interrogate our institutional database using the keywords “diffuse
intrinsic pontine glioma” or “DIPG” to identify patient charts. These charts were then
manually reviewed to verify the diagnosis of DIPG and the presence of CT scans. Patients
who did not have a CT scan were excluded. This protocol was reviewed by the local IRB
under protocol number IRB-P00027869 and has an approved waiver of consent to conduct
retrospective research.
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We characterized the anatomical features that limit transclival approaches. The width
of the approach was measured as the minimum lacerum inter-carotid distance. The degree
of pneumatization of the sphenoidal sinus was divided into conchal, pre-sellar, sellar, and
post-sellar, as has been previously described in the literature [23]. The height of the clivus
was measured in the midsagittal plane extending from the base of the sella to the basion.
The thickness of the clivus was measured at two levels: at the level of the sellar floor and at
the thickest portion measurable on the midsagittal reconstruction (Figure 1).
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Figure 1. (I). Axial CT brain demonstrating measurement of the intercarotid distance. (II). Sagittal
CT head, bone window in the mid-sagittal plane demonstrating measurement of the (a) thickness of
the clivus at the level of the sellar floor as well as (b) at the thickest portion measurable and (c) height
of the clivus from sellar floor to basion.

Linear regression analyses were conducted to determine the relationships between age
at the time of the CT and all anatomical measurements, including sphenoid pneumatization.
The degree of pneumatization was then codified from 1–4 with 1 representing conchal,
2 pre-sellar, 3 sellar, and 4 post-sellar, for logistic regression analysis. All statistical analyses
were conducted using StatPlus. A p-value of <0.05 was used to determine significance. The
figures were created using BioRender.com or 3D slicer.

3. Results

Forty-three unique patients were algorithmically identified as having a diagnosis of
DIPG. Of these 43 patients, 17 patients had a verified tissue diagnosis of DIPG, and also
had CT scans with sagittal/axial sequences of appropriate quality to complete the desired
measurements. Of these patients, ten were male and seven were female. Ages ranged
from 4–15 years; the median age was 6 years. Of sphenoid pneumatization categories, six
patients fell within the conchal pneumatization type, five were pre-sellar, four were sellar,
and one was a post-sellar type (Table 1). The average height of the clivus from the base of
the sella to the basion was 3.34 ± 0.39 cm. The thickness of the clivus from the base of the
sella was on average 1.43 ± 0.69 cm. The greatest thickness of the clivus was on average
1.62 ± 0.19 cm. The average inter-carotid distance was 1.67 ± 0.36 cm (Table 2). Age at the
time of CT was found to be a statistically significant predictor of clival length (R2 = 0.568,
p = 0.0005), the width of clivus at the sellar floor (R2 = 0.372, p = 0.009), and degree of
sphenoid pneumatization (R2 = 0.605, p = 0.0002). Age was not a significant predictor of the
greatest width of clivus (R2 = 0.004, p = 0.82), or inter-carotid distance ((R2 = 0.006, p = 0.76)
(Table 3).
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Table 1. Demographics.

Sex

Male 10
Female 7

Age
4–7 10
8–11 5

12–15 2
Sphenoid pneumatization

Conchal 6
Presellar 5

Sellar 4
Postsellar 1

Table 2. Anatomical measurements.

Average Standard Deviation

Clival length
(floor of sella to basion) 3.34 0.39

Width of clivus at sellar floor 1.43 0.69
Greatest width of clivus 1.62 0.19

Intercarotid distance 1.68 0.36

Table 3. Relationship between age and anatomical measurements.

R2 p-Value

Clival length
(floor of sella to basion) 0.568 0.0005 *

Width of clivus at sellar floor 0.372 0.009 *
Greatest width of clivus 0.004 0.82

Intercarotid distance 0.006 0.76
Sphenoid pneumatization 0.605 0.0002 *

* indicates significance p ≥ 0.05.

4. Discussion

TTFs represent a non-invasive biophysical approach to the management of different
cancers, including pancreatic, ovarian, lung, and brain tumors, and have become a fourth
treatment modality alongside surgery, chemotherapy, and radiation [11]. TTF for GBM
involves applying alternating electric fields at intermediate frequencies and requires that the
therapy be performed for greater than 18 h per day in order to confer clinical benefit [11,24].
Multiple biomolecular mechanisms are involved in the antineoplastic effects of TTF [25].
The antimitotic effect is the most widely accepted mechanism, yet a myriad of other means
have also been hypothesized and tested, including DNA-damage response, suppression of
cancer cell migration, autophagy, innate immunity, and immunogenic cell death [11].

