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Abstract: Platelet-rich plasma is an autologous plasma containing platelets prepared from fresh
whole blood drawn from a peripheral vein. Through processing, it can be prepared to contain
supraphysiologic levels of platelets at three to five times greater than the level of normal plasma. PRP
has been explored both in vivo and ex vivo in the human endometrium model in its ability to harness
the intrinsic regenerative capacity of the endometrium. Intrauterine autologous PRP infusions have
been shown to increase endometrial thickness and reduce the rate of intrauterine adhesions. In the
setting of recurrent implantation failure, intrauterine infusion of PRP has been shown to increase
clinical pregnancy rate. PRP also appears to hold a potential role in select patients with premature
ovarian insufficiency, poor ovarian responders and in improving outcomes following frozen–thawed
transplantation of autologous ovarian tissue. Further studies are required to explore the potential
role of PRP in reproductive medicine further, to help standardise PRP protocols and evaluate which
routes of administration are most effective.
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1. Background

The use of cell-based therapies, such as platelet-rich plasma (PRP), has gained consid-
erable momentum over the last decade due to their ability to promote tissue regeneration
through cell differentiation and trophic activities. The first clinical application of PRP
was as a transfusion product to treat thrombocytopenia [1]. It has since been used across
numerous medical fields, including maxillofacial and plastic surgery, orthopaedic surgery,
dermatology, urology and more recently gynaecology [2].

This review aims to summarise the use of PRP within the reproductive setting by
conducting an evidence-based evaluation of its preparation, classification systems, mecha-
nism of action and clinical applications. We aim to explore the potential benefits of PRP on
endometrial receptivity and regeneration, embryo implantation and ovarian function.

PRP is an autologous plasma containing platelets prepared from fresh whole blood
drawn from a peripheral vein. Through processing, it can be prepared to contain sup-
raphysiological levels of platelets at three to five times greater than the level of normal
plasma. Platelets are produced by megakaryocyte cells within the bone marrow. They are
anucleate and have the smallest density amongst all blood cells with a diameter of 2 µL.
Their physiologic count ranges from 150,000 to 400,000 platelets per µL [3]. Given their
small density, centrifugation methods result in platelets settling at the top of an aggregate,
which allows for efficient extraction and subsequent clinical use.
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PRP contains alpha granules storing cytokines and growth factors, which are key
to tissue regeneration [3,4]. Growth factors within the alpha granules include vascular
endothelial growth factor (VEGF), transforming growth factor (TGF), platelet-derived
growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1),
connective tissue growth factor (CTGF) and fibroblast growth factor (FGF). These growth
factors regulate cellular migration, differentiation and proliferation through autocrine and
paracrine effects [5]. The alpha granules containing growth factors are released within ten
minutes of platelet activation at the site of injury or inflammation, resulting in a net flow of
neutrophils and macrophages, which leads to angiogenesis and re-epithelialisation [4,6].
Specifically within the human endometrial model, the release of PDGF has proven to be
key to endometrial progenitor cell activity. PDGF isoforms have been demonstrated to
significantly improve endometrial stromal cell proliferation and contractility [7].

The outer membrane of platelets consists of a phospholipid bilayer which provides
the structural foundation of the platelet cell membrane. Phospholipids within the serum
have been demonstrated to negatively correlate with the level of phospholipid within the
follicular fluid within the ovarian follicles during controlled ovarian stimulation cycles
in patients undergoing IVF [8]. This has been hypothesised to result from the increased
consumption of platelets secondary to increased membranogenesis taking place during
follicular growth. Therefore, an increased serum level of platelets through the addition of
PRP, resulting in an increased level of serum phospholipid, may benefit follicular growth
and thus improved oocyte during IVF cycles [9]. To add to this, Fayezi and colleagues dis-
covered that the amounts of phospholipid and the phospholipid/apoA-I ratio in follicular
fluid were associated negatively with the percentage of fertilised oocytes [10].

The preparation of autologous PRP involves venepuncture and the collection of
20–30 mL of blood into sterile tubes containing an anticoagulant. This anticoagulant
usually contains citrate and dextrose of sodium citrate to prevent the premature activation
of platelets prior to use. The blood is centrifuged at moderate speed for several minutes at
room temperature, which results in blood being separated into three layers according to
the specific gravity of the components: the top clear-coloured supernatant layer, which is
the platelet-rich plasma; the middle layer, known as the ‘buffy coat’, rich in white blood
cells; and a bottom layer containing dense red blood cells. The PRP can then be collected
and used. Figure 1 summarises the steps involved. PRP has been shown to remain viable
for up to five days at room temperature [11]. A number of commercially available systems
are available for the production of PRP, mostly varying in the volume of blood, the antico-
agulant used and the speed and time of centrifugation required [12]. This does present a
degree of heterogeneity amongst PRP products and, therefore, amongst studies evaluating
the use of PRP, making cross-comparisons between different units less robust. There is
currently no consensus or standardised protocol for the preparation of PRP, although the
preparation of PRP is closely related to its clinical efficacy [13].
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2. Types of PRP

