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Abstract: Vertebrate ATP1B4 genes represent a rare instance of orthologous gene co-option, resulting
in radically different functions of the encoded BetaM proteins. In lower vertebrates, BetaM is a Na, K-
ATPase β-subunit that is a component of ion pumps in the plasma membrane. In placental mammals,
BetaM lost its ancestral role and, through structural alterations of the N-terminal domain, became a
skeletal and cardiac muscle-specific protein of the inner nuclear membrane, highly expressed during
late fetal and early postnatal development. We previously determined that BetaM directly interacts
with the transcriptional co-regulator SKI-interacting protein (SKIP) and is implicated in the regulation
of gene expression. This prompted us to investigate a potential role for BetaM in the regulation of
muscle-specific gene expression in neonatal skeletal muscle and cultured C2C12 myoblasts. We found
that BetaM can stimulate expression of the muscle regulatory factor (MRF), MyoD, independently
of SKIP. BetaM binds to the distal regulatory region (DRR) of MyoD, promotes epigenetic changes
associated with activation of transcription, and recruits the SWI/SNF chromatin remodeling subunit,
BRG1. These results indicate that eutherian BetaM regulates muscle gene expression by promoting
changes in chromatin structure. These evolutionarily acquired new functions of BetaM might be very
essential and provide evolutionary advantages to placental mammals.

Keywords: ATP1B4; gene cooption; placental mammal evolution; muscle development; MyoD

1. Introduction

Change in gene function by gene co-option is one of the key mechanisms of molecular
evolution [1]. Ancestral genes can be co-opted for new functions by changes in the protein-
coding and/or regulatory sequences. We demonstrated that ATP1B4 genes, which are
members of the X,K-ATPase β-subunit gene family (X = Na or H), represent an instance
of orthologous vertebrate gene co-option creating fundamental changes in functional
properties of the encoded BetaM proteins [2].

Evolutionary changes in BetaM function are associated with alterations in protein
structure. In lower vertebrates such as fishes, amphibians, and birds, BetaM proteins
are genuine Na, K-ATPase β-subunits that assemble with α-subunits into functional ion
pumps in the plasma membrane [3]. In eutharians (placental mammals), the BetaM protein
acquired new properties through radical changes in the structure of its N-terminal domain,
with the addition of two extended Glu-rich clusters and an N-terminal Arg-rich nonapep-
tide, while retaining all the structural features and signature motifs specific to X,K-ATPase
β-subunits [4–6]. As a result of these evolutionary alterations, eutherian BetaM completely
lost its ancestral function as a Na, K-ATPase subunit [5]. Instead of the plasma membrane,
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it resides in intracellular stores, primarily in the inner nuclear membrane, thereby exposing
the long N-terminal domain to the nucleoplasm [6]. Notably, the Arg-rich N-terminus of
the nucleoplasmic domain is similar to nuclear localization signals and the Glu-rich clusters
are considered homopolymeric amino acid repeats. The latter usually form intrinsically
disordered domains, serving as flexible molecular recognition elements in many signaling
proteins and transcriptional regulators [7–9].

Several lines of evidence suggest that eutherian BetaM has an important role in muscle
development. We previously showed that expression of the eutherian BetaM is highly
enriched in skeletal muscle and expressed at a lower level in cardiac myocytes [5,10,11].
BetaM is developmentally regulated, being the highest in myocytes during late fetal and
early postnatal development [6]. The first wave of muscle development (E10.5–E14.5), when
primary myotubes are formed, appears to be completed in the absence of BetaM. Robust
expression of BetaM occurs on E16.5, just after the onset of secondary myogenesis, during
which primary myotubes serve as a scaffold for the attachment and fusion of myoblasts
into secondary myotubes, leading to growth and maturation of muscle fibers. It should be
noted that this stage of in vivo skeletal muscle development is not adequately reproduced
in cell culture models in vitro. Moreover, we have observed that BetaM protein disappears
in primary rat myocytes after 24 h in culture. This indicates that BetaM is expressed only in
myocytes within intact skeletal tissue. Presumably, BetaM expression is under strict control
by extra-cellular cues that are lost in cell culture conditions.

