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Abstract: Widespread parasites, along with emerging threats, globalization, and climate change, have
greatly affected honey bees’ health, leading to colony losses worldwide. In this study, we investigated
the detection of biotic stressors (i.e., viruses, microsporidian, bacteria, and fungi) in Apis cerana by
surveying the colonies across different regions of Thailand (Chiang Mai in the north, Nong Khai and
Khon Kaen in the northeast, and Chumphon and Surat Thani in the south, in addition to the Samui
and Pha-ngan islands). In this study, we detected ABPV, BQCV, LSV, and Nosema ceranae in A. cerana
samples through RT-PCR. ABPV was only detected from the samples of Chiang Mai, whereas we
found BQCV only in those from Chumphon. LSV was detected only in the samples from the Samui
and Pha-ngan islands, where historically no managed bees are known. Nosema ceranae was found
in all of the regions except for Nong Khai and Khon Kaen in northeastern Thailand. Paenibacillus
larvae and Ascosphaera apis were not detected in any of the A. cerana samples in this survey. The
phylogenetic tree analysis of the pathogens provided insights into the pathogens’ movements and
their distribution ranges across different landscapes, indicating the flow of pathogens among the
honey bees. Here, we describe the presence of emerging pathogens in the Asian honey bee as a
valuable step in our understanding of these pathogens in terms of the decline in eastern honey bee
populations.

Keywords: honey bees; Apis cerana; LSV; ABPV; BQCV; Nosema ceranae; microsporidians; viruses

1. Introduction

The Asian honey bee, Apis cerana, is distributed throughout Asia. These bees provide
not only important pollination services for plant ecosystems, but also economic value to
society due to the production of honey [1]. Based on morphological characteristics [2],
A. cerana is divided into four groups in Thailand: northern–central Thailand, southern
Thailand, Samui Island, and Phuket Island). Beekeepers in Thailand have long keeping A.
cerana using traditional log hives for more than 1000 years, and this traditional method of
beekeeping continues today [1]. It is postulated that there is a great decline in pollinator
populations and/or diversity around the globe [3], and that this is influenced by various
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factors, including habitat loss, pesticides, climate change, and the spread of emergent
pathogens, parasites, and predators [4,5].

Honey bees have been found to suffer from various pathogens. The most serious
pathogens occurring in honey bees include viruses, bacteria, microsporidians, and fungi [6].
These pathogens cause diseases that bring about large damage to the beekeeping industry,
which can ultimately create a great economic losses worldwide [6–8]. The greatest concern
for honey bees’ health is nosemosis (caused by Nosema spp.). This disease has caused great
losses in some parts of Europe [8,9]. American foulbrood (AFB), caused by Paenibacillus
larvae, is generally found in the European honey bee; however, in some parts of Asia
where beekeeping overlaps with the ecological niche of A. cerana, interspecific pathogen
transmission from Apis mellifera to A. cerana can be observed [10,11]. The fungal honey
bee pathogen Ascosphaera apis is a common and widespread disease that can cause a
severe decline in colony production [12]. Consequently, these biotic stressors can induce
considerable losses to honey bee populations.

Although A. cerana is often considered to have lower pathogen prevalence compared
to A. mellifera [11], most pathogens are capable of infecting multiple hosts in natural sys-
tems [13,14]. Many emerging diseases in animals are linked to the utilization of multiple
hosts [13,14]. Previous studies have identified parasites and pathogens that attack honey
bee colonies and are transmitted between different host species. For instance, viral dis-
eases that occur frequently in A. mellifera have been found in A. cerana [15–17]. Similar
patterns have also been found in various Bumbus species [18] and non-Apis hymenopteran
species [19]. The reciprocal transmission of Varroa destructor and N. ceranae between A. cer-
ana and A. mellifera has also been found to decrease honey quality and productivity [20–23].
Chinese sacbrood virus (CSBV) is a serious threat to A. cerana, and it has been detected
in Chinese populations of A. mellifera [24]. These factors have caused a great decline in A.
cerana populations over the past few years [25]. Therefore, serious colony losses worldwide
have been correlated with the movement of pests and pathogens between different host
populations.