The growth factors secreted by platelets which are available to tissues have been shown
to be directly proportional to the platelet concentration. Bone and enhanced soft-tissue healing
have been proven to occur at platelet concentrations of 1,000,000 plate-lets/µL within a 5mL
volume of plasma; thus, this is often used as a working definition of therapeutic PRP [4]. In
the presence of varying concentrations of platelets within a platelet gel, human endothelial
cells have displayed induced proliferation, motility and enhanced invasiveness in the pattern
of a bell-shaped distribution, whereby higher concentrations have resulted in a reversal of
the processes [14]. The optimal concentration for platelet stimulation and proliferation was
reported to be 1.25 × 106 and for angiogenesis, 1.5 × 106 platelets/mL [14].

The Dohan Ehrenfest classification (2009) proposed categorising the various platelet
preparations into four categories, each determined by the number of leucocytes and the
fibrin content [15]:

1 Pure platelet-rich plasma (P-PRP) or leucocyte-poor PRP is a preparation with absent
or low levels of leucocytes and a low-density fibrin network following activation. The
PRP products in this category can be used in liquid or in an activated gel form. It can
therefore be used topically on skin wounds or over sutures;

2 Leucocyte and PRP preparations (L-PRP) contain leucocytes and a low-density fibrin
network after activation. L-PRP products can also be used in a liquid or gel form.
Similarly to P-PRP, it can also be spread over wounds or sutures;

3 Pure platelet-rich fibrin (P-PRF) is a preparation with absent or low levels of leucocytes
and a high-density fibrin network. P-PRF products exist in an activated gel form and
cannot be injected. Due to the fibrin matrix, it can be handled like a solid material.
The fibrin matric provides a scaffold for cellular migration and tissue regeneration.

Leucocyte-rich fibrin and PRF (L-PRF) preparations are rich in leucocytes and a high-
density fibrin network. The resultant clot or ‘biomaterial’ has a gel-like form ready for use.
It can be used directly to fill a cavity to promote tissue regeneration and healing, mixed
with a bone material for remodelling in orthopaedics or compressed into a membrane ready
for application over surgical sites.

3. Methods

A literature search was performed using Medline, PubMed, EMBASE and the Cochrane
Library to identify relevant papers up to 2023. The key terms used in combi-nation with
“PRP” and "platelet-rich plasma” were “fertility”, “infertility”, “thin endometrium”, “Ash-
erman’s”, “endometrial receptivity”, “endometrial thickness”, “recurrent implantation
failure”, “premature ovarian failure”, “premature menopause” and “ovarian reserve”.
The titles and abstracts of all retrieved articles were screened, and relevant papers were
included within this review. Relevant articles not available in English were excluded from
this review.

A summary of findings from each study is included in Table 1.
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Table 1. Summary of studies utilising PRP for infertility treatments.

Population Author Year Sample Size Study Design Model Route of PRP
Injection

Volume of PRP
Injected Main Findings following PRP Therapy

Asherman’s Kim et al. 2020 35 Case control Murine Intrauterine 0.7 mL

Decreased expression of fibrosis-related
factors following endometrial injury,

enhanced number of implantation sites,
improvement in the live birth rates in

mice with AS.

Asherman’s Kim et al. 2022 5 Case control Murine Intrauterine n/a

Increased the mRNA expression levels of
proangiogenic factors. Significantly

higher number of implantation sites in
treated group.

Asherman’s Aghajanova et al. 2018 2 Case study Human Intrauterine n/a Improved endometrial thickness and
function. Improved pregnancy rate.

Asherman’s Javaheri et al. 2020 30 Nonrandomised
clinical trial Human Intrauterine 1 mL

No improvement in the reoccurrence of
intrauterine adhesions. No difference in

the menstrual bleeding pattern
compared to the control group.

Asherman’s Aghajanova et al. 2021 30 RCT Human Intrauterine 0.5–1 mL

No statistically significant difference
observed in the endometrial thickness

nor the clinical and biochemical
pregnancy rate.

Asherman’s Amer et al. 2018 60 RCT Human Subendometrial 5 mL
Reduced rate of adhesions reforming.

Significant increase in the duration
of menses.

Endometritis Sfkianoudis et al. 2019 1 Case report Human Intrauterine 2.5 mL
No microbiological evidence of chronic

endometritis following treatment.
Successful live birth.