BetaM is localized to the nuclear membrane in neonatal skeletal muscle and directly in-
teracts with nuclear transcriptional co-regulator Ski-interacting protein (SKIP) [2]. Through
this association, BetaM counter-acts SKIP to up-regulate gene expression of Smad7, a potent
inhibitor of the TGF-β signaling pathway [12,13]. These findings indicate that eutherian Be-
taM functions as a transcriptional regulator, specifically during a critical period of perinatal
development [2]. Interestingly, SKIP was implicated in the regulation of myogenesis. One
study showed that SKIP interacts with poly(A)-binding protein 2 (PABP2) to increase the ex-
pression and activity of the muscle regulator factor (MRF), MyoD [14]. These prior studies
led to the hypothesis that BetaM has a role in the regulation of muscle gene expression.

The MRFs are helix loop helix transcription factors, critical for commitment of mesoder-
mal progenitors to the myocyte lineage and for myoblast differentiation into myocytes [15].
Among the MRFs, MyoD is expressed early during embryonic muscle development and
plays a key role in the commitment of progenitors to the myogenic lineage [16]. High
expression of MyoD continues until birth, is down-regulated in adult skeletal muscle, then
re-activated in satellite cells during muscle regeneration [17,18]. MyoD expression is tightly
regulated by two distal enhancer elements, which include the core enhancer (CE) and the
distal regulatory region (DRR), combined with the proximal regulatory region (PRR), which
is positioned close to the transcriptional start site [16]. The activity of these regions is regu-
lated by the coordination of a number of transcriptional activators and repressors [19–24].
Epigenetic mechanisms including DNA methylation [25] and chromatin modifications also
play an important role in the regulation of MyoD expression [26,27].

In this study, we investigated the requirement for BetaM in neonatal muscle and
cultured myoblasts. We found that BetaM promotes the transcriptional activation of MyoD
in C2C12 myoblasts. Chromatin immunoprecipitation assays in neonatal skeletal muscle
and C2C12 cells indicate that BetaM occupies the DRR of the MyoD upstream enhancer and
can promote epigenetic changes associated with active transcription as well as recruitment
of the SWI/SNF subunit, BRG1. Taken together, these results strongly demonstrate that a
co-opted function for eutharian BetaM involves epigenetic regulation of gene expression
in muscle.

2. Materials and Methods
2.1. Reagents and Animals

All cell culture reagents and media were purchased from Invitrogen Corp. (Carlsbad,
CA, USA) and chemicals were from Sigma-Aldrich Corp. (St. Louis, MO, USA), unless
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otherwise mentioned. Skeletal muscle were collected from neonatal rats, as previously de-
scribed [6]. Animal procedures were conducted in compliance with federal and institutional
guidelines and were approved by the Institutional Animal Care and Use Committee.

2.2. Cell Culture and Transfections

The BetaM, SKIP, and the Na, K-ATPase β1-subunit (NKβ1) plasmids are described
in [2]. C2C12 cells were obtained from ATCC (Manassas, VA, USA) and grown in DMEM
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. The C2C12 cells were seeded at 1.0 × 105 cells per 6 cm dish in
DMEM medium supplemented with 10% FBS. Cells were transfected after 14 h with control
empty vector or BetaM, SKIP, Na, K-ATPase subunit cDNA [2] using Lipofectamine 2000
according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA) in serum-free
Opti-MEM media. After 6 h of incubation, Opti-MEM was replaced with DMEM containing
10% FBS plus antibiotics (1% penicillin/streptomycin) and maintained for a period of 40 h.
Thereafter, cell lysates, or mRNA, were collected and stored at −80 ◦C until assayed.

2.3. Protein Isolation and Western Blotting

Total protein was isolated in RIPA buffer (50 mM Tris-HCl,pH 7.5, 0.1% Triton-X-100,
0.5% Nonidet P-40, 0.15 M NaCl, 1 mM EDTA, 1 mM Na3VO4, 0.5 mM PMSF, 100 µL
protease inhibitor (Sigma, St. Louis, MO, USA) [2]. Concentrations in cell lysates were
measured by BCA protein assay (Pierce Biotechnology, Rockford, IL, USA) according
to the manufacturer’s instructions. Equal amounts of protein (as determined by BCA)
were loaded and subjected to electrophoresis on 10% SDS-PAGE gels then transferred to
PVDF membranes, exactly as described in [2]. After blocking for non-specific binding with
5% nonfat milk, the membranes were washed and incubated with primary anti-BetaM
antibody [11] (1:750 dilution), anti-SKIP antibody (1:500 dilution)) [28], or anti MyoD
antibody (C-20): sc-304 (1:200 dilution; Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA) for one hour, washed twice followed by addition of HRP-linked secondary antibody
(1:10,000 dilution; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) for two hours.
The membranes were washed and the respective protein bands were visualized using
Lumigen TMA-6 solutions A and B (Amersham Biosciences, Amshem, UK). MyoD bands
were quantified by densitometry using Image Quant software version 5.2, as we performed
previously in [2].

