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Abstract: The aim of the present study was to examine, for the first time, the phytochemical content
of Ephedra alata pulp extract (EAP) and explore its antioxidant and anti-inflammatory capacities.
High-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass
spectrometry (HPLC–ESI–QTOF/MS) was used for phytochemical analysis and three in vitro an-
tioxidant assays together with three in vitro anti-inflammatory tests were used for the assessment
of biological activity. The HPLC–ESI–QTOF/MS analysis revealed the presence of 42 metabolites,
including flavonoids, sphingolipides, fatty acids, ephedrine derivatives, and amino acid deriva-
tives. In vitro findings revealed that EAP has interesting 2,2-diphenyl-1-picrylhydrazyl (DPPH),
superoxide, and ferrous ion chelating capacities (IC50 values were 0.57 mg/mL, 0.55 mg/mL, and
0.51 mg/mL for DPPH, superoxide radical, and ferrous ion, respectively). Furthermore, EAP showed
a noticeable anti-inflammatory ability by inhibiting the two cyclooxygenase isoforms, COX-1 and
COX-2 (IC50 of 59.1 and 58.8 µg/mL for COX-1 and COX-2, respectively), preventing protein de-
naturation (IC50 = 0.51 mg/mL), and protecting membrane stabilization (IC50 = 0.53 mg/mL). The
results highlighted the use of Ephedra alata pulp as a potential source of natural compounds with
therapeutic effects for the management of inflammatory disorders.

Keywords: Ephedra alata; high-performance liquid chromatography-electrospray ionization-
quadrupole-time-of-flight mass spectrometry (HPLC–ESI–QTOF/MS); anti-inflammatory; COX1 and
COX2; antioxidants

1. Introduction

Medicinal plants have a key role in traditional therapeutic systems. They possess a va-
riety of natural products that can be exploited for the treatment of metabolic disorders [1,2].
It is well known that thousands of plant species and their active molecules are involved in
the development of modern drugs [3,4]. Non-steroidal anti-inflammatory drugs (NSAIDs)
contribute to the main approaches used in medicine to combat pain, analgesia, and in-
flammation [5]. In fact, inflammation is a highly dynamic process that is allied to a broad
spectrum of human diseases such as cancer, neurodegenerative diseases, cardiovascular
diseases, obesity, and diabetes mellitus [6]. Inflammation can be characterized as the first
protective response of the body’s immune system, and it is generally accompanied by
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swelling, redness, pain, heat, and dysfunction [7]. Inflammation and pain can be managed
by several approaches, including with NSAIDs. Most NSAIDs act on cyclooxygenases
(COX1 and COX2), impairing the release of prostaglandin, blocking the inflammation
process, and improving the anti-inflammatory impulses at the action site [8,9]. Indeed,
arachidonic acid is converted by the enzymes COX-1 and COX-2 into prostaglandins and
thromboxanes. These lipid mediators play central roles in inflammation and pain and
regular physiological functions [10].

However, the excessive administration of NSAIDs may induce a variety of negative
effects, particularly immune-allergic reactions and cardiovascular problems [11]. Many
studies have highlighted the ameliorative role of the bioactive compounds in medicinal
plants, not only for inflammation and analgesia but also as antioxidants [12]. Indeed,
medicinal plants and their bioactive ingredients can be considered eco-friendly components
that can be used in drugs and foods. Among other aspects, it is essential to profile the
potential bioactive constituents, toxicity, and pharmacology data to fulfill the requirements
of pharmaceutical and novel food applications, e.g., anti-inflammatory potential.

Plants from the Ephedra genus, which belongs to the Ephedraceae family, are known
by their richness in several biomolecules [13,14]. Ephedra alata is a wild species that grows
on rocky mountains and in clay regions in arid zones [15]. They are widely used in folk
medicine as a potential stimulant and deobstruent and to treat allergies, fever, bronchial
asthma, and edema [16]. Recently, many pharmacological studies have investigated the
antioxidant, anticancer, and antiviral capacities of E. alata [17–19]. These potential health
benefits are related to their well-known pharmacologically active compounds [20,21].
Recently, Mufti et al. [22] and Noui et al. [23] reported some phytochemical contents of
seeds and leaves of E. alata. However, to our knowledge, no scientific work has focused on
the pharmacological properties of E. alata fruits.

