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Abstract: Spinal cord tumors constitute a diverse group of rare neoplasms associated with significant
mortality and morbidity that pose unique clinical and surgical challenges. Diagnostic accuracy
and outcome prediction are critical for informed decision making and can promote personalized
medicine and facilitate optimal patient management. Machine learning has the ability to analyze
and combine vast amounts of data, allowing the identification of patterns and the establishment
of clinical associations, which can ultimately enhance patient care. Although artificial intelligence
techniques have been explored in other areas of spine surgery, such as spinal deformity surgery,
precise machine learning models for spinal tumors are lagging behind. Current applications of
machine learning in spinal cord tumors include algorithms that improve diagnostic precision by
predicting genetic, molecular, and histopathological profiles. Furthermore, artificial intelligence-
based systems can assist surgeons with preoperative planning and surgical resection, potentially
reducing the risk of recurrence and consequently improving clinical outcomes. Machine learning
algorithms promote personalized medicine by enabling prognostication and risk stratification based
on accurate predictions of treatment response, survival, and postoperative complications. Despite
their promising potential, machine learning models require extensive validation processes and quality
assessments to ensure safe and effective translation to clinical practice.

Keywords: machine learning; artificial intelligence; deep learning; spinal cord tumors

1. Introduction

Spinal cord tumors are a diverse group of rare neoplasms that arise from tissues
in and around the spinal canal, which tend to have an indolent onset with a gradual
progression of signs and symptoms [1,2]. Similar to their intracranial counterparts, spinal
cord tumors are characterized by histological heterogeneity, reflecting potential origination
from a multitude of precursor cells. By convention, spinal cord tumors are commonly
classified by anatomic sublocation as intradural intramedullary, intradural extramedullary,
or extradural [1]. Surgical resection constitutes the mainstay approach for their definitive
diagnosis and removal. For invasive tumors, where complete resection and local control
are not feasible, adjuvant therapies are commonly implemented. Given the significant
clinical and operative challenges associated with spinal cord tumors, physicians could
benefit from insights that could potentially aid decision making and improve patient
outcomes. However, while substantial progress has already been made in applying artificial
intelligence-based techniques in brain tumors, the growing trend of these soft computing
approaches has only recently been implemented in diagnosing and managing spinal cord
tumors. In this manuscript, we aim to report and evaluate the current and potential
applications of machine learning in spinal cord tumors.
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1.1. Machine Learning

Machine learning represents a subset of artificial intelligence in which machines are
able to “learn” from data without any explicit programming [3]. The features of the input
data determine the output generated by the machine learning model. Therefore, machine
learning possesses the ability to efficiently process vast amounts of information, which
could potentially aid in diagnosing and managing complex diseases. Common applications
of machine learning include:

i. Classification: the input is allocated to a specific category among a group of two
or more. For instance, machine learning models in spinal pathology could be
implemented to determine disc degeneration severity, according to Pfirrman grad-
ing, by automatically assigning a magnetic resonance imaging scan of the disc
to a category ranging from 1 to 5. Similarly, classification can be employed for
image segmentation by labeling pixels based on anatomical regions and regional
characteristics [4];

ii. Regression: the output generated is continuous. For example, determining the
coordinates of a region of interest in a magnetic resonance scan would require
regression techniques [4];

iii. Clustering: enables inputs to be assigned to groups by factoring features learned
from the inputs themselves, allowing classification of data in the absence of prior
knowledge [4].

Machine learning techniques can also be described in terms of the nature of the
tasks performed:

i. Supervised learning utilizes a dataset with predictor variables for which the correct
output is known and establishes associations between the two [5]. Supervised
techniques allow the identification of the optimal connections between input and
output data by accurately modeling the difference between the machine predictions
and the correct output [4]. Supervised learning is heavily used in the medical field;

ii. Unsupervised learning uses input data for which the output is unknown. Such
algorithms analyze unlabeled datasets to discover hidden patterns and extract new
knowledge without the need for human intervention. Clustering constitutes a form
of unsupervised learning.

Importantly, for any machine learning model to achieve the desired performance, it
must appropriately pair the input data and their relative output during training. When
the mapping function is determined, and if the training examples are sufficient, the model
can accurately process new inputs similar to those included in the training. If the training
dataset is insufficient, the model may generate results that fit the training data precisely
but cannot make accurate predictions on new inputs (overfitting); or may not establish a
complex enough function to capture the features of the input data (underfitting) [6].