Recently, many studies have discovered newly emergent pathogens (such as Apis
mellifera filamentous virus and Lake Sinai Virus) in different honey bee populations [26].
Global assessment of the impacts of biotic stressors on honey bees can help in devising rele-
vant and effective control strategies for pathogens that spread across different populations.
To date, little information is known about the presence of honey bee pathogens in A. cerana
populations. In this study, we evaluated the impacts of biotic stressors on Asian honey bees
across different beekeeping sectors. The aim of this study was to assess the presence of
12 honey bee viruses: acute bee paralysis virus (ABPV), aphid lethal paralysis virus strain
Brookings (ALP-Br), Big Sioux River virus (BSRV), black queen cell virus (BQCV), chronic
bee paralysis virus (CBPV), deformed wing virus type A (DWV-A), deformed wing virus
type B (DWV-B), Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), sacbrood
virus (SBV), slow bee paralysis virus (SBPV), and Lake Sinai virus (LSV). In addition, we
aimed to examine the occurrence of four types of honey bee microsporidia (i.e., Nosema apis,
N. ceranae, N. bombi, and Crithidia bombi), a fungus (i.e., Ascosphaera apis), and a bacterium
(i.e., Paenibacillus larvae) in A. cerana collected from different regions of Thailand. We also
aimed to compare the presence of pathogens in A. cerana between islands (the Samui and
Pha-ngan islands) and mainland regions. Samui Island is in the Gulf of Thailand, approxi-
mately 35 km from the town of Surat Thani, whereas Pha-ngan Island is about 15 km from
Samui Island [27]. On both islands, only native honey bees can be found. There are no
records in terms of honey bee management on either island. A better understanding of
A. cerana’s health and factors causing their colony decline and affecting their productivity
in different geographic regions is a fundamental step in building beekeeping knowledge
and strategies for conserving pollinator diversity via sustainable beekeeping.
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2. Materials and Methods
2.1. Sample Collection

The samples of adult Apis cerana were collected from three different regions (northern,
northeastern, and southern regions) and two islands (Samui and Pha-ngan islands) in
Thailand from January to June 2021. Adult of A. cerana samples (n = 50–200 for each colony)
were collected from 24 colonies in 10 different locations (Figure 1 and Supplementary
Table S1). All samples were preserved in RNAlater (Invitrogen, Vilnius, Lithuania) and
stored at −80 ◦C before further examination in the laboratory.
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Figure 1. Geographic locations of the sample collection sites (red dots) of Apis cerana in Thailand.

2.2. DNA Extraction and DNA Analyses for Species Identification

To confirm the morphospecies identification, molecular analyses were performed
using highly conserved regions of the mitochondrial cytochrome c oxidase subunit 1 (COI)
gene, which is referred to as the DNA barcoding region. Genomic DNA was isolated from
the whole bodies of the A. cerana samples (Figure 1 and Supplementary Table S1) using a
DNA purification kit (PureLink Genomic DNA Mini Kit, Invitrogen, Carlsband, CA, USA)
according to the manufacturer’s instructions. The primer pair was used to amplify a partial
fragment DNA of the COI gene (listed in Table S2). The PCR amplification was performed
in 25 µL reactions containing 1X PCR buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.5 µM
forward primer, 0.5 µM reverse primer, 1U Taq DNA polymerase (Invitrogen, Carlsband,
CA, USA), and 50 ng of DNA template. The PCR cycling conditions were 94 ◦C for 5 min,
and 40 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s, followed by a final step
at 72 ◦C for 7 min. The resulting PCR products were separated by size on 1.5% agarose
gel electrophoresis, and the nucleotide sequences were analyzed to distinguish the honey
bee species. The DNA sequences were deposited in GenBank with accession numbers (see
Supplementary Figure S1 and Table S3).
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2.3. RNA Extraction and cDNA Synthesis for Viral Detection

After confirming the A. cerana species, 10 adult workers from each colony were pooled
and homogenized using a mortar and pestle with liquid nitrogen. Total RNA was extracted
using TRIzol Reagent (Invitrogen, Carlsband, CA, USA) according to the manufacturer’s
instructions. The concentration of RNA was measured for absorbance at 260 nm (A260), and
its purity was assessed at a ratio of A260/A280 using a BioDrop-DUO UV/Vis spectropho-
tometer (BioDrop, Cambridge, UK). Four micrograms of RNA was reverse-transcribed into
cDNA using Tetro Reverse Transcriptase (Bioline, Memphis, TN, USA). Both oligo(dT) and
random hexamer primers were used in the reaction. The mixture was incubated at 25 ◦C
for 10 min, followed by 45 ◦C for 30 min, and then the reaction was terminated at 85 ◦C for
5 min. The cDNA was obtained and stored at −20 ◦C before proceeding to the next step.