For these reasons, and based on the ethnomedicinal uses, the aim of the present study
was to determine the free radical-scavenging potency and anti-inflammatory potential of
Ephedra alata pulp extract (EAP). The metabolite profiling of EAP was also studied using
high-performance liquid chromatography (HPLC) coupled with quadrupole-time-of-flight
(QTOF) mass spectrometry (MS).

2. Materials and Methods
2.1. Chemicals and Drugs

All the solvents, chemicals, and drugs used in the current study were purchased from
Sigma Aldrich (St Louis, MO, USA). The solvents used were of analytical grades, with
the exception of those used for chromatographic purposes, which were of LC-MS-grade.
C18 column: Kinetex core-shell, Phenomenex, Barcelona, Spain. COX-1 and COX-2 were
from Sigma-Aldrich.

2.2. Plant Material, Collection, and Extraction

Ephedra alata fruits were collected in June 2019 from Gabes (Southeast Tunisia) and
identified by Pr. Ezzeddine Saadoui, National Institute for Research in Rural Engineering
Water and Forests (INRGREF, Tunisia). The samples were registered with the voucher
number EA-06-01 at the herbarium of the INRGREF. The pulps of the collected fruits were
separated, rinsed with sterilized water, dried at room temperature, and separately ground.
The powdered material was macerated in 80% methanol for 48 h [24]. Afterward, the
solution was filtered via syringe filters (nylon; 0.45 mm pore size). The obtained filtrate
was concentrated at 40 ◦C using a rotary evaporator. The final yield of E. alata (EAP) was
12% and the obtained residue was a dark greenish solid. One part was reserved for the
chromatographic study and a second part was kept for the in vitro assay.

2.3. Phytochemistry (HPLC-DAD-QTOF-MS Analysis)

The chemical composition of EAP was studied using high-performance liquid chro-
matography (HPLC) (Agilent 1200) (Agilent Technologies, Waldbron, Germany) coupled
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with quadrupole-time-of-flight (QTOF)-MS and MS/MS (Agilent 6530B Accurate Mass
Q-TOF), according to Contreras et al. [25]. An electrospray ionization source was used as
the interface and a positive ionization mode was used. Phenolic compounds were separated
at 0.35 mL/min using two solvents: solvent A contained Milli-Q® water and formic acid
(0.1%, v/v) and solvent B contained acetonitrile and formic acid (0.1%, v/v). The separation
was made using a C18 column (2.1 × 50 mm, 2.7 µm) and a linear gradient of solvent B in
A was applicated [26]. The injection volume was 10 µL.

The auto-MS mode was applied and the spectra were acquired over an m/z range
of 60–1200 Da. The mass correction was performed with a continuous infusion of triflu-
oroacetic acid ammonium salt (m/z 112.9856) and hexakis 1H,1H,3H–tetrafluoropropoxy
phosphazine (m/z 1033.9881) (Agilent Technologies). MassHunter Qualitative Analysis
B.06.00 (Agilent Technologies) was applied for data processing to generate the molecular
formula and measure the error, isotopic pattern, and mass score.

2.4. The Antioxidant Properties: In Vitro Study
2.4.1. Scavenging Ability toward DPPH

A total of 500 µL of different concentrations of EAP (0.2–1 mg/mL) was added to a
mixture of 125 µL of DPPH (0.2 mM) and 375 µL of deionized water. The obtained solutions
were placed in the dark for approximately 60 min. Ascorbic acid was used as a positive
control. The absorbance was measured at 517 nm [27]. The following formula was used for
the calculation of the results:

Inhibition (%) = ((1 − Absorbance of sample)/Absorbance of control)) × 100

The control tube contained all reagents except the samples.

