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Abstract: A healthy articular cartilage is paramount to joint function. Cartilage defects, whether
acute or chronic, are a significant source of morbidity. This review summarizes various imaging
modalities used for cartilage assessment. While radiographs are insensitive, they are still widely used
to indirectly assess cartilage. Ultrasound has shown promise in the detection of cartilage defects,
but its efficacy is limited in many joints due to inadequate visualization. CT arthrography has
the potential to assess internal derangements of joints along with cartilage, especially in patients
with contraindications to MRI. MRI remains the favored imaging modality to assess cartilage. The
conventional imaging techniques are able to assess cartilage abnormalities when cartilage is already
damaged. The newer imaging techniques are thus targeted at detecting biochemical and structural
changes in cartilage before an actual visible irreversible loss. These include, but are not limited to,
T2 and T2* mapping, dGEMRI, T1ρ imaging, gagCEST imaging, sodium MRI and integrated PET
with MRI. A brief discussion of the advances in the surgical management of cartilage defects and
post-operative imaging assessment is also included.
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1. Introduction

The imaging of articular cartilage has raised immense interest and promoted research
owing to the large prevalence of osteoarthritic (OA) joint disease, with cartilage degen-
eration being an integral part of the disease process. The pooled global prevalence of
knee OA was found to be 16% by Cui et al. [1], with its incidence increasing with the
ageing population. Our understanding of the microstructure, biomechanics as well as
disease processes affecting articular cartilage has made leaps and bounds along with the
advances in management techniques. The focus is now shifting to the initiation of therapy
in early reversible stages of the disease. This has also translated into advances in imaging,
which forms an integral part of OA management. Apart from detection, quantification
and prognostication, imaging, especially MRI, is instrumental in the post-intervention
assessment of treatment responses or the detection of complications. Radiologists must
keep abreast of these advances for a better understanding and ease of communication with
referring clinicians.

2. Anatomy

Articular cartilage is a specialized hyaline cartilage covering the joint surfaces and
providing smooth gliding surfaces. It is devoid of vessels, nerves and lymphatics, which
leads to a very limited reparative potential [2]. Cartilage turnover is also very slow, as
chondrocytes divide slowly.

Embryologically, chondrogenesis occurs from the condensed mesenchymal blastema
which secretes the extracellular cartilage matrix and generates cells called chondroblasts.
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The mature cells caught in this abundant matrix are called chondrocytes [3,4]. The major
components of articular cartilage and their functions are summarized in Table 1.

Table 1. Components of the cartilage.

Water
• 65–80% wet weight (80% in superficial and 65% in deep zone)
• Provides nutrition, reduces friction, allows deformation

under loads.

Collagen • 10–20% wet weight
• Type II collagen is the main component, provides tensile strength

Proteoglycans (PGs)

• 10–20% wet weight
• Provide compressive strength
• The subunits are called glycosaminoglycans (GAGs)
• Contain negatively charged groups that attract positively charged

molecules (Na+).
• Maintain the fluid–electrolyte balance and increase the osmolarity

of cartilage

Chondrocytes
• Form only 1–5% of the volume
• Produce the components of the matrix and maintain metabolism
• Dependent on anaerobic metabolism

Microscopic Structure

The cartilage is arranged into four layers or zones [2,3,5] (Figure 1).
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Figure 1. Histology image showing the different layers of the articular cartilage. Figure 1. Histology image showing the different layers of the articular cartilage.

1. Superficial or tangential zone. This is the thinnest layer which is adjacent and parallel
to the joint surface and is made up of flattened cells. With the highest water content and
greatest tensile strength, the integrity of this layer is crucial to prevent osteoarthritis.

2. Transitional or intermediate zone. Spheroidal cells are found in this zone along with
randomly oriented collagen fibers.

3. Middle zone. The lowest cell density with the highest proteoglycan content is found
in this layer. The cells are arranged in a perpendicular orientation to the surface.
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4. Calcified cartilage zone. It is a mineralized zone acting as a shock absorber along with
the subchondral bone. Owing to the low number of cells in a calcified matrix, there is
a very low metabolic activity in this zone.

