
Citation: Wang, H.-L.; Yin, W.; Xia,

X.; Li, Z. Orthologs of

Human-Disease-Associated Genes in

Plants Are Involved in Regulating

Leaf Senescence. Life 2023, 13, 559.

https://doi.org/10.3390/

life13020559

Academic Editors: Cristiane

Aguiar Da Costa, Dayane

Teixeira Ognibene and Graziele

Freitas De Bem

Received: 21 January 2023

Revised: 10 February 2023

Accepted: 14 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Orthologs of Human-Disease-Associated Genes in Plants Are
Involved in Regulating Leaf Senescence
Hou-Ling Wang , Weilun Yin, Xinli Xia * and Zhonghai Li *

National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological
Sciences and Technology, Beijing Forestry University, Beijing 100083, China
* Correspondence: xiaxl@bjfu.edu.cn (X.X.); lizhonghai@bjfu.edu.cn (Z.L.)

Abstract: As eukaryotes, plants and animals have many commonalities on the genetic level, although
they differ greatly in appearance and physiological habits. The primary goal of current plant research
is to improve the crop yield and quality. However, plant research has a wider aim, exploiting the
evolutionary conservatism similarities between plants and animals, and applying discoveries in the
field of botany to promote zoological research that will ultimately serve human health, although
very few studies have addressed this aspect. Here, we analyzed 35 human-disease-related gene
orthologs in plants and characterized the genes in depth. Thirty-four homologous genes were found
to be present in the herbaceous annual plant Arabidopsis thaliana and the woody perennial plant
Populus trichocarpa, with most of the genes having more than two exons, including the ATM gene
with 78 exons. More surprisingly, 27 (79.4%) of the 34 homologous genes in Arabidopsis were found
to be senescence-associated genes (SAGs), further suggesting a close relationship between human
diseases and cellular senescence. Protein–protein interaction network analysis revealed that the
34 genes formed two main subnetworks, and genes in the first subnetwork interacted with 15 SAGs.
In conclusion, our results show that most of the 34 homologs of human-disease-associated genes in
plants are involved in the leaf senescence process, suggesting that leaf senescence may offer a means
to study the pathogenesis of human diseases and to screen drugs for the treat of diseases.

Keywords: disease-related genes; leaf senescence; ortholog genes; protein–protein interactions;
regulatory network

1. Introduction

The plant and animal kingdoms comprise highly contrasting life forms. The genome
sequence of eukaryotes provides a powerful means and strategy that can be used to uncover
the genetic basis of differences between organisms, and their detailed functional character-
ization can be further explored. Moreover, flowering plants have ancestral features that
are conserved between plants and animals [1]. Arabidopsis thaliana is an ideal model for
flowing plant genome and gene functional analysis because of its small nuclear genome
as well as its small size, short generation time and large number of offspring. Multiple
plant-specific biological processes have been uncovered including development [2,3], gene
network regulation [4,5], metabolism [6,7], photomorphogenesis [8,9], immunity [10,11],
DNA repair [12,13], environment responses, biotic and abiotic stress signaling [14–18]. The
great number of advances made in Arabidopsis research not only support plant biology
studies but also shed light on agricultural breeding, and directly contribute to compar-
ative genomics, bioinformatics, molecular genetics, evolutionary biology, combinatorial
chemistry and chemical genetics research. Most importantly, the progress of research in
Arabidopsis supports the development and application of medicine.

By BLAST and comparing the list of human disease genes [19] with the Arabidop-
sis genome, we can observe that most of the functional and representative protein do-
mains are conserved in similar proportions for both humans and Arabidopsis [1]. In fact,
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48.1% (139/289) of human disease genes show hits for Arabidopsis with E < 10−10 using the
BLASTP threshold method. In total, 36 (12.5%) had scores better than E < 10−70, including
17 that were highly conserved in Arabidopsis compared to yeast, Drosophila or C. elegans [1].
As multiple non-communicable human diseases and their severity are closely related to
certain underlying risk factors, as well as ageing, cellular senescence is gaining increasing
attention and is considered to be a potential target in treating human diseases [20]. Cel-
lular senescence can be triggered by multiple factors, such as inflammation, oncogenes,
reactive metabolites, mitogens, proteotoxic stress, DNA damage and damage-associated
molecular patterns [21,22]. DNA damage is the key inducer of cellular senescence [23].
Dysfunction, mutations, radiation, and alkylating agents can cause DNA damage, and
most DNA damage-related genes are senescence-associated genes, such as ataxia telang-
iectasia mutated (ATM) [24,25]. The p53 pathways is central for the inducers triggered
cellular senescence phenotype, and p53 is a key mediator of adipogenesis and the glucose
response gene [26], known as its cell cycle- and senescence-associated regulator property.
Reducing the expression of p53 can delay cellular senescence but might also increase the
risk of cancer [27]. The senescence-associated secretory phenotype (SASP) is one of the
significant hallmarks. The ‘jumping genes’ (transposons) contribute to the SASP, as they
are produced within senescent cells and re-inserted into the senescent cell DNA [28,29].
Senescence-targeting interventions represent promising strategies for clinical use across the
lifespan [30], and ‘senolytic’ drugs, which can kill senescent cells or inhibit ASAP, can be
was applied [27].