2.4.2. Superoxide Radical Scavenging Assay

The mixture obtained by adding 10 µL of EAP at different concentrations (0.2–1 mg/mL)
to 500 µL Tris–HCl buffer (50 mM, pH = 8.2) was placed for 20 min at room temperature.
After that, 0.2 mL of pyrogallol (3 mM) was added to the mixture. After 4 min at 25 ◦C, the
absorbance was measured at 325 nm [28]. The positive reference was ascorbic acid. The
following formula was used to estimate the scavenging activity:

Inhibition (%) = ((1 − Absorbance of sample)/Absorbance of control)) × 100

2.4.3. Ferrous Ion Chelating Assay

The chelating capacity of EAP on ferrous ions was assessed using the method described
by Chew et al. [29]. A total of 100 µL of FeSO4 (2 mM) was mixed with 1 mL of EAP at
various concentrations (0.2–1 mg/mL). After incubation at 25 ◦C for 5 min, the solutions
were mixed with 0.2 mL of ferrozine solution (5 mM) and kept at 25 ◦C for 10 min. The
positive control was ascorbic acid. The absorbance was read at 562 nm. The Fe2+ chelating
capacity was estimated using the following formula:

Fe2+ chelating rate (%) = ((1 − absorbance of sample)/absorbance of control)) × 100.

2.5. In-Vitro Anti-Inflammatory Activity
2.5.1. COX-1 and COX-2 Inhibition Assay

The inhibitory activity of EAP toward the cyclooxygenases enzymes (COX-1 and
COX-2) was determined as reported by Husseini et al. [30]. Briefly, EAP and positive
controls (morphine and indomethacin) were dissolved in DMSO. The enzyme was mixed
with 180 µL of a mixture of Tris-HCl buffer (100 mM; pH = 8.05) and hematin (5 mM)
and then mixed with 10 µL of the sample or positive control. Then, the mixture was
kept for 5 min at 37 ◦C. To start the reaction, N,N,N,N-Tetramethyl-p-phenylenediamine
dihydrochloride (TMPD) and 5 µL of arachidonic acid solution dissolved in methanol were
added. The absorbance was read at 610 nm after incubation for 1 h. IC50 (50% concentration
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of inhibitory activity), represents the concentration at which a substance exerts half of its
maximal inhibitory effect, expressed in mg/mL, and calculated using Graph Pad Prism.

2.5.2. Inhibition of Protein Denaturation

The mixture consisted of 2 mL of EAP (20–1000 µg/mL), 2.5 mL of Tris buffer (pH 6.4),
and 0.5 mL of bovine serum albumin (1%, w/v) [31]. In a control tube, the positive standard
and the sample were replaced with distilled water. After 10 min of incubation at 36 ◦C, the
mixtures were heated for 6 min at 70 ◦C. The absorbance was measured at 660 nm. The
following formula was used to estimate the % of inhibition:

Inhibition (%) = ((1 − Absorbance of sample)/Absorbance of control) × 100

2.5.3. Ethical Clearance

Ethical permission and agreement for the conducive experimental conditions and
use of blood samples from human subjects were provided by the ethical committee of
the Department of Biology, University of Gafsa (UG/DB/2009). Informed consent was
obtained from all study subjects.

2.5.4. Membrane Stabilization

Blood was collected from healthy donors at the Regional Hospital of Gafsa, Tunisia.
The donors did not consume anti-inflammatory drugs for a week or more. A total of 10 mL
of blood was first centrifuged at 2500 rpm for 10 min and then washed repeatedly in a
saline solution. After that, PBS (pH 7.4) was used to dilute the red blood cells (RBCs) until
10% (v/v) suspension was obtained. A control tube contained RBC mixed with a buffer
solution. Indomethacin was used as a positive control. Tested samples were prepared at
concentrations of 200, 400, 600, 800, and 1000 µg/ mL in PBS. After that, 1 mL of each
solution was mixed with 1 mL of RBC and incubated for 20 min at 54 ◦C. After cooling,
the samples were centrifuged at 2100 rpm for 5 min and the absorbance was measured at
560 nm [32]. The percentage of inhibition was estimated according to the following formula:

Inhibition (%) = ((1 − Absorbance of sample)/Absorbance of control)) × 100

2.6. Statistical Methods

Data were analyzed using one-way analysis of variance (ANOVA) procedures at a
significance level of p < 0.05, utilizing Prism 7.01 (GraphPad, San Diego, CA, USA). Separate
analyses were conducted for each time point. The results were expressed as the mean ± SD
and comparisons between treatment means were made using a Tukey posthoc test.