3. Cartilage Imaging
3.1. Radiographs

Conventional radiography is the most widely used imaging technique for the assess-
ment of joint abnormalities. Although the articular cartilage is not directly visualized, it
provides an indirect evaluation of cartilage integrity by measuring the joint space. There
are limitations to this technique, as in cases of early cartilage loss, the radiographs show
no loss of the joint space, and there maybe interobserver variations in assessing early OA.
Another pitfall of using this method is the assumption that the joint space only consists of
the articular cartilage, and thus joint space loss is secondary only to cartilage loss. While
this may occur for hip joints and radiocarpal joint, it does not hold true for knee joints,
where the joint space includes the menisci as well. The degree of knee flexion also affects
the perceived joint space, leading to false positive or false negative interpretations.

Nevertheless, radiography is the least expensive, most widely available and repro-
ducible imaging technique for this purpose. It serves as a baseline investigation as well
as for the follow-up of disease progression or post-operative assessment. Osteochondral
defects can be detected on radiographs as small fragments of subchondral bone. The
Kellgren and Lawrence classification widely used for OA is based on radiographs; grades
II–IV show a progressive loss of the joint space (Figure 2). Calcification of the hyaline
cartilage can be seen in cases of chondrocalcinosis and is used as an adjunct diagnostic
element, making the technique even better than MRI for this purpose.
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Figure 2. Anteroposterior radiograph of the left knee showing Kellgren–Lawrence grade 0, 1, 2, 3,
and 4 OA.

Diffraction-enhanced X-ray imaging is an experimental novel technique that can provide
the direct visualization of articular cartilage. It uses a series of silicon crystals to obtain
highly collimated monochromatic X-rays which provide diffraction-enhanced images.
Mollenhauer et al. showed these images of the articular cartilage to be comparable to gross
and histological samples from intact as well as disarticulated joints [6].

3.2. Ultrasound

Ultrasound is a robust modality for diagnosing various musculoskeletal pathologies.
Its advantages include, but are not limited to, high resolution, wide availability, affordability,
a dynamic nature and higher patient comfort. The efficacy of ultrasound for the evaluation
of articular cartilage has been examined by various researchers over the past many decades.
In 1984, Aisen et al. studied the femoral articular cartilage at the knee and found that in
patients with arthritis, there was loss of sharpness of the articular cartilage on ultrasound, a
finding which correlated with the clinical status and preceded the full-thickness loss of the
cartilage [7]. Since then, there have been remarkable technological advances in ultrasound.
Many other researchers have found ultrasound to be a valid tool for assessing articular
cartilage when compared to histology [8,9].

The normal articular cartilage appears homogenously anechoic owing to its inherent
high water content, with smooth, sharp margins (Figure 3). Owing to a clear interface with
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the overlying soft tissues and underlying bone, its thickness can be measured and varies
from 0.1 to 0.5 mm in the hand to about 3 mm in the knee [10–12]. Its evaluation requires
appropriate patient and probe positioning so as to obtain a good acoustic window to
visualize the cartilage. However, in deep joints, it may not be possible to evaluate the entire
cartilage, and the assessment is all the more difficult in pathological joints as the patient
may not be able to flex or extend the joints due to pain. The presence of osteophytes can
also obscure the cartilage due to acoustic shadowing. Another limitation of this modality is
operator dependence and a steep learning curve.
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Figure 3. Ultrasound. Axial image showing the normal cartilage of the trochlea (a), thinning of the
articular cartilage of the medial facet of the trochlea (b) and cortical irregularity (c).

3.3. CT/CT Arthrogram

Computed Tomography (CT) is not typically used for the evaluation of articular
cartilage but can be used where MRI is contraindicated.