Multiple methods are used for supervised learning and embody a cardinal compo-
nent of the machine learning tasks employed in medical research. Linear regression, a
commonly used method, formulates inputs as multidimensional vectors and maps them
to the corresponding output. Its simplicity and inability to capture nonlinear behaviors
make linear regression models more susceptible to underfitting and limit their applicabil-
ity [4]. Logistic regression interprets inputs to a binary output according to the logistic
sigmoid function, which represents the probability of the input corresponding to the “1”
or “0” output [4]. Support vector machines are based on the notion that data points can
be represented as points in a multidimensional space. Support vectors build one or more
hyperplanes that divide the space in order to optimally partition data points into different
classes [7]. Support vector machines are powerful tools for multiclass linear classification
tasks, e.g., image segmentation, and have been employed in spine science for grading disc
degeneration [8]. Decision trees link the values of the features from the input data to the
possible outputs. The tree is divided into branches for each condition, with the terminal
nodes representing the outcome of the decision [9]. Random forests utilize multiple deci-
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sion trees, which are built on random subsets of the input features and generate an average
of their prediction. Random forests limit the inherent susceptibility of overfitting of the
decision trees. Artificial neural networks mimic the functional organization of the human
brain by creating interconnecting neurons [10]. Information is transmitted and weighted
through the neurons, which are organized in layers, and is processed through linear or
nonlinear activation functions. Extending on the concepts of artificial neural networks,
convolutional neural networks are based on the architecture of the animal visual cortex
and are particular. Information from different groups of neurons, which are sensitive to
particular image features, e.g., edge orientation, direction, shape, is weighted and combined
to produce the final output [9]. Deep Learning constitutes a subfield of machine learning
which utilizes methods involving multiple layers of processing units and can be practically
viewed as multilevel artificial neural networks.

Using machine learning algorithms and cutting-edge deep learning architectures,
artificial intelligence has recently altered the landscape of cancer research and medical
oncology. Given the rising importance of personalized medicine, a wide range of artificial
intelligence techniques have been widely employed to develop predictive algorithms,
which model progression and response to treatment, ultimately informing effective and
accurate decision making and improving outcomes of cancerous conditions. Continuous
technical improvements have enabled computers to outperform expert human operators in
tasks such as image classification, object detection, and landmark localization [11].

1.2. Neoplasms of the Spinal Canal

The spinal canal may encompass a variety of tumors that develop within or affect the
spinal cord, theca, and spinal nerves, which are frequently less aggressive and infiltrative
than their cerebral counterparts. The spinal cord tumors per se can be studied as follows
(Figure 1) [12,13]:

i. Intramedullary lesions: Include spinal ependymoma, astrocytoma, pilocytic astrocy-
toma, glioblastoma, hemangioblastoma, ganglioglioma, primitive neuroectodermal
tumors, metastasis, leukemia, or lymphoma;

ii. Intradural, extramedullary neoplasms: Include meningioma, nerve sheath tumors
such as schwannoma or neurofibroma, and leptomeningeal metastasis;

iii. Tumors of the cauda equina and filum terminale: include myxopapillary ependy-
moma, paraganglioma, metastasis, lipoma, dermoid or epidermoid cysts, and nerve
sheath tumors.

Before finalizing therapy options, precise knowledge of spinal cord tumor pathology
is paramount. Tumor grading and categorization can also give patients and their families
crucial prognostic information in addition to assisting with therapy choices. According to
the 2021 World Health Organization central nervous system tumor grading/classification,
tumors are graded within the types (rather than across different tumor types) with Arabic
numerals (rather than Roman numerals employed in previous editions) [13]. According
to the current classification, each lesion is given a grade between 1 and 4, with grade 1
being biologically benign and grade 4 being biologically the most malignant and having
the worst prognosis. Generally, 88–90% of all primary spinal cord tumors develop in the
extramedullary compartment, making them the most prevalent subtype [12].
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Figure 1. Classification of Spinal Cord Tumors [12,13].

2. Diagnosis

The importance of correctly diagnosing neoplastic lesions and classifying tumor pa-
tients into high or low risk groups has led many research teams from the biomedical and
bioinformatics field to study the application of various machine learning methods, and this
has followed suit in spinal cord tumor research.