2.4. RNA Extraction and Reverse-Transcription-PCR (RT-PCR)

Trizol reagent (Invitrogen Carlsbad, CA, USA) was used according to the manufac-
turer’s directions to extract total RNA from the cells. The RNA was further purified by using
DNA free reagent (Ambion Inc., Austin, TX, USA) and quantitated using a spectropho-
tometer. Total RNA (1 µg) from each sample was reverse-transcribed using Superscript™
First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA, USA) as per manufac-
turer’s instructions. The cDNA was amplified to measure the expression levels of MyoD,
BetaM, SKIP, and GAPDH by using the following primer sets:

MyoD:
Forward: GCA GGC TCT GCT GCG CGA CC
Reverse: TGT AAT CCA TCA TGC CAT

BetaM:
Forward: GAG CTT GGA GAT CCT GTG AAG G
Reverse: GGA GGT CAA AAG AAG CCG ACT

SKIP
Forward: TGA CCA AAG GCT CTT CAA CCA
Reverse: GCC ATA TCT TTC CCA CCT CTC C

GAPDH:
Forward: TGC ACC ACC AAC TGC TTA G
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Reverse: GAG GCA GGG ATG ATG TTC

PCR amplifications were carried out using the following conditions: 95 ◦C, 1.5 min;
followed by 30 cycles at 94 ◦C, 40 s, 55◦C 40 s, and 72 ◦C 1 min. Mouse GAPDH was
amplified at the same time as an internal control. Equal volumes of PCR product from
each group were electrophoresed on 1.5% (w/v) agarose gels and visualized with ethidium
bromide. Bands were quantified by densitometry using Image J software.

2.5. Luciferase Assays

The PGL2 luciferase reporter vectors containing the MyoD promoter, MyoD PRR,
MyoD DRR, and MyoD CE are described in detail in [29]. Renilla plasmid (Renilla Lu-
ciferase Assay System, Promega, Madison, WI, USA) was used as an internal control. For
transfections, 2 × 106 C2C12 cells were allowed to attach overnight, medium was replaced
with Opti-MEM, and the following plasmids were transfected: (0.25 µg) MyoD, MyoD
PR, MyoD CE, MyoD DRR (0.04 µg) Renilla, (0.5 µg) β-m, and SKIIP, (0.25 µg) using
2 µL of lipofectamine (Invitrogen, Carlsbad, CA, USA) in 100 µL of serum-free medium.
Lipofectamine-DNA binding was allowed to proceed for 15 min, and then, the mixture
was added to the cells. After 4 h, appropriate amounts of serum were added, and the cells
were allowed to grow for 48 h, scraped and washed first with PBS and then with 250 mM
Tris-HCl buffer, pH 7.2. Total cell extracts were prepared by treating the cells with lysis
buffer (Pierce, Rockford, Il, USA), and transactivation of MyoD luciferase constructs was
determined using the luciferase kit from Pierce as per the manufacturer’s protocol. The
activity of the Renilla luciferase was used for normalizing the transfection efficiency. The
results presented are the average of three experiments.

2.6. MyoD DRR Luciferase Deletion Constructs

Deletions of E-box 4 and CArG sequences in MyoD DRR luciferase construct were
introduced by using the PCR based QuickChange Kit (Stratagene, La Jolla, CA, USA)
following the manufacturer’s instructions. The primers used were given under:

Ebox-4 Deletion:
Forward: GGG CAG GGT GCG TGA AGG GTT TCC AGA GGC TAT ATA TAT A
Reverse: TAT ATA TAT AGC CTC TGG AAA CCC TTC ACG CAC CCT GCC C

CArG Deletion:
Forward: CAC ATT CCT TTC CAG AGG GCA GCC AAG GGA GCT GAG AGG G
Reverse: CCC TCT CAG CTC CCT TGG CTG CCC TCT GGA AAG GAA TGT G

The Ebox-4 /CArG deleted MyoD DRR luciferase construct was constructed by two
cycles of deletion. First Ebox-4 was deleted and the same construct was used for deleting
CArG in the next cycle. All deletion constructs were confirmed by sequencing.