One of the most salient limitations of TTFs is the physical barrier of the surrounding
soft tissue and skull which can lead to a significant dampening of field intensity, thereby
decreasing treatment efficacy [18,26]. Experimental modeling has shown the potential
improvement of TTF efficacy by decreasing skull thickness through the strategic use of sur-
gical thinning or bone-removal techniques [18]. A recent phase I trial of Skull Remodeling
Surgery (SR-Surgery) performed during the resection of the GBM demonstrated the safety
of utilizing calvarial-thinning techniques along with multiple burr holes in and around the
bone flap. A phase II trial is currently ongoing with the aim of confirming the efficacy of
this approach [20]. These encouraging results suggest the utility of similar approaches in
the skull base to access and therapeutically engage deeply located lesions [18,22]. Our study
sought to employ these surgical remodeling techniques in the skull base and take advantage
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of the anatomical location of DIPG in the pons, just ventral to the clivus, via endoscopic
implantation of an external TTF array within a surgically thinned clivus (Figure 2).
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Figure 2. (I) Proposed external array configuration demonstrating the clival array wiring exiting the
nose in red. (II) Sagittal view of the clival array placement with transnasal wiring. (Created with
BioRender.com).

DIPG cells have been shown to be sensitive to low-frequency electrical stimulation
in vitro as evidenced by reduced cell viability and increased apoptosis [14]. When ad-
ministered in combination with temozolomide (TMZ) and radiation therapy (RT), IMT
combination therapy is synergistic, achieving better results than monotherapy or dual
TMZ-RT [14]. Intratumoral or peritumoral electrode placement is limited in this application
due to the high degree of eloquence within the brainstem [12]. Given the diffuse nature of
pontine gliomas, it would be difficult to safely place enough electrodes in the parenchyma
to provide sufficient coverage and produce a potential clinical benefit. TTF, which does not
necessitate the placement in the parenchyma, seem to be a preferable option for eloquent
brainstem lesions and has been demonstrated to have the depth of field penetration up
to 30–40 mm, suitable for deeply located tumors [27]. Fortunately, IMT fields have very
similar properties to the TTF low-intensity fields produced by external arrays, at 1–3 v/cm
and frequencies between 100–300 kHz; therefore, it is reasonable to theorize that TTF will
produce similar effects on DIPG cells.

In addition to the additive effects of TTF noted in combination with chemotherapy and
radiation, TTF may also play an important role as an adjuvant treatment in immunotherapy
trials by stabilizing tumor progression, thereby allowing patients to mount an immune
response [6,14]. This is particularly relevant given the recent flurry of exciting results in
the immunotherapy sphere for DIPG [6–8,25]. TTF are capable of stimulating antitumor
immunity properties, which may further produce a synergistic effect in combination with
immunotherapies [25]. As such, the combination of TTF with experimental treatment
options may represent an exciting new avenue worthy of continued investigation.

In this study, we propose the endoscopic endonasal implantation of a flexible TTF-
generating electrode array in the clivus as a potential novel treatment method for DIPG.
Extended endoscopic endonasal approaches (EEA) have been extensively described in the
literature. The anatomical limits of the transclival approaches have been rigorously studied
in adults and are largely defined by the intercarotid distance at the level of the petrous
apices as severe bleeding from a potential internal carotid artery injury represents one of
the most serious risks [28]. The sixth nerve, which runs along the clivus up towards the
cavernous sinus from its exit point in the pons, can also be a limiting factor in extended
EEA. When it comes to the pediatric population, EEAs are not as well understood due to the
dynamic and variable anatomy within this cohort. Therefore, assessing the size restrictions
related to a planned clival implant in this specific age group of patients was necessary.
The patients in our study ranged from ages 4–15, with ~60% falling between the ages of
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4–7. Sphenoid pneumatization begins between the ages of 2–4 and is largely complete
by age 12, although it is highly variable between individuals and can continue well into
adulthood [29,30]. Our study confirmed that sphenoid pneumatization, clival length, and
the width of the clivus at the sellar floor are significantly correlated with age. In our study
population, the average maximum clival width was 1.62 cm. Given these findings, we
expect that younger patients may require more extensive drilling to place the implant at the
optimal location on the face of the clivus with minimal intervening bone due to lower rates
of pneumatization and thicker clival widths. Neuronavigation and Doppler ultrasound will,
therefore, be critical tools to safely guide the procedure. The use of intraoperative CT would
also be a useful resource to safely guide clival drilling [31]. Recently, augmented reality
has also emerged as an adjunct technology that may also improve safe drilling practices,
for example, by identifying and localizing the internal carotid arteries and overlaying this
patient’s anatomy in the endoscopic field of view [32]. Of note, the intercarotid distance
at the level of the clivus did not significantly correlate with age in our population, which
is congruent with the literature [33]. Our study population had an average intercarotid
distance of 1.68 cm, which would allow the safe implantation of an electrode array with a
width of 1.5 cm in most patients.