3. Results and Discussion
3.1. HPLC-ESI-QTOF-MS Analysis

The compounds found in the EAP were characterized using their molecular formula
and fragmentation pattern in addition to information found in the literature and MS spectra
databases. Figure 1 shows the base peak chromatograms of the compounds detected by
HPLC-QTOF-MS in the positive mode.

Table 1 shows the chemical profile of EAP (42 molecules). Although ephedrine was
not detected, four ephedrine derivatives (5, 10, 12, and 14) were found. As a common
feature in the MS/MS spectra, they presented a fragment at m/z 166.12, which matched
the ephedrine molecular formula (Table S1). These compounds have not been reported
before, including the sugar derivative of ephedrine (Table 1). Furthermore, kynurenic
and hydroxykynurenic acid, which present a quinoline-2-carboxylic acid moiety, and
methanoproline were detected in the extract, as has been reported by Caveney et al. [33].
Kaempferol 3-O-rhamnoside and isoschaftoside have also been detected in roots and stems
of Ephedra sinica Stapf [34] and isorhamnetin O-glucoside-O-rhamnoside has been detected
in the fruits of Ephedra foeminea Forssk [35]. Sphingolipids, which usually show comparable
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fragments, including at m/z 256.29 (sphingoid base) [36], were also observed. Other
observed molecules were leucine (or isoleucine)-hexoside, fatty acids, indoleacrylic acid,
phenylalanine-hexoside, and other nitrogen-containing compounds, including the bioactive
oleamide. The fragmentation pattern of the last molecule agreed with that found by another
study [37]. The other molecules were characterized from Ephedra genus for the first time.
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Table 1. Compounds tentatively identified in Ephedra alata pulp (EAP) extracts. a Referred to the sum
of the peak areas of the compounds.

No. Proposed Compound Molecular Formula RT
(min)

Mean Peak
Area Relative % a

1 Unknown C5H13NO 0.4 6,941,206 3.567 ± 0.013
2 Methanoproline C6H9NO2 0.5 327,766 0.168 ± 0.004
3 Leucine/Isoleucine hexoside C12H23NO7 0.6 9,895,290 5.085 ± 0.158
4 Phenylalanine hexoside C15H21NO7 0.8 32,493,414 16.699 ± 0.309
5 Ephedrine derivative 1 (+ hexosyl + deoxyhexosyl) C22H35NO10 1.1 47,146 0.024 ± 0.004
6 Indoleacrylic acid C11H9NO2 1.7 18,548 0.010 ± 0.001
7 Hydroxykynurenic acid C10H7NO4 2.2 110,717 0.057 ± 0.001
8 Unknown C12H14N2O3 3.2 58,993 0.030 ± 0.001
9 Kynurenic acid C10H7NO3 3.7 26,694 0.014 ± 0.003
10 Unknown C10H13NO2 4.9 6,082,634 3.126 ± 0.216
11 Unknown C10H13NO2 5.3 12,797,772 6.577 ± 0.119
12 Ephedrine derivative 2 C24H37NO11 6.1 7645 0.004 ± 0.000
13 Unknown C14H18N4O2 6.9 160,758 0.083 ± 0.003
14 Ephedrine derivative 3 C35H49NO15 8.2 39,773 0.020 ± 0.004
15 Isoschaftoside C26H28O14 8.7 558,228 0.287 ± 0.001
16 Ephedrine derivative 4 C37H51NO15 9.9 44,981 0.023 ± 0.002
17 Unknown C29H59NO9 10.7 1,133,485 0.583 ± 0.012
18 Unknown C29H59NO9 10.8 1,919,159 0.986 ± 0.106
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Table 1. Cont.