Plant senescence shares partial similarity with human senescence. Almost all plants
undergo cell, tissue and organ senescence before they eventually die. Plant fitness is
founded on timely senescence, which is considered as an evolutionarily acquired pro-
cess [31]. During senescence, plants integrate information related to their developmental
age with multiple internal and external signals via intricate regulatory pathways [32,33].
Leaf senescence, which has been widely studied, is the most representative and well-
visualized type of senescence in plants. Currently, 31,214 genes and 1037 mutants of
86 species related to leaf senescence were summarized [34], and complex regulating signal-
ing network analysis was conducted 30]. The circadian rhythm and aging clock, defined as
endogenous time-keeping mechanisms which are closely related to human disease [35], are
also linked to leaf senescence via cross-regulatory networks. Leaf age affects the circadian
clock, and a shorter circadian period was observed in old leaves, as it is regulated by the
circadian clock oscillator TIMING OF CAB EXPRESSION1 (TOC1) [36]. CIRCADIAN
CLOCK–ASSOCIATED 1 (CCA1) is an evident regulator of leaf senescence, and the loss
of function of CCA1 leads to early leaf senescence [37]. Specifically, CCA1 targets the
leaf senescence master regulator ORE1 by repressing its expression and activates the ex-
pression of the chloroplast maintenance gene GLK2. ORE1 integrates the circadian clock
with age-dependent senescence through PSEUDO-RESPONSE REGULATOR9 (PRR9), and
PRR9 promotes the expression of ORE1 while repressing its upstream gene, miR164 [38].
Moreover, RECEPTOR PROTEIN KINASE 1 (RPK1) affects leaf development but depends
on leaf age, and inducing RPK1 in old leaves results in enhanced senescence, while the
induction of RPK1 in young leaves leads to no signs of senescence but arrested growth [39].

Age-related DNA damage is considered as one of the main triggers of animal senes-
cence [40]. Plants share similarities in DNA-damage-triggered senescence with animals.
Endogenous factors such as age can induce leaf senescence, and this may due to increased
DNA damage and a decreased DNA repair capacity [41]. The inducible overexpression of
I-PpoI restriction endonuclease results in double-strand DNA breaks (DSBs) and leads to
an accelerated leaf senescence phenotype [24,25]. DSB-triggered gene expression shares
similarities with senescence, and DNA repair genes are also related to leaf senescence,
as revealed by transcriptomic data. ATAXIA TELANGIECT ASIA MUTATED (ATM), a
human disease related gene [1], is known for its primary DSB signal transducer role [42].
The homolog hit for Arabidopsis is involved in leaf senescence and acts as a negative regula-
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tor. ATM suppresses the DSB-induced expression of SAGs via the modulation of histone
lysine methylation [25].

In this study, we selected 35 disease-associated genes [1] and identified 34 orthologs
genes in the Arabidopsis and Populus. Comparative genomic and molecular docking anal-
ysis revealed that orthologs of human-disease-associated genes in plants are involved in
regulating leaf senescence.

2. Materials and Methods
2.1. Identification of Homologous Genes in Arabidopsis and Populus

The Arabidopsis genes with similarities to human disease genes were identified from
the previous research, an analysis of the genomic sequence of Arabidopsis [1]. The name
of human disease genes, transcript ID and gene function description in Arabidopsis were
displayed in the literature [1] (Table 3 on page 7 (volume page 802), which named ‘Table
3 Arabidopsis genes with similarities to human disease genes’). The homolog genes of
Populus were identified on the Populus trichocarpa v3 database using BLAST, and the most
similar transcript and protein sequences were used for further analysis (https://phytozome-
next.jgi.doe.gov/ (accessed on 5 September 2022)) [43].

2.2. Synteny Analysis, Gene Structure and Phylogenetic Tree Analysis

The protein and annotation files of human (Homo sapiens) GRCh38 were downloaded
from Ensembl database (https://www.ensembl.org/Homo_sapiens/Info/Index (accessed
on 5 January 2023)). The protein and annotation files of A. thaliana TAIR10 and P. trichocarpa
v3 were downloaded from EnsemblPlants database (https://plants.ensembl.org/index.
html (accessed on 5 January 2023)). The DIAMOND algorithm [44] was applied for protein
sequence alignment between human and A. thaliana, as well as human and P. trichocarpa,
with E-value < 1 × 10−3 cutoff. Then, the alignment results were visualized in TBtools [45]
via Multiple Synteny Plot plugin. The structural maps of the 34 candidate A. thaliana and
P. trichocarpa genes were constructed using the GSDS2.0 tool (http://gsds.gao-lab.org/
(accessed on 5 September 2022)) [46], and the UTR, exon and intron were visualized
with different colors. For the phylogenetic tree analysis, the amino acid sequences of
the 34 candidate genes were aligned using ClustalX2 tool [47], and then visualized us-
ing MEGA-X software with the Maximum-Likelihood algorithm and Bootstrap test of
100 replications [48].