CT arthrography (CTA) is performed by the intra-articular injection of contrast, and
this can delineate the cruciate ligaments and menisci well, the downsides being the invasive
nature of this technique and radiation exposure. CTA can also demonstrate normal cartilage
as well as its defects as intra-articular iodine provides excellent contrast between the
cartilage and surrounding high attenuating iodine based contrast [8,13] (Figure 4). Recent
research has been targeted at evaluating the GAG content of cartilage using CTA. In this
technique, after intra-articular injection of an iodine-based CT contrast, the patient is asked
to move the joint actively. After some time, the scanning will show the contrast concentrated
in the cartilage, as iodine is negatively charged. Studies have shown that the concentration
of the contrast is higher in GAG-depleted cartilage; this method is known as quantitative
CTA [14].
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arrow) and focus of partial thickness cartilage defect (long arrow).

Although not widely in used at present, this technique offers certain advantages
over MRI, including a shorter scan time, a lower cost and an alternative for patients with
contraindications to MRI.

Dedicated cone beam CT (CBCT) scans have been developed for musculoskeletal
imaging [15,16]. These have been shown to be comparable or even superior to routine
multidetector CT (MDCT) for bone and soft tissue evaluation, with the added advantage
of the ability to perform weight-bearing scans, which is particularly useful for lower limb
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joint evaluation. Although direct cartilage visualization was found to be slightly better
for MDCT, the ability of image acquisition during weight bearing using CBCT along with
reduced radiation might favor this modality in future research [16]. Weight-bearing CT,
which is predominantly used for foot and ankle, can also help to assess articular cartilage
and joint alignment (Figure 5).
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3.4. MRI

Magnetic Resonance Imaging is the modality of choice for evaluating pathologies
of articular cartilage. It shows an intrinsic high soft tissue contrast and can provide a
non-invasive global assessment of the entire cartilage. Image quality is better at higher
field strengths, and dedicated cartilage imaging is preferably performed with 3T or 1.5T
scanners [17]. Various imaging sequences and advanced imaging are now available, in
practice and in research settings, to assess joint morphology as well as cartilage composition.
The rationale for this is to assess surgical or clinical treatment responses, as MRI can provide
important clues regarding disease progression as well as the stability of a surgical repair.

3.4.1. Morphological Sequences

The basic MRI sequences used to characterize cartilage lesions in terms of size, location
and depth include spin echo (SE) and gradient echo (GRE) images, with their modifications.

The standard SE or fast SE sequences include T1-, T2- and proton density- (PD)
weighted images. PD with or without fat suppression is widely used in musculoskeletal
imaging. In addition, 2D or 3D PD- as well as T2-W sequences provide good contrast of the
articular cartilage from the adjacent structures, which is enhanced in cases of joint effusion
(Figure 6).

Life 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 6. Coronal MRI- T1 (a), PD (b), PDFS (c), STIR (d), T2 med volume (e) of the right knee. 

Gradient-recalled echo (GRE) sequences render the cartilage hyperintense and are 

probably more useful in localizing loose bodies than the SE sequences. They may, how-

ever, overestimate cartilage thickness [18]. 

Moreover, 3D sequences without slice gaps enable isotropic image acquisition and 

are more sensitive in detecting small cartilage defects. These 3D sequences may be SE se-

quences such as SPACE or GRE sequences such as MEDIC.  

3.4.2. Compositional Sequences 

It is well known that biochemical changes occur much earlier than structural defects 

in the cartilage, and if these can be detected and an appropriate therapy initiated, it may 

be possible to halt or possibly reverse disease progression. Many innovative MRI tech-

niques have been developed and are being researched to assess the GAG content and col-

lagen framework. Some of these are discussed here. 

T2 and T2* Mapping  

Both T2 and T2* can detect changes in hydration, collagen content and organization 

of the extracellular matrix. While T2 mapping is SE-based, T2* is GRE-based and is thus 

more susceptible to magnetic field inhomogeneities. However, T2* uses shorter echo times 

(TE) and thus enables reduced scan times with higher resolution [18–21].  

The basic principle is the acquisition of T2 images at varying echo times (TE) using 

an exponential decay curve to calculate the decay time constant between signal intensity 

and TE. A healthy cartilage shows a laminar appearance with short T2 values in the su-

perficial zone, higher values in the transitional zone with randomly oriented fibers and 

shorter values again in the deeper zone with tightly packed fibers in a perpendicular ori-

entation. A degenerated cartilage, on the other hand, shows increased T2 values owing to 

the disruption of the fibrillar arrangement and changes in hydration. T2* mapping ap-

pears to be more sensitive in the detection of these changes than T2, with values that vary 

much later in the disease process. The variation in the relaxation times have, however, 

been found to be higher for T2 as compared to T2* in a study by Mars et al. [21]. The results 

are better for MRI at higher strengths (3T) as compared to MRI at lower strengths (1.5T).  