Endometritis Reghini et al. 2016 21 RCT crossover Mare Intrauterine 20 mL Reduction in percentage of neutrophils.

Refractory
endometrium Chang et al. 2023 12 Case control Human Intrauterine 1 mL

Improved endometrial receptivity and
significantly lower level of endometrial

NK cells, CD8 T cells and Th1 cells.

Refractory
endometrium Agarwal et al. 2020 32 Cross-sectional Human Subendometrial 4 mL A success rate of 75% in achieving an

endometrial thickness greater than 7 mm.
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Table 1. Cont.

Population Author Year Sample Size Study Design Model Route of PRP
Injection

Volume of PRP
Injected Main Findings following PRP Therapy

RIF Nazari et al. 2019 97 RCT Human Intrauterine 0.5 mL Higher clinical pregnancy rate (45%
versus 17%).

Refractory
endometrium Nazari et al. 2019 60 RCT Human Intrauterine 0.5 mL

Endometrial expansion to >7 mm
following a second intrauterine infusion.
Biochemical pregnancy in 12/30 treated

patients.

Refractory
endometrium

and RIF
Tandulwadkar et al. 2017 68 Observational Human Intrauterine 0.5–0.8 mL

Endometrial expansion to >7 mm,
significant increase in endometrial

vascularity, 61% implantation rate, 45%
clinical pregnancy rate.

RIF Noushin et al. 2021 318 Observational Human Intrauterine and
Subendometrial n/a

PRP-treated group demonstrated a
higher LBR overall, no difference in
outcomes between intrauterine and

subendometrial injection.

POI Sills et al. 2018 4 Case series Human Intraovarian 5 mL per ovary
Improved ovarian function as early as
two months after treatment. All four

patients achieved blastocysts.

POI Ahmadian et al. 2020 86 Case control Murine Intraovarian 0.1 mL per ovary

Both high and low PRP concentrations
displayed improvement in follicular

quality, statistically significant increase
in number of morphologically normal

follicles when compared to the controls.

POI Fraidakis et al. 2023 469 Observational Human Intraovarian 2–4 mL per
ovary

Significant improvement in FSH and
oestrodiol levels.

POI Cakiroglu et al. 2020 311 Observational Human Intraovarian 2–4 mL per
ovary

Significant increase in AFC and serum
AMH, 7% spontaneous conception. In

total, 41% of patients undergoing
stimulation achieved at least one embryo.

POI Pantos et al. 2019 3 Case series Human Intraovarian 4 mL per ovary

Decreased FSH and increase in AMH
across all cases. Menstrual cycle

restoration. Clinical pregnancy through
natural conception in all cases.
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Table 1. Cont.

Population Author Year Sample Size Study Design Model Route of PRP
Injection

Volume of PRP
Injected Main Findings following PRP Therapy

POI Marchante et al. 2023 36 RCT Murine Intraovarian 0.1 mL per ovary

Bone marrow–derived stem cells
combined with PRP promoted follicle

maturation across mice of all age groups.
In the mature group, treatment led to

improvement in the quantity and quality
of ovulated mature oocytes.

Frozen thawed
ovarian tissue Callejo et al. 2013 1 Case study Human Ovarian tissue

coating n/a
Resumption of ovarian hormonal

activity and ovarian follicle growth to
15 mm. Live birth.

POR Sfkianoudis et al. 2019 3 Case series Human Intraovarian 5 mL per ovary

A 75% improvement in AMH, 67%
decrease in FSH levels within three

months of treatment. Clinical
pregnancies were achieved in all three

patients.

POR Hosseinisadat et al. 2023 22 Observational Human Intraovarian n/a Significant increase in AMH in 86%
of women.

POR Cakiroglu et al. 2022 510 Observational Human Intraovarian 2–4 mL per
ovary

In total, 66% of women who underwent
COS achieved at least one day

3–5 embryo. There was a 21% pregnancy
rate and a combined implantation and

live birth rate of 13%.

Key—RCT: randomised controlled trial, RIF: recurrent implantation failure, POI: premature ovarian insufficiency, AFC: antral follicle count, AMH: anti-Mullerian hormone, FSH: follicle
stimulating hormone, POR: poor ovarian responder, COS: controlled ovarian stimulation.
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4. Intrauterine Application of PRP

PRP has been explored both in vivo and ex vivo in the human endometrium model
with regard to its ability to harness the intrinsic regenerative capacity of the endometrium.
Chang et al. first demonstrated successful endometrial expansion (>7 mm thickness) at
48–72 h post-treatment in five women undergoing frozen embryo transfer cycles, leading
to pregnancies in all five treated with intrauterine autologous PRP infusions [16]. These
findings were corroborated by a further study of ten women treated with intrauterine PRP
intrauterine infusions, all of whom displayed increased endometrial thickness, and five
subsequently went on to achieve successful pregnancies [17].