2.3. Expression Pattern during Leaf Senescence

The expression values of the 34 genes during the leaf senescence process were extracted
from A. thaliana [49] and Populus tomentosa [50]. The A. thaliana data included 14 time points
for the leaf development process, tracked from the growth-to-maturation stage (G-to-M;
4–18 d) to the maturation-to-senescence stage (M-to-S; 16–30 d). The P. tomentosa data
contains 16 time points for autumn leaf senescence process, tracked over the mature stage
(M; L1-10), early senescence stage (ES; L11-L13) and later senescence stage (LS; L14-L16).
Furthermore, the raw RNA-Seq data of A. thaliana and P. tomentosa was downloaded
from NCBI’s Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra/
(accessed on 5 September 2022)) [51], with the SRA study accession number PRJNA186843
for A. thaliana [49] and PRJNA561520 for P. tomentosa [50], and the detailed information
was displayed in Supplemental Dataset 1. The ‘SRR’ format data downloaded using
SRAToolkit package tool was transformed to ‘fastq’ format via ‘fastq-dump’ command.
For data quality control and reads cleaning, the adapter in the reads were removed, and
then the low-quality reads (reads with Qphred <= 20 bases account for more than 50% of
the entire read) and reads with a ratio of N (N means that the base information cannot
be determined) greater than 10% were also removed. Then, the clean reads were aligned
to the Arabidopsis genome [52] and Populus v3 genome [43] using HISAT2 algorithm,
respectively [53]. Transcripts Per Million (TPM) [54] was used to measure gene expression
levels and log-transformed values for visualization. The heatmaps were generated by using
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the ‘pheatmap’ package [55] in R v4.1.2 program. The red and blue color represent the high
and low expression levels, respectively.

2.4. Construction of Protein–Protein Interaction Network

The online STRING tool (https://cn.string-db.org/ (accessed on 7 December 2022))
was applied for the protein–protein interaction (PPI) data analysis, and then the interaction
data were visualized in Cytoscape v3.7. The large circles represent the 34 candidate genes,
while the small circles or rectangles represent the potential interacting proteins, and the
SAGs are marked in yellow.

2.5. Molecular Docking of Drugs and Proteins

The data files of all the proteins used for molecular docking were downloaded from the
AlphaFold Protein Structure Database (https://alphafold.com/ (accessed on 7 December
2022)) [56]. The data file of chemical drugs was downloaded from the National Center for
Biotechnology Information (NCBI) PubChem Substance Database (https://www.ncbi.nlm.
nih.gov/pcsubstance/ (accessed on 7 December 2022)) [57]. The molecular docking was
performed using the SwissDock tool (http://www.swissdock.ch/docking (accessed on 7
December 2022)).

2.6. Statistical Analyses

GraphPad Prism v8.3.0 software ((Dr. Harvey Motulsky Founder) (Boston, MA 02001,
USA) https://www.graphpad.com/scientific-software/prism/ accessed on 7 August 2022)
was used to visualize the statistical data, including the exon number, average exon, initial
exon, internal exon and terminal exon length.

3. Results
3.1. Identification of Human Disease-like Genes in A. thaliana and P. trichocarpa

A previous study using BLASTP analysis identified genes with high sequence similar-
ity to human disease genes in the Arabidopsis genome [1]. Unlike A. thaliana, poplar is a
perennial plant. To investigate whether the poplar genome also contains genes with highly
similar sequences to human-disease-associated genes, we analyzed the poplar genome
using sequence comparisons. To this end, we selected 35 disease-associated genes with
high similarity to Arabidopsis genes (Table 1). Among these, the Arabidopsis homologous
gene of both ‘HDL deficiency 1, ABCA1’ and ‘Stargardt’s, ABCA4’ is At2g41700. Thus
34 homologs were identified in the Arabidopsis genome. By sequence comparison, we also
identified 34 homologs in the poplar genome (P. trichocarpa v3.1) (Table 1), with E-values
ranging 5.9 × 10−272 and 6.9 × 10−72, indicating that human-disease-related genes are
highly conserved in annual and perennial plants. This table was modified and updated
from Table 3 of previous research [1].

3.2. Synteny Analysis and Gene Structure Visualization

To explore the evolutionary relationship between these genes, a collinear graph was
constructed comparing human, A.thaliana and P. trichocarpa (Figure 1A), and protein pairs
highlight in green confirmed the ortholog relationships between human and A.thaliana, as
well as human and P. trichocarpa. The protein alignment results between human and Ara-
bidopsis or Populus were displayed in Supplemental Dataset 2 and Supplemental Dataset 3,
respectively. The phylogenetic tree of the 35 genes in human, and 34 genes in A.thaliana
and P. trichocarpa was constructed based on the amino acid sequence to analyze the ortholog
relationship (Figure 1B). The structures of the UTR, exons and introns were also displayed
using the Gene Structure Display Server 2.0 (GSDS 2.0) tool (Figure 2A,B). Expect for ROOT
HAIR SPECIFIC 8 (RHS8), all other genes contained more than two exons, whether in Ara-
bidopsis (Figure 2A) or Populus (Figure 2B). The average number of exons was 5.1 and 5.0 in
A.thaliana [58] and Homo sapiens [59], respectively. Surprisingly, 26 (76.5%) of the 34 genes had
a greater number of exons than the average number (Figure 2C). Among them, the ATAXIA

https://cn.string-db.org/
https://alphafold.com/
https://www.ncbi.nlm.nih.gov/pcsubstance/
https://www.ncbi.nlm.nih.gov/pcsubstance/
http://www.swissdock.ch/docking
https://www.graphpad.com/scientific-software/prism/


Life 2023, 13, 559 5 of 19

TELANGIECTASIA-MUTATED GENE (ATM) gene contained the largest number of exons,
with 78. More interestingly, we found that the number of exons of the ATM gene in humans is
identical to that of the homologs in A. thaliana and P. trichocarpa. Furthermore, the average exon
length of these 34 genes were also analyzed. The exon lengths of the homologous genes in A.
thaliana and P. trichocarpa are similar. Moreover, the average exon length of the 34 candidate
genes is much larger than the average on the whole-genome level (50 bp) (Figure 2D). In
particular, RHS8 contains a super-sized exon, with 1994 bp.