No. Proposed Compound Molecular Formula RT
(min)

Mean Peak
Area Relative % a

19 Isorhamnetin O-hexoside-O-deoxyhexoside 1 C28H32O16 11.2 312,278 0.160 ± 0.010
20 Isorhamnetin O-hexoside-O-deoxyhexoside 2 C28H32O16 11.5 375,236 0.193 ± 0.000
21 Unknown (compound 18 + C6H11NO) C35H70N2O10 12.3 5,044,989 2.593 ± 0.091
22 Kaempferol 3-O-rhamnoside C21H20O10 12.9 89,651 0.046 ± 0.000
23 Unknown (compound 19 + C6H11NO) C41H81N3O11 13.4 2,472,859 1.271 ± 0.047
24 Unknown (compound 20 + C6H11NO) C47H92N4O12 14.3 565,680 0.291 ± 0.006
25 Unknown (compound 21 + C6H11NO) C53H103N5O13 15.1 74,822 0.038±0.000
26 Tetradecasphinganine C14H31NO2 16 675,136 0.347 ± 0.010
27 Hexadecasphinganine C16H35NO2 22 47,041,954 24.176 ± 1.961
28 Phytosphingosine C18H39NO3 22.7 5,802,618 2.982 ± 0.226
29 Sphingolipid derivative 1 C16H35NO3 22.8 6,817,998 3.504 ± 0.513
30 Sphingolipid derivative 2 C16H33NO3 23.5 627,400 0.322 ± 0.011
31 Unknown C14H31NO 24.1 8,684,421 4.463 ± 0.566
32 Sphingolipid derivative 3 C18H39NO3 25 2,066,875 1.062 ± 0.186
33 Unknown C16H36NO 25.4 4,771,780 2.452 ± 0.105
34 9,10-Dihydroxystearic acid C18H36O4 25.8 32,234 0.017 ± 0.000
35 Deoxysphinganine C18H39NO 25.9 403,861 0.208 ± 0.017
36 Hydroxyoctadecatrienoic acid C18H30O3 26.3 1,173,301 0.603 ± 0.025
37 Unknown (choline derivative) C28H47N3O6 26.5 80,220 0.041 ± 0.002
38 Unknown C20H37NO3 27 148,727 0.076 ± 0.004
39 Unknown C17H32N6O2 27.5 10,892,423 5.598 ± 0.659
40 Oleamide C18H35NO 27.8 13,817,387 7.101 ± 0.705
41 N-Palmitoylsphingosine C34H67NO3 28 1,601,879 0.823 ± 0.440
42 Unknown C19H36N6O2 28.4 8,344,368 4.288 ± 0.626

3.2. Antioxidants Activity

Some medicinal plant compounds inhibit cellular death through their free radical
scavenging properties. In the current study, the antioxidant activity of EAP was explored
using three methods: Fe2+ chelating, superoxide anions, and DPPH assays. The obtained
data (Figure S1A) showed that EAP was efficient against DPPH radicals when compared to
ascorbic acid (AA). The IC50 values were 0.57 mg/mL and 0.54 mg/mL for EAP and AA,
respectively. Recent studies have reported that aerial parts and seeds of E. alata exhibited
important antioxidant potential against DPPH radicals [22,23].

Superoxide, a precursor of several reactive oxygen species, is a toxic radical in cells.
The scavenging effects of EAP and AA on the superoxide radical were dose-dependent
(Figure S1B). Data from Table 2 show that EAP exhibited an interesting scavenging activity
of superoxide radicals (IC50 = 0.55 mg/mL) compared to ascorbic acid (IC50 = 0.63 mg/mL).
The potent antiradical capacity of EAP might be an indication of superoxide anion use by
the plant extract [38]. Hamoudi et al. [39] also showed a significant antioxidant capacity
using superoxide assay in Ephedra nebrodensis extract.

Table 2. In vitro antioxidant activities of EAP evaluated using DPPH, superoxide, and Fe2+ chelating
assays at different concentrations. * Results are expressed as IC50 (mg/mL).

Sample DPPH Radical Scavenging Superoxide Radical Scavenging Fe2+ Chelating

Ephedra alata pulp 0.57 ± 0.05 ns 0.55 ± 0.01 * 0.51 ± 0.02 *

Ascorbic acid 0.54 ± 0.01 0.63 ± 0.02 0.46 ± 0.01

Ascorbic acid was used as a positive control. Values are means ± SD of three separate experiments. * p < 0.05
significant differences compared to ascorbic acid. ns: not significant.