4.1. Asherman’s Syndrome

Asherman’s syndrome is characterised by damage to the endometrial basal layer
resulting in a deficiency of endometrial regeneration capacity and subsequent intrauterine
adhesions [18]. These adhesions can cause menstrual irregularities, cyclical pain, abnormal
placentation, recurrent miscarriage and infertility [19]. The cause of Asherman’s syndrome
is usually iatrogenic, commonly following dilatation and curettage of the uterine cavity for
miscarriage or termination of pregnancy [20]. Other causes include opening of the uterine
cavity during a myomectomy procedure, hysteroscopic resection of submucosal fibroids,
radiotherapy, uterine artery embolisation and chronic endometritis [21]. Previously, the
therapeutic focus has been to remove the adhesions to improve fertility; however, adhesions
often reform. Thus, emphasis on harnessing the endometrium’s capacity to regenerate
is likely to improve outcomes [22]. Failure to adequately repair the damaged functional
endometrium may be due to the loss of progenitor cells usually present in the basal
endometrium. Additionally, endometrial progenitor stem cell activity is also known to
be impaired in women with low circulating oestrogen or high levels of inflammatory
cells [23,24].

In this setting, intrauterine injection of PRP has been shown to increase implantation
sites and subsequently live birth rates through the reduced expression of fibrosis-related
factors (Tgfb1, Timp1 and Col1a1) [25]. Intrauterine injection of human PRP into a murine
model of Asherman’s syndrome resulted in an increase of 2.1 vs. 4.6 (p < 0.01) implantation
sites in the untreated versus treated group. The live birth rate was 83% in the PRP-treated
group and 0% in the untreated group. Administration of PRP has also been shown to
increase proangiogenic factors and promote the migration of endometrial stromal cells into
sites of uterine injury in mice [26]. In vitro studies in humans assessing the impact of PRP in
Asherman’s syndrome remain sparce. Aghajanova et al. first demonstrated PRP infusions
in the human model, where two patients with Asherman’s syndrome received intrauterine
PRP introduced through a Wallace IUI catheter immediately following adhesiolysis. Both
cases led to successful pregnancies, and one case demonstrated improved endometrial
thickness following PRP treatment. Although PRP did not demonstrate endometrial growth
in one case, as measured by endometrial thickness, the result of a successful conception
and pregnancy despite a thin endometrium supports the notion of improved endometrial
function post-PRP infusion [27]. In one clinical trial, fifteen patients with AS received
1ml of intrauterine PRP two days post hysteroscopic adhesiolysis rather than immediately
due to concerns over the dilution of PRP with hysteroscopic fluid. Repeat hysteroscopy
8–10 weeks post-therapy failed to demonstrate any improvement in the reoccurrence of
intrauterine adhesions and menstrual bleeding pattern compared to the control group [28].
In a similar trial of 15 patients with moderate to severe AS, 0.5–1 mL of PRP was infused
immediately post-adhesiolysis, but no statistically significant difference was observed
in the endometrial thickness or in the clinical and biochemical pregnancy rate [29]. In
contrast, subendometrial injection of 5 mL of PRP in addition to coating the intrauterine
lining with 5 mL of PRP gel immediately post-hysteroscopic adhesiolysis in 30 women
with Asherman’s syndrome was shown to result in a reduced rate of adhesions reforming
and resulted in a significant increase in the duration of menses [30]. It appears that the
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higher volume of PRP, the timing immediately post-adhesiolysis and the utilisation of the
subendometrial route may have contributed to the superior outcomes seen in this study.