2.1. Classification

Differentiating intramedullary spinal cord tumors from more common inflammatory
demyelinating lesions poses a vital yet challenging task; despite their overlapping radio-
graphic appearances, they have fundamentally different treatments and prognoses [14].
Zhuo et al. proposed a deep learning pipeline for classifying spinal cord lesions based on
T2—weighted magnetic resonance images, which in some instances, even outperformed
experienced neuroradiologists. They developed three two-classification models using
two dimensional MultiResUNet and DenseNet121 networks, which compared tumor vs.
demyelinating lesion, astrocytoma vs. ependymoma, and multiple sclerosis vs. neuromyeli-
tis optica spectrum disorders. Their model achieved 96% accuracy in differentiating a
tumor from an inflammatory lesion and 82% accuracy in classifying spinal astrocytoma
versus ependymoma.
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In order to better characterize the intramedullary spinal cord tumors based on the
lesion’s position, size, and growth rate, segmentation of the lesion into tumor, edema, or
cavity provides significant insight. To overcome manual segmentation’s time consuming
and erroneous nature, Lemay et al. tailored an automated method, a cascaded architecture
with U–Net-based models that segment tumors in a two-stage process involving locating
and labeling [15]. The model initially identifies the spinal cord from multi contrast magnetic
resonance images, generates bounding box coordinates as output, and crops the image to
focus on an area of interest, thus mitigating class imbalance. The tumor is then divided
into segments, and their model has shown a Dice score (a metric used to gauge machine
learning model performance) of 61.8 ± 4.0% for the segmentation of tumors with a positive
detection rate above 87%.

To mimic the routine clinical practice of incorporating patient clinical information
to provide a radiological diagnosis, Liu et al. proposed a weighted fusion framework
on magnetic resonance imaging to diagnose benign and malignant spine tumors at the
patient level [16]. The weighted fusion framework included a combination of a tumor
detection model, a sequence classification model, and a statistical module on age informa-
tion. Their method facilitated the simultaneous delineation of tumor location, integration
of the classification results of the tumor detection and the sequence classification models,
aggregation of the results by majority voting, and finally, consideration of the patient’s age.
Their weighted fusion framework model showed an accuracy of 82% as opposed to doctors’
64–74% accuracy.

Artificial intelligence-based techniques, therefore, carry great potential to serve a
confirmatory role for radiologists in the future, enabling focus on the altered image area
and thus increasing workflow in neuroradiology [17]. Even though machine learning
methods can improve our understanding of cancer progression, an appropriate level of
validation is required to translate these methods into routine clinical practice.

Machine learning techniques, particularly deep learning approaches, have been em-
ployed to diagnose extramedullary tumors and differentiate among different types, such as
schwannomas and meningiomas. Maki et al. used a deep learning framework to construct
a convolutional neural network architecture on magnetic resonance images of patients [18].
The training images were processed by an orthopedic surgeon, who identified the minimal
region containing the tumor and the anteroposterior border of the spinal canal. Radiologists
reviewed the processed images, which were identical to the training dataset, in order to
create equal competition between the convolutional neural network and the physicians.
The model exhibited high diagnostic accuracy rates of over 80%, comparable to that of expe-
rienced radiologists. Ito et al. also employed a deep learning-based object detection system
from imaging to develop an automated system for detecting spinal schwannomas [19]. T1-
and T2-weighted images were manually labeled to facilitate training. The model was cross-
validated by applying random transformations to the MRI images (e.g., flipping, scaling,
etc.). This model yielded a high accuracy of over 93% using the T1- and T2-weighted images
of the training dataset, comparable to identification by doctors. Cao et al. constructed a
novel convolutional neural network-based deep learning model, incorporating multisource
imaging data and prior clinical features [20]. Their model processed 11–12 slices extracted
from contrast-enhanced T1 and T2 sequences, producing an attention map, which was then
compared with the manually segmented lesion area. In classifying malignant nerve sheath
tumors from spinal schwannomas, their approach outperformed conventional radiomic
methods and radiologists’ assessment with a much greater accuracy (AUC of 0.95).