The highest Fe2+ chelating activity of EAP (70.6%) was found at 1 mg/mL (Figure S1C).
Table 2 shows that EAP presented a similar powerful Fe2+-chelator (IC50 = 0.51 mg/mL)
when compared to the positive standard (IC50 = 0.46 mg/mL). The obtained results sug-
gested that the iron-chelating capacity of EAP may be attributed to the presence of various
antioxidants that are able to chelate metal ions [39].
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The present findings show that E. alata pulp could be a source of natural antioxidants
against free radicals. In fact, the differences between E. alata and other species might be
attributed to their biomolecule content [40]. Furthermore, the synergetic effect of bioactive
metabolites in the extract may control the antioxidant effect of medicinal species [41].
Carocho and Ferreira [42] reported that the mechanisms involved in the assays used to
estimate antioxidant properties are varied and that plants extracts can have different
molecules with specific capacities that participate in antioxidant effects, suppressing the
formation of reactive oxygen species by inhibiting antioxidant enzymes or chelating trace
metals implicated in free radical release, thus forming stable products that do not start or
propagate radical production.

3.3. In Vitro Anti-Inflammatory Activity

The anti-inflammatory activity of EAP was estimated using three based assays: protein
denaturation inhibition, membrane stabilization, and cyclooxygenase inhibition.

Two isoforms, cyclooxygenase-1 and cyclooxygenase-2, are well-known contributors
to the inflammation process [43]. In order to evaluate the cyclooxygenase inhibition profiles
of EAP, in vitro COX-1 and COX-2 inhibition assays were carried out using indomethacin as
a reference drug. The data obtained revealed that both EAP and indomethacin were able to
inhibit both COX-1 and COX-2 at low concentrations (Figure 2). The inhibition effect of EAP
on these two cyclooxygenases was dose-dependent (concentrations from 20 to 100 µg/mL),
and the highest inhibition capacities of COX-1 (74%) and COX-2 (67%) were detected at
100 µg/mL. It is also interesting to note that the anti-cyclooxygenase propriety of EAP (IC50
of 59.1 and 58.8 µg/mL for COX-1 and COX-2, respectively) was similar to that obtained
with indomethacin (IC50 of 61.8 and 56.7 µg/mL for COX-1 and COX-2, respectively). To
our knowledge, this study is the first to evaluate the in vitro anti-cyclooxygenase capacity
of E. alata pulp extract and is in agreement with previous studies reporting that various
medicinal plants are able to inhibit COX1 and COX2 enzymes [44,45].

Life 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

similar to that obtained with indomethacin (IC50 of 61.8 and 56.7 µg/mL for COX-1 and 
COX-2, respectively). To our knowledge, this study is the first to evaluate the in vitro anti-
cyclooxygenase capacity of E. alata pulp extract and is in agreement with previous studies 
reporting that various medicinal plants are able to inhibit COX1 and COX2 enzymes 
[44,45]. 

 
Figure 2. Percentage enzyme inhibition and IC50 values of EAP and indomethacin against COX-1 
and COX-2 enzymes. n = 3, mean ± SD values. IC50 (50% concentration of inhibitory activity). 

Protein denaturation has been correlated with the formation of inflammatory disor-
ders. Therefore, the ability of a substance to prevent protein denaturation is an important 
step in the development of potential anti-inflammatory medicines [46]. In the present 
study, the capacity of EAP to block the thermal denaturation of albumin was explored. As 
shown in Figure 3, EAP and indomethacin inhibited heat-induced albumin denaturation 
in a dose-dependent manner. The inhibition efficiencies of EAP and the reference drug at 
1 mg/mL were 82.2% and 82.7%, respectively. Table 2 shows that the anti-inflammatory 
capacity of EAP (IC50 of 0.51 mg/mL) was similar to that of indomethacin (IC50 of 0.56 
mg/mL). A recent study corroborating these findings demonstrated that extracts of 
Ephedra nebrodensis could protect protein against denaturation [39]. In the same context, 
various medicinal plant extracts have been assessed for their ability to inhibit protein de-
naturation [47–49]. Furthermore, it has been suggested that the inhibition of BSA denatur-
ation was responsible for the anti-inflammatory effects of a variety of NSAIDs, such as 
diclofenac sodium, salicylic acid, indomethacin, and flufenamic acid [50] 