2.7. Chromatin Immunoprecipitation Assays (ChIP)

ChIP assays were performed using chromatin from rat neonatal muscle (tongue) or
murine C2C12 myoblasts as described [2]. The purified DNA fragments were amplified
by carrying out a radioactive PCR. The amplified DNA samples were run on 7% polyacry-
lamide gel. The gels were dried under vacuum and exposed to phosphorimager screens
overnight. The screens were scanned on a photo-documentation unit to obtain the final
results. For some experiments, ChIPs were analyzed by quantitative PCR (qPCR) Quan-
titative PCR (qPCR) using SYBR Green master mix (Qiagen, Hilden Germany) with an
Applied Biosystems 7500 PCR (Waltham, MA, USA. Antibodies used were: α-BetaM [11],
α-SKIP [28], α-BRG1 (Abcam, Cambridge, UK), α-tetra-acetylated histone H4 (acH4), and
α-histone H3 tri-methylated lysine 4(H3K4me3) (Active Motif, Carlsbad, CA, USA). The
following are primer sets used for amplification:

Rat PRR
Forward TAG GCA CTG GAG AGA CTT GG
Reverse GCC TCA AGC CAA TAG GAG TGT AG
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Rat DRR2
Forward TAG ACA CAA GCC AGC AAT GC
Reverse TAT AAA TGG AGA GCT GGC TT

Rat CE
Forward ACA TGA GCC CCA CAG CAT TTG
Reverse GAG CTA GAG AAA CCG GAG AAG A

Rat GAPDH
Forward CAT TAA CGT CAA CTA CAT GG
Reverse TGA TGA CCA GCT TCC CAT TCT CAG C

Mouse DRR
Forward GGGCTGGTCCTGTTCCACC
Reverse GCTATAAATGGAGAGCTGGCTTTT

Mouse IgH enhancer
Forward GCCGATCAGAACCAGAACACC
Reverse TGGTGGGGCTGGACAGAGTGTTTC

2.8. Electrophoretic Mobility Shift Assays (EMSA)

Electrophoretic mobility shift assays were performed using nuclear extracts from
neonatal rat muscle [30]. The oligonucleotides used in this experiment are shown in Table 1.

Table 1. Oligonucleotides used for electrophoretic mobility shift essays. Mutations in the oligonu-
cleotides are shown in lower case letters.

Region Forward Reverse

Ebox1 ACT GCT GTG AGA ACA TCT GAC ATC CAC CAC GTG GTG GAT GTC AGA TGT TCT CAC AGC AGT WT

Ebox2 CCA CCA CCT AGT TCA TTT GCC AGA CTC CCA AGG CCT TGG GAG TCT GGC AAA TGA ACT AGG TGG TGG WT

Ebox3 GAC CAG GAC CAC ATC TGC GCC CAG CCA CAA TTG TGG CTG GGC GCA GAT GTG GTC CTG GTC WT

Ebox4 GAG GCT TGG GGC AGG TGC TGG TTG GAT CCG CGG ATC CAA CCA GCA CCT GCC CCA AGC CTC WT

Ebox4 M1 GAG GCT TGG GGt tGG gaC TGG TTG GAT CCG CGG ATC CAA CCA Gtc CCa aCC CCA AGC CTC Mutant

Ebox4 M2 GAG GCT TGG GGC Atc TGC TGG TTG GAT CCG CGG ATC CAA CCA GCA gaT GCC CCA AGC CTC Mutant

Ebox4 M3 GAG GCT acc aaC AGG TGC TGG TTG GAT CCG CGG ATC CAA CCA GCA CCT Gtt ggt AGC CTC Mutant

Ebox4 M4 GAG GCT TGG GGC AGG TGC TGG Tca ctc CCG CGG gag tgA CCA GCA CCT GCC CCA AGC CTC Mutant