2.2. Molecular and Genetic Profiling

Apart from being utilized in diagnostic neuroradiology, machine learning techniques
have also been used to understand the molecular genomics of spinal cord tumors. Jung et al.
trained a random forest model with clinical and radiological data of 41 spinal cord glioma
patients to predict the presence of H3 K27M mutations, which confer central nervous
system tumors with poor prognosis [21]. Their random forest classifier showed that this
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histone gene mutation could be predicted with moderate discrimination (63.4% accuracy)
based on clinical and radiological features. Pandey et al. utilized specific peptide motifs,
conservation scoring schemes, Position Specific Scoring Matrices, and mutation matrices
to develop a machine learning method (GlioBlastoma Multiforme Drivers) distinguishing
between driver and passenger mutations in glioblastoma based on recurrence in patients
with an accuracy of 73.6% [22]. Such methods can be applied to prioritize driver mutations
and facilitate the identification of therapeutic targets.

Machine learning has also shown promise in the automated interpretation of histopathol-
ogy of central nervous system tumors, identification of IDH1 mutation, MGMT promoter
methylation, and 1p19q codeletion [23]. While most of these efforts have been focused on
permanent sections of brain tumor specimens due to the larger amount of labeled data
available and fewer artifacts, the results could very well be extrapolated to spinal cord tu-
mors of similar histological features. Of late, machine learning approaches have also been
applied for the automated diagnosis of intraoperative histopathologic specimens of central
nervous system tumors [24]. A conventional machine learning approach, called multilayer
perceptron, has achieved over 90% accuracy in classifying low grade glioma, high grade
glioma, or nonglial tumors from digitally stimulated Raman Histology images (a label-free
microscopy method based on Raman scattering to generate virtual slides of same diagnostic
histopathologic features as permanent sections) [25]. Interestingly, this model could clas-
sify tumors using fresh, unstained intraoperative specimens, which were then converted
into virtual hematoxylin- and eosin-stained slides, unveiling crucial diagnostic features.
This demonstrates the prospect of deep neural network-based automated interpretation in
assisting neuropathologists to boost diagnostic accuracy in complex or atypical cases.

Altogether, machine learning provides auxiliary information and may be used to
deliver accurate diagnostic predictions and warning alerts by combining numerous data
sets. Artificial intelligence is projected to progressively revolutionize clinical practice as
its applications in radiological imaging, histopathology, and genomic information expand.
Machine learning has demonstrated high diagnostic accuracy in spinal cord tumor predic-
tion and distinction and continues to offer highly reproducible quantitative parameters
that can even outperform qualitative assessments by experienced doctors.

3. Management

While the primary goal of surgery for spinal cord tumors is to restore neurological
function and improve functional status and quality of life, the risks associated with surgery
are balanced with achieving gross total resection to decrease the chance of tumor recur-
rence [26]. Khan et al. [27]. used machine learning to predict health-related quality of life
outcomes after surgery for patients with mild degenerative cervical myelopathy. Their
model employed seven different machine learning algorithms (random forests, classifi-
cation trees, support vector machines, generalized additive models, generalized boosted
models, partial least squares, and multivariable adaptive regression splines), which con-
sidered demographic and clinical factors and factors related to the surgical approach as
predictor variables for the development of the algorithms [28]. There is scope for the
development of similar algorithms for spinal cord tumors. Using the surgical approach as
a predictor, surgeons can modify the approach beforehand, using the algorithm to find the
optimal strategy for a given patient.

3.1. Surgical Planning

Artificial intelligence has the potential to individualize surgical planning and manage-
ment for each patient. The heavily refined image processing aspect of machine learning
can account for each patient’s anatomical variations, allowing for accurate reconstruction
of relevant surgical anatomy. The use of machine learning for surgical planning is still
in its infancy, and localization is key to a successful outcome. Localization, also known
as object detection or classification, is an application of artificial intelligence that allows
for identifying and labeling an object in an image [29]. Recent advances in localization
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have focused on the performance improvement of localization algorithms on subopti-
mal data. Jakubicek et al. [30]. developed a convolutional neural network trained on
three-dimensional computerized tomography images, which consisted of three consecutive
phases, including spinal axis determination, detection, and localization of intervertebral
discs, and finally, identification and labeling of vertebrae. Their model correctly identified
87.1% of vertebrae using a data set that included distorted spines and incomplete spine
scans, with a mean error of intervertebral disc localization of 4.4 mm. Algorithm training
using incomplete data may increase the clinical utility and generalizability of localization
in the future since clinical data are often not curated for processing by artificial intelligence.
Nam KH et al. [31]. designed machine learning regression algorithms, using Google Ten-
sorFlow as the machine learning library, to predict the T-score of vertebrae, based on age,
sex, and Hounsfield units. This approach reached a 92.5% accuracy in the test data set
of 40 vertebrae, demonstrating the role of artificial intelligence in predicting osteoporotic
vertebrae and ultimately informing surgical planning in spine surgery.