The membrane stabilization assay was used to confirm the anti-inflammatory capac-
ity of EAP. Indeed, previous studies have reported that thermal stimuli induce the break 
of the erythrocyte membrane [51]. Figure 3 shows that EAP and standard indomethacin 
were able to protect red blood cells (RBC) from heat-induced erythrocyte hemolysis. EAP 
displayed remarkable anti-hemolytic activities, with an IC50 value of 0.57 mg/mL, in a 
manner similar to indomethacin (IC50 = 0.59 mg/mL). The maximum inhibitions of hemol-
ysis of EAP and indomethacin (76.9% and 76.3%) were observed at a concentration of 1 
mg/mL. Several studies have supported the ability of plant extracts to stabilize the RBC 
membrane in a hypotonic solution and inhibit hemolysis [49,52]. In fact, according to Mo-
rales León et al. [53], the membrane stabilizer effect could be attributed to the presence of 
biomolecules in extracts which posses anti-inflammatory properties. Biomolecules and 
their synergistic have exhibited significant protection of the cell membrane from harmful 
drug. These compounds were able to interfere with the liberation of phospholipases that 
activate the production of inflammatory mediators [54]. 

Furthermore, it has been reported that the deformability and volume of erythrocytes 
are directly related to the intracellular level of calcium [55]. The ability of the molecules to 
alter the level of calcium was a probable explanation for the stabilizing activity of the 

Figure 2. Percentage enzyme inhibition and IC50 values of EAP and indomethacin against COX-1
and COX-2 enzymes. n = 3, mean ± SD values. IC50 (50% concentration of inhibitory activity).

Protein denaturation has been correlated with the formation of inflammatory disorders.
Therefore, the ability of a substance to prevent protein denaturation is an important step in
the development of potential anti-inflammatory medicines [46]. In the present study, the
capacity of EAP to block the thermal denaturation of albumin was explored. As shown in
Figure 3, EAP and indomethacin inhibited heat-induced albumin denaturation in a dose-
dependent manner. The inhibition efficiencies of EAP and the reference drug at 1 mg/mL
were 82.2% and 82.7%, respectively. Table 2 shows that the anti-inflammatory capacity of
EAP (IC50 of 0.51 mg/mL) was similar to that of indomethacin (IC50 of 0.56 mg/mL). A
recent study corroborating these findings demonstrated that extracts of Ephedra nebrodensis
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could protect protein against denaturation [39]. In the same context, various medicinal
plant extracts have been assessed for their ability to inhibit protein denaturation [47–49].
Furthermore, it has been suggested that the inhibition of BSA denaturation was responsible
for the anti-inflammatory effects of a variety of NSAIDs, such as diclofenac sodium, salicylic
acid, indomethacin, and flufenamic acid [50].
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The membrane stabilization assay was used to confirm the anti-inflammatory capacity
of EAP. Indeed, previous studies have reported that thermal stimuli induce the break of
the erythrocyte membrane [51]. Figure 3 shows that EAP and standard indomethacin
were able to protect red blood cells (RBC) from heat-induced erythrocyte hemolysis. EAP
displayed remarkable anti-hemolytic activities, with an IC50 value of 0.57 mg/mL, in
a manner similar to indomethacin (IC50 = 0.59 mg/mL). The maximum inhibitions of
hemolysis of EAP and indomethacin (76.9% and 76.3%) were observed at a concentration
of 1 mg/mL. Several studies have supported the ability of plant extracts to stabilize the
RBC membrane in a hypotonic solution and inhibit hemolysis [49,52]. In fact, according to
Morales León et al. [53], the membrane stabilizer effect could be attributed to the presence
of biomolecules in extracts which posses anti-inflammatory properties. Biomolecules and
their synergistic have exhibited significant protection of the cell membrane from harmful
drug. These compounds were able to interfere with the liberation of phospholipases that
activate the production of inflammatory mediators [54].