Gd-Enhanced MRI (dGEMRI)  

Delayed gadolinium- (Gd) enhanced MR imaging of cartilage (dGEMRIC) is based 

on the fact that GAGs, being negatively charged, inhibit the diffusion of gadolinium-based 

contrast agents (Gd-DTPA2-), which also carry a negative charge, into healthy cartilage. 

With degeneration, there is a progressive loss of the GAG content in cartilage, which fa-

cilitates the Gd uptake. The contrast, which is injected intravenously, diffuses into the 

synovial fluid and is then taken up by the degenerated cartilage. This leads to reduced T1 

relaxation times, which are quantitatively assessed by T1 relaxometry, providing the so-

called dGEMRIC index [18,19]. Color-coded spatial maps are used to depict the distribu-

tion of the T1 relaxation times. Since cartilage is avascular, and gadolinium uptake is 

based on diffusion, a scan delay of 90 min after intravenous contrast is recommended by 

many authors.  

Figure 6. Coronal MRI- T1 (a), PD (b), PDFS (c), STIR (d), T2 med volume (e) of the right knee.

Gradient-recalled echo (GRE) sequences render the cartilage hyperintense and are
probably more useful in localizing loose bodies than the SE sequences. They may, however,
overestimate cartilage thickness [18].
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Moreover, 3D sequences without slice gaps enable isotropic image acquisition and
are more sensitive in detecting small cartilage defects. These 3D sequences may be SE
sequences such as SPACE or GRE sequences such as MEDIC.

3.4.2. Compositional Sequences

It is well known that biochemical changes occur much earlier than structural defects
in the cartilage, and if these can be detected and an appropriate therapy initiated, it may be
possible to halt or possibly reverse disease progression. Many innovative MRI techniques
have been developed and are being researched to assess the GAG content and collagen
framework. Some of these are discussed here.

T2 and T2* Mapping

Both T2 and T2* can detect changes in hydration, collagen content and organization of
the extracellular matrix. While T2 mapping is SE-based, T2* is GRE-based and is thus more
susceptible to magnetic field inhomogeneities. However, T2* uses shorter echo times (TE)
and thus enables reduced scan times with higher resolution [18–21].

The basic principle is the acquisition of T2 images at varying echo times (TE) using an
exponential decay curve to calculate the decay time constant between signal intensity and
TE. A healthy cartilage shows a laminar appearance with short T2 values in the superficial
zone, higher values in the transitional zone with randomly oriented fibers and shorter
values again in the deeper zone with tightly packed fibers in a perpendicular orientation. A
degenerated cartilage, on the other hand, shows increased T2 values owing to the disruption
of the fibrillar arrangement and changes in hydration. T2* mapping appears to be more
sensitive in the detection of these changes than T2, with values that vary much later in
the disease process. The variation in the relaxation times have, however, been found to be
higher for T2 as compared to T2* in a study by Mars et al. [21]. The results are better for
MRI at higher strengths (3T) as compared to MRI at lower strengths (1.5T).

Gd-Enhanced MRI (dGEMRI)

Delayed gadolinium- (Gd) enhanced MR imaging of cartilage (dGEMRIC) is based on
the fact that GAGs, being negatively charged, inhibit the diffusion of gadolinium-based
contrast agents (Gd-DTPA2-), which also carry a negative charge, into healthy cartilage.
With degeneration, there is a progressive loss of the GAG content in cartilage, which facili-
tates the Gd uptake. The contrast, which is injected intravenously, diffuses into the synovial
fluid and is then taken up by the degenerated cartilage. This leads to reduced T1 relaxation
times, which are quantitatively assessed by T1 relaxometry, providing the so-called dGEM-
RIC index [18,19]. Color-coded spatial maps are used to depict the distribution of the T1
relaxation times. Since cartilage is avascular, and gadolinium uptake is based on diffusion,
a scan delay of 90 min after intravenous contrast is recommended by many authors.