NFAT TTG GAT CCG GTT TCC AGA GGC TAT ATA TAT AAA TTT ATA TAT ATA GCC TCT GGA AAC CGG ATC CAA WT

CArG CCA GCT CTC CAT TTA TAG CCC CTG GGC AGA TCT GCC CAG GGG CTA TAA ATG GAG AGC TGG WT

CArG M1 CCA GCT CTa aAT TTA Tcc CCg gTG GGC AGA TCT GCC CAc cGG ggA TAA ATt tAG AGC TGG Mutant

CArG M2 ggA cga taC CAT TTA TAG CCC CTG GGC AGA TCT GCC CAG GGG CTA TAA ATG Gta tcg Tcc Mutant

CArG M3 CCA GCT CTC Cca ccg acG CCC CTG GGC AGA TCT GCC CAG GGG Cgt cgg tgG GAG AGC TGG Mutant

CArG M4 CCA GCT CTC CAT TTA TAG CCt aaG ccC tat ata Ggg Ctt GGG CTA TAA ATG GAG AGC TGG Mutant

2.9. Statistical Analysis

Statistically significant differences between two groups were calculated by the stu-
dent’s t-test. One-way ANOVA followed by post-hoc Tukey was used to analyze significant
differences between more than two groups.

3. Results
3.1. Beta M Promotes Expression of the Muscle Determining Factor, MyoD in C2C12 Myoblasts

Expression of BetaM occurs on E16.5 just after the onset of secondary myogenesis,
a stage of in vivo skeletal muscle development that is not adequately reproduced in cell
culture models in vitro [6]. Thus, BetaM is not expressed in cell culture models such
as C2C12 cells. Therefore, we exogenously expressed BetaM in C2C12 cells. Using this
strategy, we previously found that BetaM associates with the nuclear transcriptional co-
regulator, SKIP, a component of the TGF-β pathway [2]. In order to determine if BetaM
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regulates transcription of muscle genes, we co-transfected a MyoD luciferase construct
and increasing amounts of BetaM, or as a control, the structurally related Na, K-ATPase
β1-subunit (NK β1). BetaM (white bars) stimulated MyoD luciferase activity in a dose-
dependent manner while expression of NK β1 (grey bars) had no significant effect on
luciferase activity (Figure 1a). To determine if the effect of BetaM on MyoD transcription
involves SKIP, we co-transfected BetaM and SKIP. BetaM stimulated luciferase activity
to the same levels whether expressed alone or in combination with SKIP (Figure 1b),
suggesting that the effects of BetaM on MyoD transcriptional activity are independent of
its association with SKIP.
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Figure 1. BetaM stimulates MyoD reporter activity. (a) Reporter activity in C2C12 cells with co-
transfection of the wildtype MyoD-PGL2 reporter (contains CE, DRR, and PRR) and increasing
amounts of BetaM (white bars) or as a control, NKβ1 (grey bars). (b) The effect of BetaM with and
without SKIP on MyoD luciferase activity. Basal activities of the reporter plasmids were set to 1 and
all results are shown as means ± SD, n = 3, * p < 0.05, ** p < 0.01, *** p < 0.005.

To determine if BetaM could activate expression of the endogenous MyoD gene, we
transfected increasing amounts of BetaM in C2C12 cells. BetaM significantly increased
endogenous MyoD mRNA levels, as well as SKIP mRNA levels, in a generally dose-
dependent manner (Figure 2a). We confirmed the effect of BetaM on endogenous MyoD
expression by performing Western blotting. BetaM promoted a significant increase in both
hypo- and hyper-phosphorylated forms of MyoD protein [31,32] (Figure 2b). These data
strongly suggest that BetaM regulates MyoD expression in cultured myoblasts and that
this effect may be independent of SKIP.

3.2. BetaM Binds to an E-Box Element and the CArG Box in the DRR Region of MyoD in Rat
Skeletal Muscle

In vivo chromatin immunoprecipitations (ChIPs) were performed using rat neonatal
muscle to validate the results in C2C12 cells and to determine if BetaM regulates MyoD
expression by directly binding to a regulatory region of the MyoD locus. MyoD transcrip-
tion is regulated by three important regulatory regions: proximal regulatory region (PRR),
distal regulatory region (DRR), and core enhancer (CE) [33,34]

(Figure 3a). BetaM was detected on the DRR but not on the PRR or CE of the MyoD
upstream region (Figure 3b). Taken together, these in vivo results indicate that our in vitro
findings are biologically relevant and suggest that BetaM binds to the MyoD DRR and
directly promotes MyoD transcription.
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promoter upstream region. (b) ChIP assay of PRR, DRR, and CE regulatory regions using rat neonatal
skeletal muscle chromatin. Controls: Chromatin alone (1), IgG (2), Input, 0.05% of total (3). ChIP
with BetaM antibody (4). GAPDH was used an internal control for nonspecific or background DNA
immunoprecipitation.