Furthermore, it has been reported that the deformability and volume of erythrocytes
are directly related to the intracellular level of calcium [55]. The ability of the molecules
to alter the level of calcium was a probable explanation for the stabilizing activity of the
extract. The in vitro anti-inflammatory activity of leaf extracts of Basella alba. displayed
membrane stabilization effects by inhibiting hypotonicity-induced lysis of the erythrocyte
membrane [56].

The present results were concomitant with the findings of Bourgou et al. [18], who
investigated the in vitro anti-inflammatory capacity of the aerial parts of two Ephedra
species from Tunisia (E. fragilis Desf and E. alata). All these results suggest that EAP can be
used as a natural therapeutic against some inflammatory disorders.

It should be noted that inflammation is a very complex process involving the sequential
activation of signaling molecules and proinflammatory mediators such as prostaglandins,
leukotrienes, and oxygen free radicals [57]. Cyclooxygenase (COX) is the major enzyme
responsible for the conversion of arachidonic acid (produced as a result of cell membrane
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damage) into prostaglandins. Prostaglandins, specifically prostaglandin E2, increase the
sensitivity of nociceptors to stimuli and are important mediators of pain and other inflam-
matory symptoms. The interaction assay with enzymes and their possible inhibitors is an
interesting step in the development of potential anti-inflammatory medicines [3,58].

The current findings demonstrate an in vitro inhibition capacity of EAP against COX-1
and COX-2, supporting the use of Ephedra alata as a potential source of biomolecules that
can be administrated as an anti-inflammatory component.

The data of the present study reveal for the first time that EAP exhibits remarkable
anti-inflammatory capacities. The ameliorative effect of EAP might be attributed to its
phytochemicals metabolites. Previous findings have reported the anti-inflammatory effects
of ephedrine [59], kaempferol [60], isorhamnetin [61], isoschaftoside [62], and oleamide [63],
which are some of the compounds (or related compounds) that can be detected in E. alata.
In addition, the detected sphingolipids in EAP can provide effective drug targets against
pathological inflammation [64]. The anti-inflammatory properties of kynurenic acid should
not be ruled out [65]. Nonetheless, besides the positive benefits of, for example, ephedrine
derivatives and kynurenic acid, much research is required due to the “double-edged
sword” of this type of molecule [66]. In fact, it has been shown that various bioactive
molecules can bind to COX-1 and COX-2 and induce inhibitory effects on the enzymes [52].
Limongelli et al. [67] reported that in COX-1, the space of the selectivity pocket is dimin-
ished due to the presence of isoleucine, while in COX-2, the presence of valine enlarges the
existing space, offering a more stable binding possibility for molecules inhibitors.

Future studies will be conducted to purify and elucidate the concrete chemical struc-
ture, including its stereochemistry and the biological functions of the molecules found in
this extract with promising anti-inflammatory potential. Especially relevant is the presence
of new ephedrine derivatives that could have a pharmacological role as ephedrine has in
current medication [68].

4. Conclusions

Overall, the findings obtained herein show that hydromethanol extracts of E. alata
pulp has interesting DPPH-, superoxide-, and iron-scavenging capacities. EAP showed a
higher hemolysis and protein denaturation inhibition activity. This beneficial effect could be
mediated by the inhibition of cyclooxygenase 1 and 2, as detected by anti-cyclooxygenase
test studies. The HPLC–ESI–QTOF/MS analysis indicated that EAP contains a mixture of
beneficial bioactive compounds that exhibit antioxidant and anti-inflammatory abilities.
However, the mechanisms involved in the obtained pharmacological properties deserve fur-
ther study. Additionally, the chemical structure of E. alata compounds and their biological
actions must be elucidated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life13020323/s1, Figure S1. Antioxidant activities of EAP evaluated
using DPPH (A), Superoxide (B) and Fe2+ chelating assays (C) in different concentration. Ascorbic
Acid was used as a positive control. Values are means ± SD of three separate experiments EAP:
Ephedra alata pulp. AA: Ascorbic Acid; Table S1. Characterization of the compounds tentatively
identified in Ephedra alata pulp (EAP) extract.
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