Fleming et al. found a significant reduction in the dGEMRIC indices of the medial
tibiofemoral compartment in ACL injured knees as compared to contralateral uninjured
knees, suggesting the presence of degenerative changes in these patients [22].

The follow-up post-operative evaluation of the hip joints in patients who underwent
surgery for femoroacetabular impingement revealed reduced dGEMRIC values in these
patients, compared to the ones who did not undergo surgery [23].

This technique has also been investigated to evaluate the treatment response after
autologous chondrocyte implantation. Watanabe et al. related the GAG concentration in
biopsy specimens to the difference (∆R1) between the relative pre- (R1pre) and post-contrast
(R1post) relaxation times of repaired as well as normal cartilage. They found a signifi-
cant correlation between ∆R1 and the relative GAG concentration (GAG concentration in
repaired cartilage divided by that in normal cartilage) [24].
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T1ρ Imaging

T1ρ is the spin lattice relaxation time in a rotating frame. It measures the motion of
protons in their macromolecular environment and is said to be related to the PG content,
with a loss of PGs leading to an increase in T1ρ. It has shown promise in the detection of
early osteoarthritic changes in the knee and in assessing the menisci as well as hip joint
cartilage, especially in cases of femoroacetabular impingement [13,19,25–29]. While the
advantages of T1rho imaging include its sensitivity to early degeneration and ability to
image without the administration of a contrast agent, the need for special sequences with
limited availability and the long acquisition times are some practical limitations [13].

Sodium MRI

Sodium MRI imaging takes advantage of the attraction of positively charged Na2+

cations to the negatively charged GAGs; thus, Na2+ concentration is higher in the car-
tilage extracellular matrix than in the synovial fluid. The specific resonance frequency
is measurable by MRI owing to the nuclear spin momentum of the sodium ions. While
this technique has shown promise for detecting early OA changes and can be performed
without administering a contrast agent, its clinical application is limited. This is because
the concentration of sodium is lower than that of protons, leading to low a SNR and thus
the need for special hardware, including a high field strength, optimized protocols and
dedicated coils, which are limited in availability [13,18,19,30,31]. Other challenges in imag-
ing include partial volume averaging because of the presence of synovial fluid, requiring
fluid suppression techniques.

gagCEST

Glycosaminoglycan chemical exchange saturation transfer uses the presence of free
and bound pools of protons to create an intrinsic contrast. The protons in the bound pool
are associated with GAGs and can thus be used as biomarkers for their presence. This
has shown good results when combined with other compositional techniques such as
T1rho and sodium imaging [32,33]. There are, however, a number of challenges, such as
an extreme sensitivity to magnetic field inhomogeneities, a long scan time, a need for a
ultra-high field strength (typically 7T). Limited research and lack of data on the overall
assessment of disease burden and treatment response preclude the widespread usage of
this technique in the present scenario.

3.5. Integrated PET–MRI

The principle of integrating Positron Emission Tomography (PET) with MRI is to un-
derstand the disease process at a molecular level before structural or compositional changes
occur. The radioactive tracers used in the evaluation of joint pathologies, especially OA,
include FDG (2-18F-fluoro-2-deoxy-D-glucose) and 18F-NaF (fluorine18-sodium fluoride).
FDG, which denotes areas of increased glucose metabolism and thus cellular response, is
shown to be increased in the joint space and around the knee joint, indicating cartilage
damage and resulting inflammation. A high uptake is also seen in areas of bone marrow
lesions detected on MRI [34]. 18F-NaF, on the other hand, is a marker of bone metabolism,
showing a high and rapid uptake in areas of mineralizing bone. It has shown high uptake
values in patients without radiographic evidence of joint space narrowing and correlates
well with pain in patients with early or progressive OA [35]. Thus, fusing PET images
with the unparalleled soft-tissue contrast of MRI to provide molecular-level data holds
great promise to understand the complex disease process affecting articular cartilage [36]
(Figure 7).
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Figure 7. PET–MRI of the right knee of a 41-year-old female having Kellgren–Lawrence grade 2 OA,
showing great signal intensity changes (arrow) in the lateral posterior femur on a T2 SPIR image (a)
with a high tracer uptake on the sagittal PET image (arrow), (b) also spatially correlated on the fused
PET–MRI image (c).