2.4. DNA Extraction for Non-Virus Analysis

Ten adult A. cerana workers from each colony were pooled and homogenized as
described for the initial RNA extraction step above. Total genomic DNA was extracted
using a DNA purification kit (PureLink Genomic DNA Mini Kit, Invitrogen, Carlsband, CA,
USA) according to the manufacturer’s instructions. DNA samples were stored at −20 ◦C
prior to molecular screening for microsporidia, fungi, and bacteria.

2.5. PCR Conditions

Each sample was screened for N. ceranae, N. apis, N. bombi, C. bombi, P. larvae, A. apis, and
12 honey bee viruses; ABPV, ALP-Br, BSRV, BQCV, CBPV, DWV-A, DWV-B, IAPV, KBV, SBV,
SBPV, and LSV. The specific primers used for honey bee pathogens and housekeeping genes
(i.e., β-actin and RPS5) are listed in Supplementary Table S2 [28–45]. The cDNA templates
were diluted 5-fold. Total DNA was diluted to 100 ng/µL. PCRs were performed using
Biometra thermal cyclers (Analytik Jena AG, Jena, Germany) in 25 µL volumes containing
1 µL of DNA or cDNA template, 2.5 µL of PCR buffer, 0.75 µL of MgCl2, 0.5 µL of dNTPs,
0.1 µL of Taq DNA polymerase (Invitrogen, Carlsband, CA, USA), and 1.25 µL of each
forward and reverse primer (10 mM), plus 17.65 µL of water. Amplification was performed
with the following thermal cycling profiles: 3 min incubation at 94 ◦C, followed by 40 cycles
of 45 s at 94 ◦C for denaturation, 1 min at 52–56 ◦C for annealing (for ABPV, IAPV, and SBPV
the annealing temperature was 52 ◦C; for DWA-A, DWV-B, SBV, BQCV KBV, and CBPV
the annealing temperature was 55 ◦C; for LSV, ALP-Br, BSRV, N. ceranae, N. apis, N. bombi,
C. bombi, P. larvae, and A. apis the annealing temperature was 56 ◦C), 1 min at 72 ◦C for
extension, and then a final step of 10 min at 72 ◦C. In each run, PCR mixture without DNA
was used as a negative control. The amplicons obtained were electrophoresed on 1.5%
agarose gel to verify the size of the fragments with reference to a 100 bp ladder (GeneDireX,
Taoyuan, Taiwan). The PCR products were cleaned up using ExoSAP reagent, and then the
expected amplicons were nucleotide-sequenced bidirectionally by a commercial company
(Macrogen, Seoul, South Korea).

2.6. Phylogenetic Tree Analysis

Fragment assembly of nucleotide sequences was performed using BioEdit software
version 7.2.5 (Ibis Biosciences, Carlsbad, CA, USA) [46]. They were trimmed to equal
size and aligned using MEGA X (iGEM, Boston, MA, USA). The obtained sequences were
compared with the recorded viruses, Nosema, and COI gene in the GenBank database using
the BLAST program (available from the National Center for Biotechnology Information
(NCBI)). Evolutionary analyses were conducted in MEGA X [47] by using the maximum
likelihood method and the Tamura–Nei model [48]. The initial tree was obtained automat-
ically with neighbor-joining and BioNJ algorithms. The maximum likelihood trees were
constructed using MEGA X. The appropriate substitution model was chosen as described
in the legends of Figures 2–5 and S1 for each virus, N. ceranae, and COI gene phylogeny.
The bootstrap values of 1000 replicates were determined, and the percentage of replicates
was shown in branches. The GenBank accession numbers from the isolates are given in
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the figures. The nucleotide sequences used for phylogenetic analysis were deposited in
GenBank and assigned accession numbers. Related sequences of the viruses, Nosema, and
bees used for constructing the phylogenetic trees were analyzed along with this study’s
sequences (see Supplementary Figure S1 and Table S3).
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Figure 5. Maximum likelihood tree estimated based on the RNA-dependent RNA polymerase (RdRp)
region of ABPV found in Apis cerana in Thailand. The phylogenetic tree was constructed using MEGA
X using a bootstrap value of 1000 replicates. The numbers at each node represent the bootstrap values
as percentages. The taxon name in the green rectangle denotes the samples from the northern region.
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3. Results
3.1. COI-Sequence-Based Characterization of A. cerana Samples

The bee phylogenetic tree based on the COI gene fragment estimated by the maximum
likelihood method is presented in Figure S1. The tree implied the phylogenetic results of
A. cerana subspecies appearing in Thailand. The samples from the northern and northeast-
ern regions were identified as A. cerana indica, which were clustered with the same branch
of A. cerana from India. The A. cerana samples from the southern regions and the Samui
and Pha-ngan islands were found to be closely related to Apis nuluensis.

