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Abstract: This study explores the integration of Wide Field Optical Coherence Tomography (WF-
OCT) with an AI-driven clinical decision support system, with the goal of enhancing productivity
and decision making in breast cancer surgery margin assessment. A computationally efficient
convolutional neural network (CNN)-based binary classifier is developed using 585 WF-OCT margin
scans from 151 subjects. The CNN model swiftly identifies suspicious areas within margins with
an on-device inference time of approximately 10 ms for a 420 × 2400 image. In independent testing
on 155 pathology-confirmed margins, including 31 positive margins from 29 patients, the classifier
achieved an AUROC of 0.976, a sensitivity of 0.93, and a specificity of 0.98. At the margin level,
the deep learning model accurately identified 96.8% of pathology-positive margins. These results
highlight the clinical viability of AI-enhanced margin visualization using WF-OCT in breast cancer
surgery and its potential to decrease reoperation rates due to residual tumors.

Keywords: OCT; optical imaging; AI; breast cancer; deep learning; convolutional neural network;
margin visualization; surgical oncology

1. Introduction

Breast cancer remains the leading cancer-related cause of death among women and is
the most common cancer in 109 countries, excluding melanoma, according to the World
Health Organization [1]. Early-stage breast cancer management often involves breast-
conserving surgery (BCS), a lumpectomy procedure aiming to remove tumors with clear
margins while preserving the aesthetic quality of the breast. However, the reliance on
permanent histopathology for margin assessment, a process that takes days, results in a
significant rate of reoperations due to positive margins. This may necessitate further surgery
to remove more tissue, causing increased patient anxiety, higher morbidity, and increased
healthcare costs [2]. In a recent 1649 patient study, the margin assessment was performed
on 1165 patients (71%), and the overall positive margin rate was 20.8% [3]. Reported rates
vary widely from less than 10% to greater than 70% [4–9]. The National Surgical Quality
Improvement Program (NSQIP) database indicates that post-lumpectomy reoperations
are notably higher compared to other organs [10]. Most patients with positive margins
undergo a secondary excision operation to reduce the probability of cancer recurrence.
These statistics underscore the need for improvements in breast cancer surgery margin
assessment.
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Current intraoperative tumor margin assessment methods include frozen section anal-
ysis, imprint cytology, gross assessment, ultrasound imaging, specimen radiography, and
optical coherence tomography (OCT). Each has its limitations in accuracy, reporting speed,
or both, hampering efficient clinical management. Many surgeons avoid using frozen
section analysis for margin management [11] due to its cost and potential interference with
permanent histology. Imprint cytology requires on-site expertise, is time consuming, and
struggles to detect ductal carcinoma in situ (DCIS) [12]. Gross assessment is often less
relevant, as the extent of a lesion might not be clearly discernible [13]. While using ultra-
sound to guide excision intraoperatively has reduced the rate of positive margins in some
studies, it has not shown any difference in positive margin rates for nonpalpable tumors in
larger cohort studies [14]. Specimen radiography can help judge the adequacy of excised
lesions that show microcalcifications [15], but it has not been proven to reduce reoperation
rates for positive margins [16]. OCT offers a promising avenue for real-time, non-invasive,
high-resolution imaging to detect malignant breast cancer types, such as invasive ductal
carcinoma (IDC) and DCIS [17–19]. However, conventional OCT systems, typically used
for retinal scanning, offer a limited field of view, making them unsuitable for scanning
entire lumpectomy margins [20]. A novel wide-field OCT (WF-OCT) system, designed
specifically for intraoperative use in BCS, solves this issue, allowing full breast lumpectomy
margin visualization in real-time [21]. This WF-OCT system delivers 10-micron resolution
up to a 2 mm imaging depth, which is sufficient to assess BCS margins and significantly
higher resolution than specimen radiography or ultrasound. High-resolution images enable
correlations to histopathology, allowing histopathological images to serve as the ground
truth in AI model training. Figure 1 showcases an exemplary WF-OCT b-scan image of
breast tissue (top) with its corresponding histopathology image (bottom). An arrow high-
lights DCIS in both images, illustrating the ability to identify positive margins. However,
any new imaging technology requires clinicians to undergo training to gain confidence.
Coupled with the vast amount of imaging data that WF-OCT produces, there is a clear
opportunity to employ computer vision and machine learning techniques to streamline the
process and boost confidence in using a WF-OCT device in BCS.