4.2. Endometritis

Chronic endometritis is defined as persistent inflammation of the endometrial mucosa
caused by bacterial pathogens. Diagnosis of chronic endometritis is made through sampling
of the endometrium at hysteroscopy and the presence of plasma cells within the endometrial
stroma on histological analysis [31]. The level of proinflammatory cytokines interleukin-
6, interleukin-1β and tumour necrosis factor α are increased in women with chronic
endometritis, which may affect cell migration and proliferation [32]. It has been associated
with repeat implantation failure and recurrent miscarriage [33–35]. Current treatment for
chronic endometritis rests largely on oral antibiotics [32]. However, although antibiotic
treatment has been shown to improve the implantation and clinical pregnancy rates, those
with ongoing chronic endometritis may continue to experience fertility issues compared to
women successfully treated [32,36]. Autologous PRP represents a novel treatment approach
for chronic endometritis. One recent case study demonstrated a successful live birth
following intrauterine infusion of PRP in a patient with a history of chronic endometritis
and six failed embryo transfers. Microbiological and scanning electron microscopy analysis
during a subsequent menstrual cycle following an intrauterine PRP infusion revealed
no evidence of chronic endometritis [37]. In the bovine model in vitro, PRP has been
shown to downregulate the expression of proinflammatory cytokines IL-1β, IL-8 and
iNOS. Additionally, PRP has been shown to upregulate the expression of ER-α, ER-β
and PR genes, which are vital for pregnancy [38]. Furthermore, in the equine model
in vivo, intrauterine infusion of PRP displayed a reduction in the intrauterine inflammatory
response as measured by the percentage of neutrophils in uterine cytology and the nitric
oxide concentration within the uterine fluid [39]. In clinical settings such as endometritis
where endometrial regeneration is impaired, PRP has been shown to increase the expression
of matrix metalloproteinases (MMP) MMP3, MMP7 and MMP26 within the endometrial
stromal fibroblasts and mesenchymal stem cells [40]. MMPs have been shown to be vital
for successful wound healing—an important step in recovery from endometritis [41]. As
provisional, albeit limited, outcomes from animal studies appear promising, there is a
further need for well-designed studies in humans.

4.3. Refractory Endometrium

In each menstrual cycle, there exists a period of four to five ‘opportune’ days for the
human embryo to implant when the endometrium remains receptive [42]. The endometrial
microenvironment determines endometrial receptivity. This is governed by changes to
the uterine luminal and glandular cells, decidualisation of the endometrial stroma and
increased leukocyte activity [42]. Sonographic markers, such as endometrial thickness and
uterine artery blood flow, have proven to have a high negative predictive value and a low
positive predictive value for a receptive endometrium [43]. Nevertheless, studies have
demonstrated an endometrial thickness of 7 mm and above to be optimal for implanta-
tion and to result in improved clinical pregnancy rates [44,45]. An endometrial thickness
< 7 mm, which is unresponsive to hormonal therapy, has been defined as a refractory
endometrium and is associated with suboptimal fertility rates [46,47]. A severe deficiency
in angiogenic-related markers has been demonstrated in patients with a refractory en-
dometrium, specifically leukemia inhibitory factor [48], vascular endothelial growth factor
(VEGF) and β 3 integrin [49]. Thus, given the proangiogenic potential of autologous PRP, its
application in the setting of subfertility secondary to refractory endometrium presents an
exciting opportunity for patients who are unresponsive to conventional treatment methods.

Another mechanism by which PRP has been shown to improve endometrial receptivity
is by improvement in the endometrial immune environment, which has been long known
to play an important role [50]. Six women previously treated for intrauterine adhesions
received an intrauterine infusion of 1 mL of PRP. Mid-luteal endometrial samples in the



Life 2023, 13, 2348 9 of 17

PRP treatment group displayed significant reduction in CD8 T cells, Th1 and NK cells as
compared to the control group of parous women with a normal uterine environment deter-
mined through hysteroscopy or ultrasound. Microbiota analysis revealed that the presence
of bacillus, a proinflammatory species found in the endometrium, was also significantly
less in the PRP-treated group. The ability of PRP to modulate the endometrial immune
cells and microbiome is an important finding for women with refractory endometrium
following adhesiolysis.

A cross-sectional study in patients with a refractory thin endometrium < 7 mm demon-
strated that subendometrial injection of autologous PRP under hysteroscopic guidance into
the endomyometrial junctional zone across all four walls of the uterus resulted in a 75% suc-
cess rate in achieving an endometrial thickness ≥ 7 mm [51]. These positive results support
the notion of the mode of action of PRP in releasing growth factors into the site of adminis-
tration, the endomyometrial zone, an area which has been associated with low levels of
VEGF in women with implantation failure [52]. VEGF has also been shown to improve
vascular permeability in the mid-luteal phase, which has been proven to be essential for
successful implantation of the embryo [52]. In one randomised controlled trial of 97 patients
with repeated implantation failure, autologous PRP was infused directly into the uterine
cavity with an embryo catheter 48 hours prior to embryo transfer. The PRP-treated group
demonstrated a higher clinical pregnancy rate (44.89% versus 16.66%, p-value = 0.003) [53].
More specifically, in a cohort of 60 patients with a thin endometrium measuring <7 mm,
the PRP-treated group demonstrated endometrial expansion to >7 mm following a second
intrauterine infusion, a thickness which was not achieved in the placebo arm (7.21 ± 0.18
vs. 5.76 ± 0.97 mm, p = <0.001) [54]. The administration method included the infusion of
0.5 mL of PRP into the uterine cavity with a standard intrauterine insemination catheter.
The second intrauterine infusion was administered 48 hours later. Interestingly, another
study demonstrated increased Doppler flow signal to the endometrium post-intrauterine
PRP treatment in women who had a pretreatment suboptimal endometrium (<7 mm) and
suboptimal vascularity (<5 vascular signals) [55], suggesting PRP may also play a role in
neovascularisation. Endometrial vascularity has been shown to be an important parameter
in the implantation potential of the human endometrium [56]. Whilst there is significant
heterogeneity amongst studies so far on the route of application for the intrauterine delivery
of PRP, an observational study comparing the subendometrial and intrauterine infusion
routes did not demonstrate a significant difference in clinical pregnancy rates (51% vs.
52.3%) [57].