3.2. N. ceranae, P. larvae, and A. apis Frequencies in A. cerana Colonies

The results of N. ceranae prevalence are summarized in Table 1. N. ceranae-infected
honey bees were detected among A. cerana workers from eight samples (33.33%). The
average infection rate of N. ceranae in the southern region was 37.50%, while the average
infection rate of N. ceranae in the northern region was 50.00%. Among southern locations
with detectable N. ceranae, the highest prevalence for N. ceranae was found in Samui Island,
with an infection rate of 25.00%. Nosema apis, N. bombi, C. bombi, P. larvae, and A. apis were
not detected in any of the examined samples (Table 1).

Table 1. Frequencies of the prevalence of four pathogens recovered from Apis cerana in Thailand.

Sample
Code

Bacteria Fungi Microsporidians Viruses

P. larvae A. apis N. apis N. ceranae N. bobi C. bobi LSV ALPV BSRV ABPV BQCV CBPV DWVA DWVB IAPV KBV SBV SBPV

AC1 - - - + - - - - - - - - - - - - - -

AC2 - - - + - - - - - + - - - - - - - -

AC3 - - - - - - - - - - - - - - - - - -

AC4 - - - - - - - - - - - - - - - - - -

AC5 - - - - - - - - - - - - - - - - - -

AC6 - - - - - - - - - - - - - - - - - -

AC7 - - - - - - - - - - - - - - - - - -

AC8 - - - - - - - - - - - - - - - - - -

AC9 - - - + - - - - - - - - - - - - - -

AC10 - - - + - - - - - - + - - - - - - -

AC11 - - - - - - - - - - - - - - - - - -

AC12 - - - - - - - - - - - - - - - - - -

AC13 - - - - - - - - - - - - - - - - - -

AC14 - - - + - - - - - - - - - - - - - -

AC15 - - - + - - + - - - - - - - - - - -

AC16 - - - + - - + - - - - - - - - - - -

AC17 - - - + - - - - - - - - - - - - - -

AC18 - - - - - - - - - - - - - - - - - -

AC19 - - - - - - + - - - - - - - - - - -

AC20 - - - - - - + - - - - - - - - - - -

AC21 - - - - - - + - - - - - - - - - - -

AC22 - - - - - - - - - - - - - - - - - -

AC23 - - - - - - + - - - - - - - - - - -

AC24 - - - - - - - - - - - - - - - - - -

Percentage
(%) 0% 0% 0% 33% 0% 0% 25% 0% 0% 4% 4% 0% 0% 0% 0% 0% 0% 0%

Note: + = denotes presence, whereas - = denotes absence. Collection locations: AC1-2, Maerim; AC3-4, Pongyang;
AC5-7, Si Chiang Mai; AC8, Mueang Khon Kaen; AC9-10, Mueang Chumphon; AC11-12, Ban Na San; AC14-17,
Thong Krut; AC18, Taliang Ngam; AC19-21, Lipa Noi; AC22-24, Pha-ngan. Abbreviations: AC = Apis cerana.

3.3. Virus Frequencies in A. cerana Colonies

Prevalence data for 12 honey bee viruses (ABPV, ALP-Br, BSRV, BQCV, CBPV, DWV-
A, DWV-B, IAPV, KBV, SBV, SBPV, and LSV) screened in 24 honey bee colonies from
10 locations are shown in Table 1. Honey bee viruses were detected in eight pools of
24 honey bee colonies. Of these eight positive pools, 29.17% of the viruses were collected in
southern Thailand, followed by northern Thailand (4.17%). However, no positive viruses
were found in the northeastern region. Of these viruses, only ABPV, BQCV, and LSV were
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detected in A. cerana. ABPV was found in one sample of A. cerana from the northern region
(25.00%, Chiang Mai province). BQCV was found in one sample of A. cerana from the
southern region (6.25%, Chumphon province). LSV was detected in six A. cerana samples
from the southern region (37.50%, Samui and Pha-ngan islands).

3.4. Phylogenetic Analysis

To study the genetic relationships and variability of the studied pathogens, the nu-
cleotide sequences of pathogens were selected from the GenBank database, and the phylo-
genetic analysis was carried out via maximum likelihood (ML) estimation. The clustering
pattern was constructed to assess the relationships between the samples of N. ceranae, ABPV,
BQCV, and LSV from different geographic locations.