Table 1. Arabidopsis and Populus genes with similarities to human disease genes. This table was
modified and updated from Table 3 of previous research [1].

Human Disease Gene Arabidopsis Populus Gene Description Gene Name

Myotonic dystrophy, DM1 AT2G20470.1 Potri.005G226700.1 AGC (cAMP, cGMP-dependent and protein kinase C) AGC
Deafness, hereditary, MYO15 AT2G31900.1 Potri.009G025300.1 myosin-like protein XIF, myosin V (MYO5) MYO5
HDL deficiency 1, ABCA1 AT2G41700.1 Potri.006G049300.1 ATP-binding cassette A1 ABCA1
Stargardt’s, ABCA4 AT2G41700.1 Potri.006G049300.1 ATP-binding cassette A1 ABCA1
Coffin–Lowry, RPS6KA3 AT3G08720.1 Potri.016G138400.1 p70 ribosomal S6 kinase (RPS6KB) S6K2
AKT2 AT3G08730.1 Potri.006G109600.1 p70 ribosomal S6 kinase (RPS6KB) S6K1
Xeroderma Pigmentosum, G-XPG AT3G28030.1 Potri.017G070500.1 DNA excision repair protein ERCC-5 (ERCC5, XPG, RAD2) ERCC5
Ataxia telangiectasia, ATM AT3G48190.1 Potri.015G076650.1 ataxia telangiectasia mutated family protein (ATM, TEL1) ATM
Cystic fibrosis, ABCC7 AT3G62700.1 Potri.014G130500.1 Multidrug resistance-associated protein 10 MRP10
HNPCC, MSH6 AT4G02070.1 Potri.T171400.1 DNA MISMATCH REPAIR PROTEIN MSH6 MSH6
HNPCC, PMS2 AT4G02460.1 Potri.014G130800.1 DNA mismatch repair protein PMS2 (PMS2) PMS2
HNPCC*, MLH1 AT4G09140.1 Potri.019G078700.2 DNA mismatch repair protein MLH1 (MLH1) MLH1
Citrullinemia, type I, ASS AT4G24830.1 Potri.008G020200.1 Argininosuccinate synthase/Citrulline–aspartate ligase ASF
HNPCC, MSH3 AT4G25540.1 Potri.015G142900.1 DNA mismatch repair protein MSH3 (MSH3) MSH3
Renal tubul. acidosis, ATP6B1 AT4G38510.1 Potri.004G177500.1 V-type H+-transporting ATPase subunit B (ATPeV1B, ATP6B) ATP6B
Zellweger, PEX1 AT5G08470.1 Potri.001G174100.4 peroxin-1 (PEX1) PEX1
Dents, CLCN5 AT5G26240.1 Potri.010G090100.1 H(+)/CL(-) EXCHANGE TRANSPORTER 7 CLC-D
Bare lymphocyte, ABCB3 AT5G39040.1 Potri.017G097200.1 ABC TRANSPORTER B FAMILY MEMBER 27 ABC27
G6PD deficiency, G6PD AT5G40760.1 Potri.017G070200.1 glucose-6-phosphate 1-dehydrogenase G6PD6
Xeroderma Pigmentosum, F-XPF AT5G41150.1 Potri.001G150400.1 DNA excision repair protein ERCC-4 (ERCC4, XPF) ERCC4
Xeroderma pigment, B-ERCC3 AT5G41360.1 Potri.001G101300.3 DNA excision repair protein ERCC-3 (ERCC3, XPB) ERCC3
Wilson, ATP7B AT5G44790.1 Potri.001G158900.1 Cu(+) exporting ATPase/copper-exporting ATPase RAN1
Finnish amyloidosis, GSN AT5G57320.1 Potri.006G165300.1 villin/gelsolin (GSN) GSN
Darier–White, SERCA AT1G10130.1 Potri.014G014700.2 endoplasmic reticulum-type calcium-transporting ATPase 3 ECA3
Xeroderma Pigmentosum, D-XPD AT1G03210.1 Potri.010G175700.1 Phenazine biosynthesis PhzC/PhzF protein PhzC
Hyperinsulinism, ABCC8 AT1G04120.1 Potri.002G255800.4 multidrug resistance-associated protein 5 ABCC5
Immunodeficiency, DNA Ligase 1 AT1G08130.1 Potri.009G005900.2 DNA ligase 1 LIG1
Niemann–Pick, NPC1 AT1G42470.1 Potri.002G009600.2 Niemann-Pick C1 protein (NPC1) NPC1
Menkes, ATP7A AT1G63450.1 Potri.001G105300.2 root hair specific 8 RHS8
Fam, cardiac myopathy, MYH7 AT1G04610.1 Potri.008G174600.1 Probable indole-3-pyruvate monooxygenase YUCCA3 YUC3
Glycerol kinase defic, GK AT1G80460.1 Potri.003G030900.1 Actin-like ATPase superfamily protein GLI1
Bloom, BLM AT1G10930.1 Potri.003G015800.1 DNA helicase isolog RECQl4A
Chediak–Higashi, CHS1 AT1G03070.1 Potri.002G049000.1 Bax inhibitor-1 family protein LFG4
Bartter’s, SLC12A1 AT1G30475.1 Potri.011G163901.1 hypothetical protein HP
Diaphanous 1, DAPH1 AT1G31810.1 Potri.003G103800.1 Formin Homology 14 AFH14