5. Intraovarian Injection of PRP
5.1. Premature Ovarian Insufficiency

Premature ovarian insufficiency (POI) is a devastating diagnosis for women who have
not yet met their reproductive aspirations. It is characterised by menopausal levels of
gonadotrophin follicle-stimulating hormone, sex steroid deficiency and follicular atresia
leading to absent or irregular menstrual cycles prior to the age of 40 years [58]. Intermittent
ovarian function is observed in some patients with POI, and in almost 1 in 4 patients,
resumption of ovarian function is observed, and spontaneous pregnancies have been
reported [59,60]. This offers the hope of therapeutic reversal of ovarian atresia by harnessing
the potential of PRP to promote the growth of primordial and preantral follicles. One
example is the outcome from in vitro studies which have found PRP-cultured media
yield significantly higher rates of growth and survival in human preantral follicles when
compared to standard protocols [61].

The first human in vivo study to report the intraovarian injection technique described
a case series of four women with POI who underwent intraovarian injection of 5 mL of
autologous PRP under ultrasound guidance [62]. A decrease in follicular-stimulating
hormone (FSH) and an increase in anti-Mullerian hormone (AMH) was observed in all
cases. Moreover, each patient yielded 4–7 oocytes and at least 1 blastocyst. One possible
explanation for the successes observed in this setting is the presence of latent oocytes which
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have responded to PRP-induced growth factors. Alternatively, PRP growth signalling
pathways may have helped to support the ovarian niche to induce the development of
pluripotent ovarian stem cells into germ cells. Persuasive evidence does exist in support
of the capability of ovarian germ cells to generate de novo oocytes [63,64]. Ovarian fol-
liculogenesis is a complex process. The preantral phase is governed by the ovary, with
the secretion of local growth factors via autocrine and paracrine mechanisms. The second
phase, which proceeds to either ovulation or atresia, is gonadotrophin dependent. The
autocrine and paracrine mechanisms are regulated via growth factors, including bone
morphogenic proteins (BMPs), growth differentiation factors (GDFs), TGF-β, activins and
inhibins and anti-Mullerian hormone (AMH). The expansion of cumulus cells is crucial
to folliculogenesis and is hypothesised to be supported by oocyte-produced growth and
differentiation factor 9 (GDF9) [65]. Thus, these ovary-dependent stages maintain the
intrinsic capabilities of the ovary and support the notion of the ovary as a suitable direct
target for therapeutic intervention with PRP. PRP has been hypothesised to stimulate
neoangiogenesis within the ovary through the introduction of PRP-induced growth factors.

In murine models of POI, intraovarian PRP injection has been shown to influence
the genes involved in angiogenesis possibly playing a role in ovarian restoration [66].
Statistically higher expression of transcripts of ANGPT2 and KDR were noted in both the
low- and high-concentrate PRP groups when compared to controls, with the highest levels
at week six following injection. In PRP-treated POI rats, morphologically normal follicular
counts were restored at almost all stages of follicular development. This may support the
notion of the involvement of proangiogenic pathways for ovarian tissue restoration.

In a large observational study, 469 women with a history of infertility underwent
intraovarian injection of 2–4 mL of PRP into each ovary. A significant decrease in FSH
and increase in oestradiol across all age groups (32–46 years) was reported [67]. However,
despite holding power on the largest sample size to date, the study included a mixed
cohort of women with primary amenorrhoea, POI and hormonal abnormalities. Subgroup
analysis was not performed, thus making the role of PRP unclear in this setting.