Nosema ceranae was only found in A. cerana from northern and southern Thailand.
Based on closely related sequences of N. ceranae obtained from A. cerana, the phylogenetic
tree was constructed. The N. ceranae isolated from northern and southern Thailand were
part of the same cluster, which was different from the N. ceranae strain circulating in A.
mellifera (Figure 2). However, the other cluster was N. ceranae detected in A. mellifera
collected from Spain, China, France, and USA. The tree suggested that the epidemic of N.
ceranae displayed some consistency across species between Asian and European honey bees.

LSV was found to be the most prevalent virus in A. cerana and was predominantly
present in A. cerana from the southern region. The infection percentage of LSV accounted
for 25.00% and affected the majority of A. cerana colonies. The phylogenetic tree of LSV
was constructed from six isolates from A. cerana samples taken in this study. This also
demonstrated that LSV has a genetic relationship according to host species isolation. LSV
isolates from A. cerana colonies were clustered together in the phylogenetic tree, and they
were collected from the southern region of Thailand, as well as the Samui and Pha-ngan
islands. They were also nearly identical to LSV-3 isolated from A. mellifera from Australia,
rather than other Asian isolates (Figure 3).

According to the phylogenetic trees based on the partial sequences of the capsid
protein of BQCV, two clusters were shown according to the geographic locations (Figure 4).
One unique group was formed by Asian countries, including Thailand, China, and South
Korea, while another group was formed by USA isolates. The USA isolates obtained from
Bombus impatiens formed a separate cluster. BQCV was randomly present among A. cerana,
A. mellifera, and A. florea in the Asian cluster. The spread of BQCV also appeared in all
regions, and the BQCV from Asian isolates was closely related to isolates from the USA.
According to the BQCV tree, the isolates obtained from A. mellifera, A. cerana, and A. florea
indicated that the Asian BQCV cluster (Thailand, China, South Korea) may be related to
their sister taxon of BQCV isolated from Bombus impatiens (Figure 4).

According to the phylogenetic tree based on the RNA-dependent RNA polymerase
region (RdRp) of ABPV, the sequences also formed distinct groups based on their geo-
graphical origins, regardless of honey bee species (Figure 5). Two clusters were formed:
one comprising isolates from China, and one from the western isolates (i.e., Hungary and
Poland). The phylogenetic tree of the ABPV isolates demonstrated that ABPV isolated
from A. cerana was homogeneous and nearly identical to one of two distinct ABPV lineages
found in A. mellifera (Figure 5).

4. Discussion

Our results provide an important overview of the distribution of pathogens of A. cerana
across different regions of Thailand. A total of four pathogens (ABPV, BQCV, LSV, and N.
ceranae) were found in adult A. cerana samples, even though these honey bee samples did
not show any symptoms of disease. Our study showed, surprisingly, that A. cerana honey
bees located in the Samui and Pha-ngan islands of Thailand, which were not managed by
beekeepers, still had LSV infections in their colonies.

LSV was the most prevalent pathogen in A. cerana samples collected from the Samui
and Pha-ngan islands (the distance of the two islands from mainland Thailand is ap-
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proximately 35–55 km). Surprisingly, this virus was not found in the samples collected
from mainland Thailand. LSV has also been detected in hornets [49], bumblebees [50,51],
A. mellifera [52,53], Varroa destructor [54], and ants [55]. In addition, the V. destructor mite—
an ectoparasite of honey bees—is known as a vector for LSV [56]. Our results are con-
sistent with previous reports where LSV was detected in honey bees on Norfolk Island,
Australia [52]. The distance of this island is approximately 1400 km from mainland Aus-
tralia [57]. LSVs are very similar to chronic bee paralysis virus (CBPV) [58]. The recently
described LSV was also found to be linked to a shift in gut bacterial composition that may
be a biomarker of honey bee colony loss [59]. In addition, LSV1, LSV-2, LSV3, LSV6, and
LSV 7 were recently discovered as honey bee viruses in the USA [59]. Phylogenetic analysis
revealed one LSV-3 lineage in A. cerana that is closely related to LSV-3 from A. mellifera
in Australia. In Thailand, there is no such record of the presence of LSV in A. mellifera or
other arthropods. Therefore, our study is the first to report the presence of LSV-3 in A.
cerana in Thailand. Experience would dictate that we need to be concerned about honey
bee pathogens that can jump between Apis species.