Furthermore, the lengths of the initial, internal and terminal exons of each gene
were also calculated. The initial exon lengths differed greatly between A. thaliana and P.
trichocarpa, while the internal and terminal exon lengths were similar (Figure 3A–C). In
particular, the initial exon length of AGC, ATM, CLC-D ERCC4, MLH1, MSH6, MSH3, S6K1
and S6K2 in A. thaliana were significantly larger than those in P. trichocarpa (Figure 3A).

3.3. Gene Expression Analysis Reveals That Most of the Homologous Genes Are Involved in Leaf
Senescence Process

Because cellular senescence is closely related to human diseases, next, we next inves-
tigated whether the homologous genes of disease-associated genes are also involved in
the senescence process in plants. To this end, we analyzed the expression pattern of the
34 genes in Arabidopsis [49] and Populus [50] during leaf senescence. The TPM (transcripts
per kilobase of exon model per million mapped reads) value was log-transformed and
applied for the data visualization. Gene expression analysis revealed that 27 (79.4%) of the
34 genes were continuously up-regulated during leaf senescence in Arabidopsis (Figure 4A).
Two genes, ATM and PhzC were up-regulated during early senescence but decreased
during later senescence. The expression of four genes, including MYO5, ASF, RECQI4A
and YUC3, was continuously decreased during leaf senescence. Interestingly, the peak
expression of MRP10 occurred in the G-to-M and M-to-S transitional period of leaf devel-
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opment (Figure 4A). Unexpectedly, the expression levels of most of genes were decreased
as leaf aged in poplar. Only 5 (14.7%) of the 34 genes were continuously up-regulated
during leaf senescence in Populus (Figure 4B). Four of five genes, including ABCA1, S6K1,
S6K2 and PEX1, were up-regulated during leaf senescence in Arabidopsis and Populus.
ATM and PhzC showed increased expression patterns that suddenly decreased in the last
leaf developmental stage. YUC3 displayed contrasting expression patterns between in
Arabidopsis and Populus. Furthermore, we found that S6K2 is highly expressed in senes-
cent and cauline leaves, according to the Arabidopsis electronic fluorescent pictograph
(eFP) browser (Figure 5A) [60], a pattern which is similar with the expression in Populus
(Figure 5B,C) [61,62]. S6K2 shows gradient expression from the apical leaf to the basal leaf
stages (Figure 5C) [62]. These results confirm that the expression of S6K2 may be conserved
between Arabidopsis and Populus.
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Figure 2. Phylogenetic, gene structure and exon statistical analyses of 34 Arabidopsis and Populus genes
which are similar to human disease genes. (A,B) The phylogenetic and gene structure of Arabidopsis
(A) and Populus (B) genes. The genealogical tree was constructed using whole-length amino acid
sequences. The sequences were aligned using the ClustalX2 tool and visualized by MEGA-X software.
Blue boxes, orange boxes and blacklines indicate exons, UTRs and introns, respectively. (C) Exon
number statistics of Arabidopsis and Populus genes, where the arrows indicate the average exon
number of each gene on whole-genome level in Arabidopsis and Populus, respectively. (D) Average
exon length statistics of Arabidopsis and Populus genes, where the arrow indicate the average exon
length of each gene on whole-genome level in Arabidopsis.

3.4. Protein–Protein Interaction Network Analysis Reveals That 34 Homologous Genes Are
Integrated with SAGs

To analyze the interactions between the 34 homologous genes in Arabidopsis, we
further constructed the protein–protein interaction (PPI) network. Each of the genes were
blasted using the online STRING tool, and the PPI data were further visualized in cytoscape
v3.7 software. Interestingly, 11 (32.3%) of the 34 genes formed a first large sub-network
(Figure 6A), while 10 (29.4%) of the 34 genes formed second big sub-network (Figure 6B).
The ABCA1, LFG4, ABCC5, MRP10, S6K1, S6K2, MYO5, PEX1, GSN, AFH14 and AGC
were integrated with 90 other genes in the PPI. Interestingly, 15 of the 90 genes were
senescence-associated genes (SAGs), marked in the yellow circle. In addition, LIG1, MSH3,
MSH6, PMS2, MLH1, ERCC3, ERCC4, ERCC5, RECQI4A and ATM were integrated with
52 other genes, including 2 SAGs (Figure 6B). ECA3 was integrated integrates with three
SAGs, including AT5G59840, RABE1e and RABE1c (Figure 6C). To further explore the
detailed pathways of the central genes involved in regulating leaf senescence, we analyzed
all these genes in the first sub-network, shown in Figure 6A, via GO (Gene Ontology)
and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment. We found that the
involved genes may participate in regulating the cellular process with binding and catalytic
activity functions (Figure 6D). Moreover, these genes are specifically enriched in peroxisome
signaling pathways, as well as proteasome, autophagy and inositol-phosphate-metabolism-
related processes (Figure 6E), which might provide key clues for further functional study
of these human-disease-related genes.
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Figure 3. The human-disease-related genes in Arabidopsis and Populus display longer internal exons
but shorter terminal exons. (A–C) Length of the initial (A), internal (B) and terminal (C) exons of
Arabidopsis and Populus genes. The arrows indicate the medium length of each type of exon.