Cakiroglu et al. recruited 311 women with POI (diagnosed as per the European Society
of Human Reproduction and Embryology [ESHRE] criteria) to undergo intraovarian PRP
injection [68]. A total of 2–4 mL of PRP was injected into multiple sites within the ovaries.
Timing of the injection was random in the amenorrhoeic group, and in the oligomenorrheic
group, the injection took place on the tenth day following cessation of menstrual bleeding.
Six weeks of expectant management followed to allow for spontaneous pregnancy, which
occurred in 23 patients (7.4%). Amongst the remaining 201 women, 70% developed at least
one antral follicle following PRP treatment. Of those who were suitable for oocyte retrieval,
the mean number of oocytes per retrieval was 1.8 ± 1.3. In total, 41% of women who
underwent stimulation achieved at least one cleavage stage embryo. The study highlights
the potential of PRP in women with POI. Interestingly, women who had at least one antral
follicle present at the time of PRP injection were more likely to respond, suggesting that
PRP plays a role in the activation, growth and differentiation of the follicle.

Mechanical disruption of the ovarian cortex by performing an ovarian scratch la-
paroscopically has been hypothesised to manipulate activation and growth of dormant
primordial follicles [69]. It is, therefore, unclear whether the injection of PRP into the
ovarian cortex is directly linked to the action of PRP or the impact of the injection.

5.2. Embryo Quality

Intraovarian injection of PRP before commencing IVF has been shown to have a
positive effect on the embryo euploidy rate [70]. Twelve women with a history of one failed
IVF cycle, had approximately 4 mL of PRP injected through multiple punctures into the
subcortical layers of each ovary. The euploid embryo number increased from 8% in the
untreated cycle to 39% in the cycle where PRP was administered prior to starting, within
a three-month timeframe. The lack of a control group undergoing ovarian puncture only,
without PRP injection, remains a limitation of this study.
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5.3. Menopause and Ovarian Ageing

Age-related reproductive decline leaves women with no option but to explore the pos-
sibility of having non-genetically related offspring utilising oocyte donation. Autologous
platelet-rich plasma presents a possible option to reverse this reproductive predicament.

Intraovarian injection of autologous PRP in a series of three menopausal women
proved successful in achieving an ongoing clinical pregnancy beyond the second trimester
across all three cases [71]. In this series, three women aged 46, 40 and 27 years with a
diagnosis of menopause had 4 mL of PRP injected into each ovary. Each sample contained
approximately 250,000 µ/L of platelet concentrate. The authors highlight the issue of
leakage from the atrophic menopausal ovary, which was observed and emphasises the
challenge of standardising the PRP volume in future studies. Following PRP injection,
menstrual cycles resumed at 1.2 months and 1 month, respectively, folliculogenesis was
observed and natural conception was achieved between 2 and 6 months. The study
does add value to the merits of intraovarian PRP injection in restoring fertility following
menopause; however, a direct cause and effect for why menstrual cycles resumed in this
cohort following PRP injection cannot be concluded.

In the murine model of ovarian ageing, a single injection with a combination of bone
marrow-derived stem cells and PRP presented a synergistic effect on improving the growth
of primary follicles in the older cohort [72]. A significant reduction in the number of
fragmented oocytes and an increase in the number of oocytes entering metaphase II was
observed in addition to improved chromosomal alignment. The older group receiving PRP
and stem cells also displayed improvements in the blastocyst formation rate. Improved
morphologic appearances were matched with reduced mitochondrial dysfunction, im-
proved mitochondrial copy numbers and a reduction in oxidative damage. Thus, ovarian
recovery has been demonstrated; however, human studies are required to confirm these
findings. In vivo human studies are needed to demonstrate the interaction of functional
ovarian recovery, implantation and the continuation of a successful clinical pregnancy.

5.4. Ovarian Cortex Transplantation

Frozen–thawed transplanted autologous ovarian tissue has been shown to be success-
ful in restoring fertility, but in many cases the autograft suffers ischaemia, which results in
a subsequent loss of follicles until neoangiogenesis is restored [73]. Callejo et al. performed
an ovarian cortex transplant, which was injected and coated with PRP gel, that subsequently
led to a successful live birth [74]. The PRP was prepared by taking 60 mL of the patient’s
own blood and centrifuging it twice to obtain a platelet pellet immersed in 5 mL of plasma.
The FSH reduced from over 40 mIU/mL to 7.9 mIU/mL, and the oestradiol level increased
accordingly from 58 pg/mL to 316 pg/mL, suggestive of the resumption of hormonal
activity. Clinically, whilst the follicles only reached a maximum of 14 mm after nine days of
stimulation, the decision to trigger was based upon serum oestradiol levels. Following an
ovulation trigger with human chorionic gonadotrophin, two oocytes were obtained, one
in metaphase II and the other in metaphase I initially, then transitioning to metaphase II
after seven hours of culture. For oncological patients, the transplantation of cryopreserved
ovarian tissue upon achieving remission, despite its success, may not be an option due to
the risk or reintroducing malignant cells [75]. Thus, in vitro folliculogenesis represents a
vital clinical alternative. Optimisation of the growth of preantral stage follicles to the antral
stage remains an important step in improving the success rate of in vitro folliculogenesis.
In vitro, culture media supplemented with PRP was shown to support the growth and
survival of early preantral follicles significantly better than media without PRP [61]. In
comparison to other growth supplements routinely used in culture media, such as human
serum albumin and fetal bovine serum, human platelet lysate (hPL), a derivative of PRP,
has demonstrated improvement in follicular growth and survival of isolated primary and
secondary human ovarian follicles [76].
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5.5. Suboptimal Ovarian Response in In Vitro Fertilisation