3.2. Resection

Benign lesions are more likely to exhibit an easy plane of dissection that facilitates re-
section; however, for infiltrative tumors, this may be difficult to establish. Marcus et al. [32]
developed an artificial neural network that improved the prediction of surgical resectabil-
ity in patients with glioblastoma multiforme. Artificial intelligence-based deep learning
algorithms have been developed to facilitate surgeons to simultaneously maximize tu-
mor removal while minimizing normal brain tissue displacement intraoperatively for
glioblastoma multiforme [33]. The generated classification map is based on a four-step
framework of blood vessel identification, parenchymal tissue detection, image classifica-
tion, and morphological processing. Such multi-step concepts can be applied to infiltrative
intramedullary spinal cord tumors such as astrocytomas, where it is difficult to distin-
guish between the normal spinal cord and tumor, facilitating maximal excision while
simultaneously mitigating iatrogenic injury.

3.3. Intraoperative Diagnosis

A study by Khalsa SS et al. [24] applied Raman scattering to produce virtual hema-
toxylin and eosin slides without processing the tissue in real time. They used a convolu-
tional neural network to identify 13 different brain tumors using intraoperative Simulated
Raman Histology specimens with a diagnostic accuracy of 94.6%. Intraoperative specimens
are burdened by artifacts during tissue preparation, variability in preparation techniques,
and lack of digitalized data suitable for research. Developing a reliable automated model,
which expedites surgical decision making based on intraoperative information, can im-
prove the speed and accuracy of intraoperative preliminary diagnoses, guide treatment
options, and inform prognosis at the time of surgery.

3.4. Navigation and Robotics

In modern spine surgery, neuronavigation and robotics are promising for machine
learning applications. Current robotic surgical tools depend on physicians to pinpoint the
area under interest. To decrease the time surgeons spend preparing for surgeries, healthcare
institutions may turn to artificial intelligence in the form of predictive algorithms that will
use real world data to put together preoperative plans. Three dimensional convolutional
neural networks have shown promising results in aiding stereotactic radiation therapy
planning [34]. Machine learning and deep learning methods have been used for automatic
segmentation and contouring of tumors in head and neck oncology, saving clinicians
time and producing good quality radiation planning contours [35]. Following the manual
delineation of features of interest (gross tumor volume, clinical target volume, anatomical
structures), the proposed algorithm was trained to learn physician contouring patterns
and was able to predict high-risk clinical target volumes. The predicted contours could
be applied clinically with minimal changes necessary. Implementing such models allows
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the tailoring of treatment plans according to individual patient and tumor characteristics,
improving treatment accuracy and target delineation while reducing the time needed to
select treatment plan parameters.

Computer-assisted navigation is widely utilized in operating rooms in the United
States for operations ranging from spinal fusions to spinal tumor resection to complex
spinal deformity. Current technology allows surgeons to construct a three-dimensional
rendering of the spine, offering real time positional feedback and visualization of deeper
structures, potentially avoiding iatrogenic injury. Intraoperative surgical robotics has
the potential to implement artificial intelligence features and increase surgical precision
and efficiency while avoiding complications as a result of human error and fatigue [36].
However, perioperative artificial intelligence platforms are yet to be published in the
literature. It is important to note that although these devices could increase efficiency,
speed, and accuracy in the operative room, they are ultimately tools that help the primary
decision maker—the surgeon.

4. Postoperative Outcomes

Artificial intelligence models have been increasingly employed to predict outcomes
and prognosis of spine disorders. Predicting clinical outcomes equips physicians with
valuable information which can aid decision making, promote personalized medicine, and
facilitate optimal patient management. Early attempts have demonstrated the applicabil-
ity of machine learning in spine surgery [37–39], but with an evolving understanding of
machine learning algorithms, progressively more advanced models have emerged. Al-
though artificial intelligence techniques have been explored in other areas of spine surgery,
such as spinal deformity surgery [40,41], precise predictive models for spinal tumors are
somewhat scarce.