Meanwhile, 13 genes (38.2%) formed an individual PPI network, itself in performing
central role. The ECA3 (Figure 6C), CLC-D (Figure 7B), RAN1 (Figure 7E), and NPC1
(Figure 7F) were found to interact with more than two SAGs. The RAN1 interacts with
four SAGs, occupying 40% of the predicted network (Figure 7E). Together, the PPI analyses
further suggested that these homologous genes are involved in regulating leaf senescence
in Arabidopsis.

3.5. Molecular Docking Investigation Provides Information and Potential Clues and Approaches for
Human Disease Cures by Drug Screening Using the Leaf Senescence Process

Our findings revealed that 27 (79.4%) of the 34 human-disease-related genes were
continuously up-regulated during leaf senescence in Arabidopsis, which raised the pos-
sibility of using the leaf senescence system to study the mechanisms of action of these
homologs, which could then be used to unravel the pathogenesis of human diseases and
to screen for possible drugs that can be used to treat these diseases. This analysis might
increase the value of research on plants such as Arabidopsis in understanding human disease
states [1,63]. Molecular docking is always used to predict the binding sites of drugs to
proteins so as to provide the additional important information regarding the experimental
results [64,65]. In the present study, the computational structure modeling of the can-
didate proteins was downloaded from the AlphaFold Protein Structure Database, and
the chemical drug data file was downloaded from the National Center for Biotechnology
Information (NCBI) PubChem Substance Database. The molecular docking was performed
using SwissDock tool [66,67].
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Figure 4. The expression patterns of 34 human-disease-related genes in Arabidopsis and Populus
during the leaf senescence process. (A) Heatmap visualization of 34 genes during the leaf senescence
process in Arabidopsis in a controlled indoor greenhouse environment. (B) Expression display of
34 genes during the autumn leaf senescence process of Populus in natural outdoor environment. The
red/blue color bars indicate the range of expression, and the values are log-transformed from the
TPM expression value.

The drug KU-55933 was identified as an inhibitor of ATM [68] and was reported
to suppresses cell proliferation and induce apoptosis [69], as well as increasing the TMZ
responsiveness [70] and sensitizing radioresistant bladder cancer cells [71]. In our study, the
molecular docking attempt between Arabidopsis ATM and KU-55933 failed. However, we
found that several other candidate proteins, including S6K1 and S6K2 (Figure 8), ABCC5,
AFH14, AGC and GSN1 (Figure 9), had primary substrate binding pockets on the molecular
surface, which might effectively capture KU-55933. The predicted structure of S6K1 shows
a high per-residue confidence score (pLDDT) (Figure 8A). KU-55933 (Figure 8B) has great
selectivity for ATM but also has selectivity for other related kinases, such as PI3K [69].
There are more than 20 potential binding combinations between KU-55933 and S6K1, with
the estimated ∆G varying from −8.01 to −5.18 kcal/mol (Figure 8C). For SK62, KU-55933
has a minimum and maximum estimated ∆G of −7.61 and −6.24, respectively. Therefore,
KU-55933 might have selectivity for S6K1 that is greater than that of S6K2. Moreover, the
visualization data show the binding site of Arabidopsis S6K1, with KU-55933 located in
a linearization region, and S6K2, with KU-55933 located at a constricted cleft with loop
regions (Figure 8D). In addition, the docking results demonstrated that residue GLY63,
as well as LYS237 and THR453 of S6K1, can form hydrogen bonds with KU-55933. Thus,
the hydrogen bonds between the amino acids of S6K1 and the oxygen atoms of KU-55933
are the major factors in the complex formation. For S6K2, the two contiguous amino acid
regions, ASN184 to LEU191 and PHE383 to ASP389, might form hydrogen bonds with
KU-55933. Moreover, KU-55933 might also have selectivity for ABCC5, AFH14, AGC
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and GSN1 (Figure 9). KU-55933 might bind the initial position of ABCC5 and AGC, with
contiguous amino acids regions. Moreover, KU-55933 has greater selectivity for AGC than
the other three proteins, depending on the estimated ∆G value (Figure 9B).
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(accessed on accessed on 13 December 2022)) [61]. (C) S6K2 expression in different tissues of P.
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enable (accessed on accessed on 13 December 2022)) [62].
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Figure 6. Protein–protein interaction network construction of the candidate genes. (A) PPI network
centered with LFG4, ABCC5, ABCA1, MRP10, S6K1, S6K2, MYO5, PEX1, GSN, AFH14 and AGC. Red
diamond nodes indicate the human disease similarity genes in Arabidopsis. Small blue circle nodes are
proteins that might interact with these genes. Yellow circle nodes are marked as senescence-associated
genes (SAGs). The thickness of the line indicates the possibility of interaction, and a thicker line
displays higher possibility of interaction. Larger size of the circle nodes indicate more interactions.
(B) PPI network centered with LIG1, MSH3, MSH6, PMS2, MLH1, ERCC3, ERCC4, ERCC5, RECQ4A
and ATM. (C) PPI network that is centered with ECA3. (D) GO function enrichment of all genes in
(A). (E) KEGG enrichment of all genes in (A).