In the setting of poor ovarian response [POR], where there is a reduction in quantity
and quality of oocytes, intraovarian injection of PRP has been utilised to improve AMH
and reduce FSH levels in addition to increasing the number of oocytes retrieved [73,77].
Sfakianoudis et al. reported a case series where 5 mL of PRP was injected into the ovaries
of three women aged 37–40 years, who were poor responders to standard stimulation
protocols. A 75% improvement in AMH and a 67% decrease in FSH levels was observed
within three months of the treatment. Clinical pregnancies were achieved in all three
patients, with one ongoing pregnancy and two reported live births. (77) In the poor ovarian
reserve cohort, a significant increase in AMH was observed in 86% of women following
intraovarian PRP injection [78]. Interestingly, age, body mass index and the duration of
infertility did not correlate with a response to intraovarian PRP injection.

In a large observational study, 510 patients aged between 30 to 45 years with a diagno-
sis of POR using the POSIEDEN criteria underwent intraovarian injection of PRP [79]. A
volume of 2–4 mL of autologous PRP was injected into one or both ovaries via the transvagi-
nal route using ultrasound guidance during the follicular phase of the menstrual cycle.
Spontaneous pregnancy occurred in 4.3% of patients during the expectant management
period. A total of 474 patients underwent controlled ovarian stimulation (COS). The mean
number of oocytes per retrieval before and after PRP treatment were 2.2 ± 1.9 and 3.4 ± 2.7
(p < 0.001), respectively. Following PRP treatment, 66% of women who underwent COS
achieved at least one day 3–5 embryo. The mean number of blastocysts obtained before
and after PRP treatment were 0.6 ± 0.9 and 2.3 ± 1.6 (p < 0.001) The cohort demonstrated
a pregnancy rate of 20.5% and a combined implantation and live birth rate of 12.9%. The
volume of PRP injected did not correlate with the outcome.

5.6. Strengths and Limitations

This review provides a valuable overview of the clinical application of PRP for female
patients within the reproductive setting. A wide range of study designs has been included,
from case series to case control studies, which have provided a broad summary. It is
currently the most comprehensive overview of the topic and will help to guide future
research directions. Due to the lack of randomised controlled trials on the topic, a narrative
review was selected as the research methodology. However, narrative reviews can introduce
bias in the articles selected due to the lack of standardised methodology for data extraction,
as is the case with systematic reviews. The authors recommend a systematic review and
meta-analysis when further randomised controlled trials are available.

6. Conclusions

Intrauterine infusion of PRP represents a novel strategy for the treatment of the
endometrium in its ability to promote biological processes for endometrial regeneration.
Data on the benefit of PRP within the reproductive setting still remain scarce. However,
the theoretical benefits and positive preliminary findings suggest great potential in other
indications within reproductive medicine (Figure 2). PRP offers an exciting opportunity to
enhance ovarian reserve in the context of POI, poor ovarian response and potentially in the
context of ovarian cortex transplantation. PRP remains a relatively low-cost therapeutic
intervention given that it can be prepared at the patient’s bedside with minimal equipment
and can be administered in the office setting quickly and effectively. The use of autologous
blood to produce PRP has eliminated the risk of immunological reactions and presents a
widespread opportunity for its use in the field of gynaecology. However, differences in
PRP preparation can produce a heterogenous injectate, which may vary in quality, purity
and quantity. One such example is the variation of centrifugation speed and duration
where higher speeds can result in a greater concentration of platelets but may also result
in more contaminants or disruption in the platelet integrity. Future studies should define
the cellular content of PRP, including the white and red cell counts, the concentration
factor and the platelet yield—a valuable step in producing a robust product for clinical
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application. Moreover, further studies need to evaluate the optimal methods and routes of
administration. Despite the clear potential of the role of PRP in reproductive medicine, well-
designed, randomised, prospective studies are essential before usage can be recommended.
One particularly valuable area of focus is the effect of PRP in the activation and growth of
ovarian follicles in addition to the potential for reversal of ovarian ageing.
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