ABPV is a common infective agent of A. mellifera colonies that is frequently detected in
healthy colonies. This virus is one of the most serious problems in the beekeeping industry.
It is assumed that this virus plays a role in causing the colony loss of A. mellifera across the
globe [60]. In this study, ABPV was detected in only one of the A. cerana samples from the
northern region (Chiang Mai province) in Thailand. ABPV and/or its strains KBV and IAPV
were detected in Asian honey bees in South Korea, China, and Japan [15,16,61]. Previous
studies have reported that ABPV was detected in A. mellifera in northern Thailand [62]. It is
possible that ABPV from A. mellifera jumped to A. cerana. In Asia, A. mellifera colonies share
the same habitats as A. cerana colonies [63]. Severe colony losses are often preceded by a
rapid progression of paralysis caused by viruses of the ABPV complex [64]. According to
our study, there is a great need to determine the virulence of ABPV in Asian honey bees.

BQCV (a member of the Dicistroviridae) is the most abundant of the honey bee viruses
and is prevalent in covert infections of most Apis species, including both managed and
wild species [63]. BQCV has been detected in A. cerana in China, South Korea, Vietnam,
Japan, and Thailand [10,16,17,39,65,66]. In the current study, the prevalence of BQCV was
found in only one sample among A. cerana samples from the southern region (Chumphon
province) in Thailand. Previous findings suggested that BQCV was associated with Nosema
in A. mellifera colonies in which serious clinical signs were observed [67]. Our results
demonstrated the co-infection of BQCV and N. ceranae in the same colony of Asian honey
bees located in the southern region.

Both BQCV and ABPV isolates obtained from A. cerana fell into the same cluster as
those viruses isolated from A. mellifera. Previously, Sanpa and Chantawannakul [62] re-
ported that DWV, ABPV, CBPV, KBV, and SBV were found in A. mellifera colonies in northern
Thailand. BQCV also was detected in A. mellifera colonies in northern Thailand [65]. These
findings could be a suitable way to explain our results of viral spillover from non-native
to native honey bees. Further study is needed to determine whether the transfer of these
pathogens from non-native to native honey bees could be ongoing, including interspecies
transmission of parasites and a potentially crucial role of host–parasite interaction.

The microsporidia of Nosema spp. are obligate intracellular parasites [68]. Two species
of Nosema have been described as infectors of honey bees (N. ceranae and N. apis) [20]. In the
past, Nosema ceranae was found to parasitize only Asian honey bees, while N. apis was found
to parasitize the European honey bee [69]. Nosema ceranae has infected A. mellifera and
spread worldwide, leading to a decline in populations of N. apis [20,70–73]. Today, Nosema
ceranae is the most common Nosema found in A. cerana and other Apis species [20,74–76].
The detection of N. ceranae has been reported in A. mellifera, A. cerana, A. dorsata [74,75,77],
and Bombus spp. [78] in northern Thailand. Moreover, this parasite has been detected in A.
cerana, A. florea, and the non-native A. mellifera in central Thailand [79]. Our results also
showed that N. ceranae was detected in A. cerana samples from Chiang Mai, Chumphon, and
Samui Island, but not in those collected from the northeast region. This finding is similar to
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that of Suraporn et al. [80], where Nosema was not detected in honey bees collected from the
northeastern region of Thailand. However, these findings suggest that N. ceranae may be
widespread and common in honey bees in Thailand, and potentially elsewhere in Southeast
Asia. Furthermore, phylogenetic analyses can be used to separate specific taxa of N. ceranae
in A. cerana and the other Apis isolates, as reported by Chaimanee et al. [75].

5. Conclusions

This study showed that the Asian honey bee (A. cerana) colonies distributed across
several regions of Thailand were infected with several pathogens. The most prevalent
pathogen was N. ceranae, followed by the viruses LSV, ABPV, and BQCV, in that order.
The present study also reports the molecular characterization of LSV in A. cerana from
Samui and Pha-ngan islands. Additionally, a low prevalence of ABPV and BQCV was
observed in A. cerana. The phylogenetic tree analysis showed that pathogens can flow
between host populations across the landscapes of different islands. Understanding the
patterns of pathogen distribution will aid in disease control for honey bees in the future.
The goal of this study was to highlight research findings that have contributed to our
understanding of A. cerana colony health. Further investigation is needed to understand
specific pathogens’ spillover processes. Increased knowledge of pathogen spillover will
have important implications for the health and conservation of native honey bee species as
well as other pollinators worldwide.
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I (COI) sequences of Apis cerana collected in Thailand using maximum likelihood analysis.
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