Furthermore, we also performed the molecular docking of seven drugs, and some were
reported to be related to human disease and senescence [72], including (-)-Rapamycin [73,74],
FT-0674848, Nadide [75,76], M2698 [77], Spermidine [78,79], HY-147542, and Unii-qkh7mle47U.
The molecular formulae are displayed in Figure 10A. The molecular docking results showed
that five of the drugs can bind S6K1 (Figure 10B–D), and Nadide can bind S6K1, with a
minimum estimated ∆G value of −10.73, indicating that treatment with nadide will most
likely lead to an altered leaf senescence altered phenotype. Moreover, there are more than
20 potential binding sites on the surface of S6K1 (Figure 10E–G), and the visualized docking
results exhibited that residue GLY63 as well as ARG238, ILE302, GLY303, THR452 and
THR453 of S6K1 can form hydrogen bonds with Nadide. More interestingly, Nadide shares
the same analyzed residues as KU-55933, such as GLY63 and THR453, indicating that this
region of S6K1 might form a general capture pocket.
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Figure 7. Protein–protein interaction network construction of the candidate genes. (A–L) PPI network
centered with ASF (A), CLC-D (B), GLI1 (C), PhzC (D), RAN1 (E), NPC1 (F), YUC3 (G), RHS8 (H),
G6PD6 (I), ABC27 (J), ATP6B (K) and HP (L). Red diamond nodes indicate the human-disease-related
genes in Arabidopsis. Blue circle nodes are proteins that might interact with these genes. Yellow circle
nodes are marked as senescence-associated genes (SAGs). The thickness of the line indicates the
possibility of interaction, and a thicker line denotes higher possibility of interaction. Larger circle
nodes indicate more interactions.
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Figure 8. Analysis of the predicted structures and molecular docking of Arabidopsis S6K1 and S6K2.
(A) The predicated structures of S6K1 and S6K2. The data files used for 3D structure visualization were
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downloaded from the AlphaFold Protein Structure Database. (B) Molecular formula of chemical
drug KU-55933 (2-Morpholino-6-(thianthren-1-yl)-4H-pyran-4-one). The data file used for molecular
docking was downloaded from the PubChem Substance Database. (C) Molecular docking of KU-
55933 with S6K1 and S6K2. The minimum (marked in green color) and maximum estimated ∆G and
FullFitness data are displayed. (D) Visualized molecular docking with the minimum estimate ∆G
of S6K1 and S6K2, respectively. The orange residues highlight the interaction between the protein
and KU-55933.
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3.6. Role of Leaf Senescence Research in Understanding Human Disease States

A. thaliana is widely used as a key model organism for plant biology due to its excellent
features such as its small genome, rapid reproduction, and multiple ecotypes. The natural
process of leaf senescence occurs after growth for 24 days (Figure 5). One can easily
observe the leaf senescence phenotype of the 27 up-regulated genes via the genetic mutant.
The study of these 27 genes and their roles in regulating leaf senescence, especially the
signaling pathways, might provide ideas for this human disease research. Moreover, the
development of human-disease-related drugs or signaling pathway models might benefit
from transcriptomics, proteomics, metabolomics, genomics, ionomics and epigenomics
analyses performed on the genetic material in Arabidopsis. Furthermore, drugs delaying or
promoting the leaf senescence process through the repression or activation the functions of
these 27 genes might also be used as candidates for human disease research (Figure 11).
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Figure 10. Molecular docking of Arabidopsis S6K1 with seven chemicals for drug screening. (A) Molec-
ular formula of seven chemical drugs. The data file used for molecular docking was downloaded
from the PubChem Substance Database. (B,C) Visualized molecular docking of S6K1 with spermidine
(B) and Unii-qkh7mle47U (C). The orange residues highlight the interaction between the protein and
drug. (D) The minimum (marked in green color) and maximum estimated ∆G and FullFitness data
are displayed. (E) Superposed models of the surface of S6K1. (F) All the potential interaction sites of
S6K1 with Nadide. (G) The docking with minimum estimated ∆G. The orange residues highlight the
interaction and the amino acid are marked in white.
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Figure 11. Model for using leaf senescence biological process to study human disease. As 27 of
the 34 genes are SAGs, i.e., 79.4%, leaf senescence can be used as a critical biological process to
study human disease. Multiple omics methods including transcriptomics, proteomics, metabolomics,
genomics, ionomics and epigenomics can be used. Additionally, drug screening, mutant identification,
ecotype diversity and signaling can be applied to analyze the gene function. The in-depth analysis of
ATM, MSH3, ERCC5, MLH1, PMS2 and other genes might provide important information clue for
human disease research.
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4. Discussion