4.1. Predictive Models in Spinal Tumors

Given the rarity of spinal tumors, there is a paucity of literature unifying diverse
predictors into an effective integrated risk model. Currently, the only published predictive
machine learning model in spinal tumors was developed by Jin et al., who recruited a di-
verse set of clinical characteristics to predict postresection outcomes for intradural tumours.
The proposed algorithm used a least absolute shrinkage and selection operator (LASSO)
approach to classify discharge destination and 90-day readmission as binary outcomes
based on input features, which included patient-specific and tumor-specific factors. Their
integrated model outperformed other models, which employed only tumor-specific or
patient-specific features, as it demonstrated superior discrimination and accuracy for non-
home discharge and 90-day readmissions for patients undergoing surgery for intradural
tumors [42]. Other non-machine learning calculators which provide risk stratification
information for physicians have emerged. For example, neurological presentation, patient
demographics, and incision length have been shown to be important predictors of nonrou-
tine discharge, length of stay, readmission, and reoperation in patients undergoing surgery
for intramedullary spinal cord tumors [43]. Similarly, Wang et al. developed a nomogram
model and risk classification system for primary intramedullary spinal cord grade II/III
ependymomas that accurately estimated individual overall survival probability [44]. How-
ever, although such non-artificial intelligence systems provide a potential framework for
the development of machine learning algorithms, robust models are yet to be established.
Nevertheless, the accurate prediction of postresection outcomes for spinal cord tumors,
unifying heterogeneous clinical data, enables the transition to an era of personalized care.

4.2. Predictive Models in Spine Surgery

Invaluable information can be obtained by utilizing predictive models that have been
developed to predict outcomes and complications in spine surgery, which are not specific
to spinal tumors. Lee et al. created and validated a surgical site infection calculator,
which provides a percentage prediction based on certain risk factors [45]. Their algorithm



Life 2023, 13, 520 9 of 13

demonstrated fair predictive power, with a receiver operator character curve of 0.72, and
is available online [46]. Similarly, other models have been devised which predict the
likelihood of needing single versus multiple operative debridements once a surgical site
infection has occurred [47]. Establishing such associations provides a foundation for
machine learning models to develop upon. An artificial intelligence preoperative algorithm
has been designed to predict the risk and automatically detect intraoperative vascular injury
during lumbar surgery [48]. This model employed random forests to facilitate variable
selection for the final algorithm training, which led to the identification of male sex, L4-L5
exposure, age, body mass index, surgery for infection, and diabetes as predictive features
for intraoperative vascular injury. Following feature selection and development of five
different supervised machine learning algorithms (random forest, support vector machine,
stochastic gradient boosting, neural network, elastic-net penalized logistic regression),
elastic-net penalized logistic regression achieved the best performance, with negative
predictive values of 0.99 and 0.97 for automatic detection and preoperative prediction of
vascular injury, respectively. Evidently, such tools provide significant insights that can
inform decision making and shape patient management. Despite the promising potential
exhibited by such models, further exploration of their application in spine surgery is
warranted to validate their role in clinical practice.

4.3. Potential Imaging Biomarkers

Magnetic resonance imaging embodies an integral element of spinal disorders and
offers an abundance of potential biomarkers that could complement clinical data to im-
prove prognostic accuracy. In principle, identifying molecular and genetic profiles, such as
platelet-derived growth factor in spinal ependymomas, can reveal treatment targets, ex-
pand treatment options, and ultimately improve patient outcomes [49]. Although extensive
research has correlated genetic variants and histologic grades with survival in intracra-
nial tumors, this information has not been universally translated to their spinal counter-
parts [50,51]. Contradictory evidence in the literature suggests that the predictive value
of molecular profiles may be influenced by tumor location, hindering the development of
machine learning models based on molecular data [50]. For example, KIAAA1549–BRAF
mutations were seen in a higher frequency than BRAFV600E and other genetic aberrations
in pediatric spinal low grade gliomas and may have been associated with lower death rates,
but this difference only trended toward statistical significance [52]. Overall, further studies
are required to investigate prognostic biomarkers and targetable genetic drivers in order to
translate them into clinical practice (Table 1). [14–16,18–22,25,30,31,48].