4. Pathologies

Cartilage injuries are broadly traumatic or degenerative in etiology. The modified
Outerbridge classification is the most commonly used system for MRI-based grading of
chondral degeneration or defects in a clinical scenario. It was originally developed based
on the arthroscopic evaluation of the patellar cartilage but has now been extended to grade
chondral lesions in all locations (Figure 8).

Life 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 

cellular response, is shown to be increased in the joint space and around the knee joint, 

indicating cartilage damage and resulting inflammation. A high uptake is also seen in 

areas of bone marrow lesions detected on MRI [34]. 18F-NaF, on the other hand, is a 

marker of bone metabolism, showing a high and rapid uptake in areas of mineralizing 

bone. It has shown high uptake values in patients without radiographic evidence of joint 

space narrowing and correlates well with pain in patients with early or progressive OA 

[35]. Thus, fusing PET images with the unparalleled soft-tissue contrast of MRI to provide 

molecular-level data holds great promise to understand the complex disease process af-

fecting articular cartilage [36] (Figure 7). 

 

Figure 7. PET–MRI of the right knee of a 41-year-old female having Kellgren–Lawrence grade 2 OA, 

showing great signal intensity changes (arrow) in the lateral posterior femur on a T2 SPIR image (a) 

with a high tracer uptake on the sagittal PET image (arrow), (b) also spatially correlated on the fused 

PET–MRI image (c). 

4. Pathologies  

Cartilage injuries are broadly traumatic or degenerative in etiology. The modified 

Outerbridge classification is the most commonly used system for MRI-based grading of 

chondral degeneration or defects in a clinical scenario. It was originally developed based 

on the arthroscopic evaluation of the patellar cartilage but has now been extended to grade 

chondral lesions in all locations (Figure 8). 

 

Figure 8. Schematic of the Outerbridge classification of chondral pathologies. 

Grade 0 corresponds to the normal appearance of the articular cartilage, with normal 

signal intensity. Grade I lesions include focally increased signal intensity in the fluid-sen-

sitive sequences without any visible cartilage loss or defect. Grade II lesions include fray-

ing of the articular cartilage surface. Grade III lesions involve partial-thickness articular 

cartilage defects. Grade IV lesions involve full-thickness chondral defects with exposed 

subchondral bone and reactive bone changes. This correlates well with the arthroscopic 

Figure 8. Schematic of the Outerbridge classification of chondral pathologies.

Grade 0 corresponds to the normal appearance of the articular cartilage, with normal
signal intensity. Grade I lesions include focally increased signal intensity in the fluid-
sensitive sequences without any visible cartilage loss or defect. Grade II lesions include
fraying of the articular cartilage surface. Grade III lesions involve partial-thickness articular
cartilage defects. Grade IV lesions involve full-thickness chondral defects with exposed
subchondral bone and reactive bone changes. This correlates well with the arthroscopic
scoring of chondral defects suggested by the International Cartilage Repair Society (ICRS).
The grading helps in surgical planning and also has prognostic implications. Various
authors have found patients with higher grade (III and IV) chondral injuries to be more
symptomatic and to perform worse in terms of pain and functional outcomes after surgical
interventions [37–40]. The subchondral bone changes that accompany higher grade defects
may include edema or cysts, which appear hyperintense on fluid-sensitive sequences, or
fibrous/sclerotic changes, which appear hypointense. Associated changes in the joint may
include synovitis, effusion and osteophytes.
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Various other classification systems have been proposed, which are used in clinical
trials to provide a semiquantitative scoring assessment. These include the Whole-Organ
MRI Score (WORMS), the Knee Osteoarthritis Scoring System (KOSS), the Boston–Leeds Os-
teoarthritis Knee Score (BLOKS) and the MRI Osteoarthritis Knee Score (MOAKS) [41–44].
These systems divide the knee into various (nine to fourteen) sub-regions, and the cartilage
defects are quantified using different scoring systems. Associated changes in the joint as
well as meniscal and ligamentous abnormalities are also assessed. These are complex and
time-consuming classifications and thus find very little utility in a busy clinical scenario.
Colak et al. compared the MOAKS semiquantitative scoring system with the modified
Outerbridge classification and found both to be effective for predicting outcomes after
partial meniscectomy, with the latter showing better inter-reader agreement [45].