The DRR of the MyoD upstream region contains several known response elements.
Among these elements, E-box 2, E-box 4, NF/AT, C/EBP, and CArG (Figure 4a) are highly
conserved in human, rat, and mouse. To investigate which of these elements bind transcrip-
tional complexes containing BetaM, we performed electrophoretic mobility shift assays
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(EMSA) using nuclear extract from rat neonatal muscle. As expected, these elements were
bound by nuclear proteins. However, the addition of BetaM and SKIP antibodies did not
produce any additional mobility changes, suggesting that BetaM and SKIP do not bind to
E-boxes 1,2,3, NF/AT, or C/EBP sequences (Figure 4b–e).
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We then investigated whether BetaM binds to E-box4 and/or the CArG box. We
detected two complexes (I and II) on E-box 4, of which complex I was competed by the
addition of antibodies to either BetaM or SKIP (Figure 5a). Of the complexes (I, II, III)
detected on the CArG probe, we found that I and II were competed by the addition of
either BetaM or SKIP antibodies (Figure 5b).
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These data suggest that BetaM and SKIP bind to both E-box4 and CArG elements of
the DRR.

In order to confirm that the different complexes we had detected on the E-box 4
and the CArG box are specifically bound, we performed competition EMSAs using cold
wildtype and mutant sequences. An oligonucleotide with wildtype E-box4 and one with
mutations that preserved the E-box consensus (M2 and M4) effectively competed both
complexes I and II, whereas oligonucleotides with disruptions in the E-box consensus did
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not effectively compete (M1 and M3) (Figure 6a). Similarly, an oligonucleotide with the
wildtype CArG sequence effectively competed all three complexes, whereas M1 and M3
containing mutations in the CArG box did not compete with complex III, and M4 carrying
mutations in the flanking region did not compete with complex I. Taken together, these
data indicate that BetaM binds to E-box4 and CArG boxes in the DRR upstream of the
MyoD gene.
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3.3. Transactivation of the MyoD DRR by BetaM Requires E-Box4 and CArG Elements

To determine if the E-box4 and CARrG elements of the DRR are required for Beta-M
mediated activation of the DRR, we performed luciferase assays with wild type DRR
and deletion constructs. BetaM activated wild type DRR luciferase activity two-fold over
vector control when both E-box4 and CArG elements were present but failed to activate
luciferase activity when either or both were deleted (Figure 7). Interestingly, SKIP did not
activate the DRR when transfected alone and slightly inhibited trans-activation by Beta-M
when the two were co-transfected (Figure 7). These data demonstrate that BetaM activates
MyoD expression through the E-box4 and CArG elements of the DRR in vivo and confirm
that transcriptional activation by BetaM in C2C12 cells is independent of its association
with SKIP.

3.4. BetaM Promotes BRG1 Recruitment and Histone Modifications on the DRR of the
MyoD Locus

To elucidate the mechanisms by which BetaM promotes MyoD transcription in C2C12
cells, we performed ChIPs to detect changes in co-activator recruitment and histone post-
translational modifications when BetaM is expressed. The BRG1 subunit of the SWI/SNF
chromatin remodeling complex plays an extensive role in myoblast proliferation and differ-
entiation [35–38]. Our data indicate that BetaM significantly enhances BRG1 recruitment
to the MyoD DRR (Figure 8a) and enhances the levels of two epigenetic marks that are
associated with actively transcribed promoters: histone H4 acetylation (Figure 8b) and
histone H3K4 tri-methylation (Figure 8c). Taken together, these data suggest that BetaM
promotes MyoD expression by enhancing recruitment of SWI/SNF chromatin remodeling
enzymes and promoting changes in chromatin structure.
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Figure 8. BetaM promotes BRG1 recruitment and histone modifications on the DRR of MyoD. ChIP
assays were performed on control and BetaM transfected C2C12 cells using antibodies to detect
(a) BRG1 (b) Tetra-acetylated histone H4 (AcH4) and (c) Tri-methylated histone H3 at lysine 4
(H3K4me3). IgG antibody was used as a control. Quantitative (q) PCR was performed to detect ChIP
signals. Enrichment on the MyoD DRR was determined relative to that on the silent IgH enhancer.
Expression of BetaM significantly enhanced recruitment of BRG1, histone H4 acetylation, and histone
H3K4 tri-methylation on the MyoD promoter. The data are from three independent experiments.
Results are shown as means ± SE (** p < 0.01).