Accessibility and sufficiency of the working corridor is another concern of pediatric en-
doscopic surgery, starting from the size of the nostril and including the size of the intranasal
cavities. Extensive data has now been published on the feasibility and safety of EE surgery
in younger patients, mostly driven by the management of craniopharyngioma [34,35]. Most
authors agree on a 3-year age limit for EEA, but a thorough case-by-case evaluation is
necessary given significant patient variability. Finally, the vomer–clivus distance, unlike
many of the other skull base dimensions, is not dependent on sphenoid pneumatization
and does not change significantly during development, and therefore, should not pose an
increased limitation in approach in children. Reconstruction is an additional consideration
in pediatric EE surgery, as the nasoseptal flap, commonly used for reconstructions in this
region, is insufficiently mature for transclival approaches [29,34–36]. However, given that
our proposed procedure is entirely extradural, reconstruction should not be necessary in
most cases. Preserving a thin layer of bone to protect the dura from inadvertent injury may
represent the best strategy to avoid accidental durotomies.

Overall, our results confirm that the implantation of a transducer array measuring
3 × 1.5 cm is feasible in 65% of patients due to limitations in either clival length or in-
tercarotid distance, and that a 2.5 × 1 cm array would be implantable in 94% of patients
studied. These proportions are within the dimensions of currently available clinical systems
produced by Optune (Novocure, Haifa, Israel), which offers a ceramic array measuring
~2 cm. An important consideration in the design of the transducer array will be the ability
to easily remove and replace the device, given that it is expected that this population of
patients will require multiple MRIs over the course of their management. We propose a
detachable wiring system to allow the removal of the non-MRI compatible portion prior to
scans. Such a procedure could likely be performed as an outpatient with minimal anesthe-
sia, or under anesthesia concomitantly with a sedated MRI. We anticipate that array wiring
exiting through the nasal cavity can be managed similarly to a nasogastric tube when the
device is in use (Figure 2).

Our report confirms the anatomical feasibility of the transclival approach for TTF
enhancement. The next steps include the finite element modeling of the electrode array
configuration for optimal pontine coverage. In a recently published study, we demonstrated
the potential efficacy of intracranial electrode arrays [26]. In doing so, we have defined
configurations that universally required less current while still reaching significantly higher
field strengths and therapeutic enhancement ratios (TER) in larger portions of the tumor
bed as compared to transcranial controls. Some groups have posited that the optimal
transcranial array placement to achieve sufficient coverage in the brainstem would involve
the placement of arrays on the vertex, bilateral posterolateral occiput, and superior-posterior
neck [37]. A transclival array may achieve adequate electric field distribution with minimal
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transcranial complementary arrays and less amperage, enhancing the practicality of the
long-term use of the TTFs. Another consideration and active area of research is the material
engineering of a flexible array that will permit insertion through the nose and fixation to
the clival bone (Figure 3).
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To advance this work, a model device will be employed in an effort to demonstrate
the safety of implantation, tolerability, and biocompatibility in a large animal model. Sheep
have commonly been used in endoscopic endonasal models due to the relative anatomic
similarities of the nasal cavity and sinus orientation between sheep and humans [38,39].
The ultimate goal of this study is to bring this device and approach to the clinic as a novel
potential treatment method for DIPG.

5. Limitations

This work represents the first step towards assessing the feasibility of transclival TTF
electrode implantation in a pediatric cohort. Only patients who had a brain CT scan were
included in our analyses, which limited our cohort to 17 patients, as MRIs are the preferred
test for assessing brain tumors. The authors acknowledge that this sample size is limited;
however, we believe it is sufficient to achieve our aim of demonstrating the feasibility
of such an approach in the average pediatric patient. Tumor field modeling is currently
ongoing to assess the optimal placement of complementary array(s). In vitro evaluation
and preclinical animal models are also necessary to establish efficacy and advance this
work from the bench to the bedside. In addition, the array will need to be engineered
with the ability to install and remove it with relative ease to facilitate MR imaging. In this
setting, the evaluation of long-term biocompatibility and clinical tolerance/uptake will
also be necessary.

6. Conclusions

Endoscopic endonasal transclival implantation of a TTF array is anatomically feasible
in the vast majority of pediatric DIPG patients assessed, and as such, may represent a novel
adjuvant treatment for this intractable disease.

7. Patents

There were 63/345,878 patients filed on 25 May 2022 and 63/400,002 filed on 22 August 2022.
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