While there are a number of MRI sequences available, 3D T1-weighted SPGR (spoiled
gradient echo) and FSE (fast spin echo) sequences are the most widely used for cartilage
assessment [46,47]. Fat-suppressed 3D SPGR sequences are highly sensitive for the detec-
tion of cartilage defects. The disadvantages, however, include a relatively long acquisition
time and sensitivity to artifacts, which may compromise image quality in post-operative
patients. FSE sequences, in addition to having a high sensitivity for the detection of carti-
lage abnormalities, have the advantage of a shorter scan time as well as the ability to assess
other joint structures such as ligaments and menisci [48,49].

As discussed, the early or low-grade lesions may manifest as areas of increased
signal intensity on fluid-sensitive sequences without surface defects representing cartilage
softening, or as superficial blisters and fibrillation. Higher grade lesions appear as T2
hyperintense fluid-filled gaps which may have obtuse margins if they are chronic or acute
margins if they are acute/traumatic in nature (Figures 9–11).
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Figure 9. Sagittal PD (a) and PDFS images (b) showing chondropathy of the articular cartilage of the
patella (arrow).
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Figure 10. Axial PDFS images (a) showing a full-thickness cartilage defect of the patella (arrow) and
(b) full-thickness cartilage defects of the medial tibiofemoral joint (arrow).

Life 2023, 13, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 9. Sagittal PD (a) and PDFS images (b) showing chondropathy of the articular cartilage of 

the patella (arrow). 

 

Figure 10. Axial PDFS images (a) showing a full-thickness cartilage defect of the patella (arrow) and 

(b) full-thickness cartilage defects of the medial tibiofemoral joint (arrow). 

 

Figure 11. PDFS sagittal (a), coronal (b) and sagittal (c) images of the knee showing a full-thickness 

chondral defect of the medial femoral condyle (arrow) with a displaced chondral fragment in the 

anterior recess (arrow). 

Cartilage defects may occur in isolation or along with defects of the subchondral 

bone, in which case they are called osteochondral defects (Figure 12). Various etiologies 

that may give rise to osteochondral lesions apart from osteoarthritis include trauma, 

Figure 11. PDFS sagittal (a), coronal (b) and sagittal (c) images of the knee showing a full-thickness
chondral defect of the medial femoral condyle (arrow) with a displaced chondral fragment in the
anterior recess (arrow).

Cartilage defects may occur in isolation or along with defects of the subchondral bone,
in which case they are called osteochondral defects (Figure 12). Various etiologies that may
give rise to osteochondral lesions apart from osteoarthritis include trauma, osteochondritis
dissecans (OCD), collapse of the subchondral bone due to insufficiency fractures or avascu-
lar necrosis [50]. A detailed discussion about the imaging differences of these entities is
beyond the scope of this article. However, an appropriate history examination along with
MR imaging can help differentiate the etiology in most cases. Prognostic factors include
size, location, number of lesions, presence or absence of overlying cartilage, presence of
viable or non-viable subchondral bone (in cases of avascular necrosis). MRI can also help
localize detached intra-articular loose bodies or predict unstable lesions. The classic criteria
for unstable lesions include (a) a high-intensity rim signal between the lesion and the parent
bone on fluid-sensitive sequences; (b) cysts beneath the lesion; (c) a high signal intensity
extending through the cartilage over the bone lesion (d) a focal fluid-filled defect of the
bone suggesting complete detachment [50,51]. Surgical treatment is usually indicated in
the absence of symptoms resolution with a conservative management or for unstable OCD
lesions [52–54].