4. Discussion

BetaM gained entirely new functions during vertebrate evolution, ceasing to assemble
with α–subunits into ion pumps in the plasma membrane and instead localizing to the
nuclear membrane in eutharians [6]. BetaM expression is confined primarily to skeletal
and cardiac muscle, with the highest expression occurring in late fetal and early neonatal
development [6]. BetaM becomes highly expressed at E16.5, just after the onset of secondary
myogenesis, suggesting that BetaM is required for growth and maturation of muscle fibers.

In order to elucidate new function(s) of eutharian BetaM, we first identified potential
BetaM-interacting proteins using the yeast two-hybrid system and detected SKIP as a BetaM
partner in the muscle [2]. Importantly, SKIP was reported to enhance MyoD expression
and activity [14]. These previous observations led us to investigate the role of BetaM in
the regulation of MyoD gene expression. Due to the restricted temporal pattern of BetaM
expression and lack of BetaM in cultured myocytes, we exogenously expressed BetaM to
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elucidate its role in C2C12 cells and validated the results with experiments in neonatal rate
muscle that robustly expresses BetaM.

The findings from this study strongly support the hypothesis that BetaM activates
MyoD expression in neonatal muscle and in cultured myoblasts. However, our data suggest
that BetaM activates MyoD independently of SKIP. SKIP is a multi-functional protein that
can act as a transcriptional activator or repressor [39]. Our prior study indicated that
BetaM associates with SKIP and converts SKIP from a repressor to an activator of SMAD7
expression [2]. SMAD7 inhibits TGFβ signaling but was reported to promote myogenesis
by interacting with MyoD [40]. Interestingly, although we detected both BetaM and
SKIP binding on E-box4 and CArG elements of the MyoD DRR (Figure 5), we found that
expression of BetaM, but not SKIP, stimulated MyoD luciferase activity (Figures 1 and 7).
Our findings are consistent with another study, which reported that SKIP overexpression
in C2C12 cells did not affect myogenesis [41]. Therefore, BetaM activates MyoD expression
through a transcriptional mechanism that is independent of its association with SKIP.

BetaM interacts with other proteins that could potentially be involved in promot-
ing epigenetic changes required for muscle development [42]. Consistent with BetaM
localization to the nuclear envelope, BetaM interacts with lamina-associated protein LAP1
and myocyte nuclear envelope protein SYNE1. Mutations in the human gene, TOR1AIP,
which encodes LAP1, was linked to muscular dystrophies [43] and disruption of LAP1
in mouse skeletal muscle leads to muscular dystrophy phenotype [44]. SYNE1 is linked
to Emery-Dreifuss muscular dystrophy [45]. Thus, the role of BetaM in the regulation
of muscle gene expression may involve interactions with LAP1 and SYNE1. Additional
studies will be required to determine the functional consequences of BetaM and LAP1
interactions. However, lamina associated proteins are attractive candidates for mediating
the observed epigenetic changes induced by BetaM on the MyoD promoter. We observed
that Beta-M promotes MyoD expression by recruiting the BRG1 component of the SWI/SNF
chromatin complex and enhancing histone covalent modifications associated with gene
activation. As lamina-associated proteins are associated with the epigenetic regulation
of muscle gene expression [46,47], an intriguing hypothesis is that BetaM is involved in
chromatin organization by virtue of its positioning in the nuclear envelope.

In conclusion, BetaM function radically changed during the evolution of vertebrae
organisms into placental mammals through gene co-option. Instead of a subunit of the Na,
K-ATPase located in the cell membrane, eutherian BetaM is a component of the nuclear
membrane and regulates muscle gene expression through epigenetic mechanisms. Future
work will seek to elucidate the selective pressures that promoted this evolutionary change
in BetaM function.
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