Plants are traditionally considered to produce food and scientific research using plants
generally aimed to render this production process efficient with a high quality. However,
it is becoming increasingly clear that plants are invaluable experimental tools that can
enable humans to live better [80]. For example, plants such as Arabidopsis can be used
to understand the molecular mechanisms that underpin human disease states [63]. A
high percentage of human-disease-related genes are also present in Arabidopsis, as indi-
cated by genome sequence comparison [1,63]. Protein function and cellular processes
are conserved between humans and Arabidopsis, even though they are seemingly distant
species. Some human diseases have been examined using Arabidopsis, such as Alzheimer’s
and Parkinson’s disease and the neurological disorder Friedreich Ataxia (FRDA). Half
of the genes associated with Alzheimer’s disease (AD) [81] have orthologs in Arabidopsis
based on genetic identification [63]. AtPreP1 (Arabidopsis pre-sequence protease 1) and At-
PreP2 (Arabidopsis pre-sequence protease 2) are orthologs to PITRM1, a human-AD-related
protein that degrades Aβ in the human brain mitochondria [82]. AtPrePs share 48% se-
quence similarity with Human PreP (hPreP). Unstructured small peptides ranging between
10 and 65 amino acids (AA) in length can be digested by AtPreP1 and AtPreP2, and free
transit peptides (TP) from chloroplast proteins and pre-signal peptides from mitochondrial
proteins are the degradation targets [83–85]. Furthermore, the direction and ultimately new
findings of human PreP research related to AD are derived from plant PrePs, especially
the fundamental research on 3D structural analysis, subcellular localization and substrate
specificity [63]. The low abundance (less than 70%) of a mitochondrial iron-binding protein
Frataxin (FXN), which is involved in iron–sulfur cluster ([Fe–S]) biosynthesis, leads to a
severe neurodegenerative disorder, Friedreich ataxia (FRDA) [86]. A study on Arabidopsis
frataxin (AtFH) uncovered that a low abundance of FXN causes increased ROS production
and high sensitivity to oxidative stress, and this oxidative stress can be counteracted by
high levels of nitric oxide (NO) [87]. Consistent with AD, the understanding or treatment
of FRDA could also benefit from fundamental research results on Arabidopsis.

The previous analysis found that 139 (48%) of 289 human-disease-associated genes
were similar to genes in Arabidopsis, indicating evolutionary conservation in plants and ani-
mals. In this study, we selected 35 disease-associated genes and identified 34 homologous
genes in the annual Arabidopsis and perennial poplar for the purpose of in-depth analysis.
The gene structure and exon analysis revealed that both in Arabidopsis and in poplar, these
34 genes had many exons, being well above the average number. These genes have multiple
transcripts, which are typical of variable shearing phenomena, mainly exon skipping and
intron lagging, and may be a direction for future research. Moreover, 27 of the 34 genes
are continuously up-regulated during leaf senescence in Arabidopsis, while in Populus, this
gene number is 5 (Figure 4). One of the possible reasons for this is that Arabidopsis was
cultured inside a greenhouse, and the growth conditions were controlled. On the other
hand, the Populus trees grew in a wild field and were subject to various biotic and abiotic
stresses. Regarding this specificity, Arabidopsis is more suitable for the establishment of
leaf-senescence-regulating model that can be used to study human disease. Moreover, we
could also conduct environment controlled leaf senescence tracking process in Populus for
future comparison. The PPI network identified 15 SAGs (Figure 6A), including TARGET
OF RAPAMYCIN (TOR) integrated two proteins S6K1 and S6K2 which were up-regulated
during leaf senescence in both Arabidopsis and Populus. TOR has been widely studied in
both mammals [88–90] and plants [91–94]. Fundamental research on the human diseases
Coffin–Lowry (RPS6KA3) and AKT2, caused by S6K1 and S6K2, respectively, might bene-
fit from TOR, especially in regard to future research directions for TOR focusing on leaf
senescence regulation.

Molecular docking is a powerful method of drug-protein screening. The two genes
S6K1 and S6K2, which are up-regulated in both Arabidopsis and poplar during leaf senes-
cence, displayed different binding pockets when analyzed with KU-55933 (Figure 8), and
this could be further studied through experiments. Moreover, 27 of the 34 genes could be
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studied by molecular docking for drug screening, and the identified drugs could be applied
if they can delay or promote the leaf senescence process. The 27 genes could be genetically
studied and manipulated using the excellent features of the small Arabidopsis genome,
including its rapid reproduction, and multiple ecotypes. The screened small molecule
compounds which can alter leaf senescence process might provide good candidates for
curing human diseases. Many human diseases arise as a consequence of localized cellular
senescence, and if drugs can be developed to directly accelerate the progression of these
cells from senescence to apoptosis, this may also provide indications to develop cures for
human diseases.

5. Conclusions

Our analysis revealed that the similar genes associated with human diseases in Ara-
bidopsis and Populus display greatly more exon number and longer average exon length
than the whole-genome average level. Moreover, our study uncovered that in Arabidop-
sis most of the human disease-related genes were continuously up-regulated during leaf
senescence, while in Populus most of the human disease-related genes were continuously
down-regulated during leaf senescence. ABCA1, S6K1, S6K2 and PEX1, were up-regulated
during leaf senescence both in Arabidopsis and Populus. This study uncovered that human-
disease-associated genes in Arabidopsis and Populus are involved in the process of leaf
senescence regulation, which was further confirmed by PPI network and molecular dock-
ing analysis. In conclusion, understanding of the leaf senescence fundamental mechanisms
might be of central importance to human disease treatment.
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