The grading of osteochondral lesions has evolved over time, from Berndt and Harty
describing radiographic grading in 1959 [55,56], modified by Anderson in 1989 [56] and by
Loomer in 1993 [57], to now include MRI features, as in the grading system proposed by
Hepple [58] [Table 2].
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Figure 12. PDFS sagittal (a) and lateral radiographs of the knee (b) showing unstable OCD of the
lateral femoral condyle (arrow).

Table 2. Some of the popular grading systems for osteochondral lesions.

Berndt and Harty (X-ray) Loomer et al. [57] Modification (CT) Hepple et al. [58] (MRI)

(I) Trabecular compression of
subchondral bone

(II) Partially detached osteochondral
fragment

(III) Completely detached but
undisplaced lesion

(IV) Detached and displaced lesion

(I) Compressed
(II) Chip avulsed but attached
(III) Detached chip but undisplaced
(IV) Detached and displaced chip
(V) Radiolucent, cystic lesion

(1) Articular cartilage damage only
(2a) Cartilage injury with underlying

fracture and surrounding bony
edema

(2b) Stage 2a without surrounding bony
edema

(3) Detached but undisplaced fragment
(4) Detached and displaced fragment
(5) Subchondral cyst formation

5. Imaging Evaluation of Cartilage Repair Procedures

While the current management of osteoarthritis aims primarily to alleviate pain and im-
prove joint function through non-pharmacological measures and the use of drugs, surgery
is offered as the last resort. However, there have been many advances in the treatment
of focal cartilage defects. These procedures are largely divided into local stimulation and
autologous transplantation techniques.

With local stimulation techniques, the subchondral bone beneath the cartilage defect
is penetrated to cause bleeding, leading to fibrin clot formation. This fibrin clot contains
pluripotent cells that remodel into repair tissue, which is either fibrocartilage or a com-
bination of fibrocartilage and hyaline cartilage. However, the long-term joint function
sustainability by the fibrocartilage is probably limited owing to its inferior biomechanical
properties compared to those of hyaline cartilage. The commoner techniques used to
produce defects in the subchondral bone include abrasion arthroplasty, microfracture and
subchondral drilling.

The common autologous transplantation procedures include autologous osteochon-
dral transplantation (AOT) and autologous chondrocyte implantation (ACI). The former
includes harvesting cylindrical osteochondral plugs of variable sizes from the relatively
non-weight-bearing areas of the joint and transplanting them to fill chondral defects. ACI
is a two-step procedure where a small sample of cartilage is harvested from non-weight-
bearing areas, and cells from this specimen are isolated and cultured for several weeks. In
the second step, an arthrotomy is performed, and the periosteum harvested from another
bone is used to cover the defect; the cultured cells are then injected beneath it. These
techniques have the potential to form hyaline cartilage and are, thus, of great interest to
researchers [49,59–62].

Although the imaging results of these techniques vary with time, in about 1 to 2 years
the defect should ideally be filled by the reparative tissue, or the autograft should be
well taken up. On MRI, the signal intensity of the graft should match that of the native
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cartilage, with a failed graft appearing fragmented or irregular. Signs of the failure of the
incorporation may be seen as the presence of a fluid signal between the graft and the native
bone, subchondral cysts or sclerosis. A well-incorporated graft has indefectible margins,
with smooth contours of the overlying cartilage (Figure 13).
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Figure 13. Sagittal PD (a), PDFS (b) and SEPCT images (c) showing post-OCD fixation changes with
increased uptake (arrow).

The assessment of other areas of the joint is necessary, as the underlying disease
process such as osteoarthritis may produce newer cartilage defects. The donor site for
osteochondral defects should show a return to a normal fatty marrow signal intensity in
less than a year, with the cartilage defect being filled with reparative tissue. Complications
in the donor site may be seen in about 3% of the cases [63].

6. Conclusions

Articular cartilage pathologies are a significant cause of morbidity. Imaging, in par-
ticular MRI, has an established role in the diagnosis, quantification and prognostication
of disease burden. With innovative advances in imaging, the biochemical and structural
changes characterizing these pathologies are better appreciated and understood.
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