Table 1. Summary of publications studying machine learning application in spinal cord tumors or
spinal surgery.

Name Machine Learning
Algorithm Clinical Context Application Performance Sample Size

(Patients)

Zhuo et al.
2022 [14]

Deep Learning—
MultiResUNet and

DenseNet121

Astrocytoma,
Ependymoma,

Multiple Sclerosis,
Neuromyelitis Optica
Spectrum Disorders

Diagnosis,
Classification

Tumor vs. Inflammatory
Lesion—Accuracy 96%;

Astrocytoma vs.
Ependymoma—
Accuracy 82%

490

Lemay et al.
2021 [15]

Deep Learning—
Convolutional Neural

Network

Astrocytoma,
Ependymoma,

Hemangioblastoma

Diagnosis,
Classification,
Segmentation

Positive Detection Rate 87% 343

Liu et al.
2022 [16]

Deep Learning—Weight
Fusion Framework Benign vs. Malignant Diagnosis,

Classification
Benign vs.

Malignant—Accuracy 82% 585

Maki et al.
2020 [18]

Deep Learning—
Convolutional Neural

Network

Schwannoma,
Meningioma

Diagnosis,
Classification

Schwannoma vs.
Meningioma—Accuracy 80% 84

Ito et al.
2021 [19]

Deep Learning—Google
Tensorflow Schwannoma Diagnosis,

Detection Accuracy 93% 50
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Table 1. Cont.

Name Machine Learning
Algorithm Clinical Context Application Performance Sample Size

(Patients)

Jung et al.
2019 [21] Random Forest Glioma Diagnosis,

Classification
H3K27M

Detection—Accuracy 63.4% 41

Pandey et al.
2022 [22] - Glioblastoma Diagnosis,

Classification
Driver vs. Passenger

Mutation—Accuracy 74% -

Orringer et al.
2017 [25] Multilayer Perceptron

Glioma,
Metastasis,

Meningioma,
Lymphoma,

Medulloblastoma

Diagnosis,
Classification Overall Accuracy 90% 101

Jakubicek et al.
2020 [30]

Deep Learning—
Convolutional Neural

Network
Vertebral Identification Surgical Planning,

Classification
Vertebral Identification

Accuracy 87% 421

Nam KH et al.
2019 [31]

Deep Learning—Google
Tensorflow Osteoporotic Vertebrae Surgical Planning,

Classification
Osteoporotic

Vertebrae—Accuracy 92% 70

Karhade et al.
2021 [48]

Natural Language
Processing

Intraoperative Vascular
Injury Surgical Planning

Preoperative Prediction of
Vacular Injury—Negative

Predictive Value 0.99
1035

5. Limitations

As techniques such as convolutional neural networks are based on a “black box”
design, interpretability should be kept in mind. Although the automated nature of neural
networks allows for the detection of patterns missed by humans, human scientists are left
with little ability to assess how or why such patterns were discerned by the computer. It is
important to note that artificial intelligence algorithms are only as good as the data that are
used to train them. Most research methods utilize small data sets, so systemic and selection
biases within the data set can impact the correlations and predictions generated by models.
One must also consider the ethical and legal implications of artificial intelligence in surgery,
such as patient privacy, confidentiality, and protection from cybercrime. Medicolegal
regulation needs to be kept up to date and explicitly defined, as it may be challenging to
hold an algorithm or its developers accountable in case of an adverse event. Prior to clinical
implementation, machine learning models must be rigorously analyzed retrospectively and
externally validated to ensure generalizability. Small scale prospective implementation,
such as phases 1 and 2 of clinical trials, can help surgeons understand how these algorithms
affect decision making among individuals and across different populations.

6. Conclusions

The rapidly expanding field of artificial intelligence, driven by major technological
advances, embodies a promising tool in spine oncology, albeit still in its infancy. Future pre-
dictive models incorporating radiographic, pathologic, molecular, and oncologic data will
provide more meaningful, precise, and unbiased assessments of survival and effectiveness
of interventions. Importantly, extensive validation processes and quality assessments of
the proposed algorithms are necessary to facilitate safe and effective translation to clinical
practice. Applying artificial intelligence to complement human decision making, and not
replace it, should be encouraged to unlock its full potential and enable the transition to an
era of data-driven personalized medicine in spinal cord tumors.
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