Life 2023, 13, x FOR PEER REVIEW 2 of 18 
 

 

These statistics underscore the need for improvements in breast cancer surgery margin 
assessment. 

Current intraoperative tumor margin assessment methods include frozen section 
analysis, imprint cytology, gross assessment, ultrasound imaging, specimen radiography, 
and optical coherence tomography (OCT). Each has its limitations in accuracy, reporting 
speed, or both, hampering efficient clinical management. Many surgeons avoid using fro-
zen section analysis for margin management [11] due to its cost and potential interference 
with permanent histology. Imprint cytology requires on-site expertise, is time consuming, 
and struggles to detect ductal carcinoma in situ (DCIS) [12]. Gross assessment is often less 
relevant, as the extent of a lesion might not be clearly discernible [13]. While using ultra-
sound to guide excision intraoperatively has reduced the rate of positive margins in some 
studies, it has not shown any difference in positive margin rates for nonpalpable tumors 
in larger cohort studies [14]. Specimen radiography can help judge the adequacy of ex-
cised lesions that show microcalcifications [15], but it has not been proven to reduce re-
operation rates for positive margins [16]. OCT offers a promising avenue for real-time, 
non-invasive, high-resolution imaging to detect malignant breast cancer types, such as 
invasive ductal carcinoma (IDC) and DCIS [17–19]. However, conventional OCT systems, 
typically used for retinal scanning, offer a limited field of view, making them unsuitable 
for scanning entire lumpectomy margins [20]. A novel wide-field OCT (WF-OCT) system, 
designed specifically for intraoperative use in BCS, solves this issue, allowing full breast 
lumpectomy margin visualization in real-time [21]. This WF-OCT system delivers 10-mi-
cron resolution up to a 2mm imaging depth, which is sufficient to assess BCS margins and 
significantly higher resolution than specimen radiography or ultrasound. High-resolution 
images enable correlations to histopathology, allowing histopathological images to serve 
as the ground truth in AI model training. Figure 1 showcases an exemplary WF-OCT b-
scan image of breast tissue (top) with its corresponding histopathology image (bottom). 
An arrow highlights DCIS in both images, illustrating the ability to identify positive mar-
gins. However, any new imaging technology requires clinicians to undergo training to 
gain confidence. Coupled with the vast amount of imaging data that WF-OCT produces, 
there is a clear opportunity to employ computer vision and machine learning techniques 
to streamline the process and boost confidence in using a WF-OCT device in BCS. 

 

Figure 1. WF-OCT image of breast tissue (top) and the corresponding digital pathology im-
age (bottom). The arrow in the pathology image points to ductal carcinoma in situ (DCIS), and
the same DCIS is clearly visible in the WF-OCT image.
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The present study details the design and architecture of a WF-OCT deep learning
model, evaluates its efficacy in classifying breast tissue, and thoroughly examines its
potential in assisting clinicians to mitigate burnout and information overload.

2. Materials and Methods

In a regulated industry such as healthcare, adhering to stringent guidelines and best
practices is imperative when developing an AI model based on medical imaging data.
This study delineates the process of data collection, labeling, training, and testing of the
deep learning model. It ensures that the model meets the rigorous criteria required for
intra-operative deployment and assistance in surgical decisions.

This process encompasses several key steps, starting with the utilization of WF-OCT
imaging data, paired with ground truth label sets. Figure 2 presents the overarching
workflow for model development and performance assessment. The initial step in our
methodology is the strategic splitting of the dataset. We compiled a diverse dataset,
which includes a range of disease types and patient demographics. This dataset is then
segmented into three parts: training, validation, and an external test set. Our primary focus
was to ensure the inclusion of true positive margins—those verified by pathologists and
identified as positive in WF-OCT—in each subset. To this end, we employed a manual
curation process. Each margin was carefully allocated to ensure that while margins from
the same patient could be present in both the training and validation sets, they were
completely excluded from the holdout test set, which comprised entirely unique subjects.
This approach was mirrored for negative data as well, with each dataset receiving margins
from each subject. This method ensures a balanced representation of patient demographics
and disease types across all datasets, which is crucial for the robustness of our study.
Once the data are partitioned, model development ensues. In the model development
pipeline, three distinct tools (patch generation, model generation, and margin processing)
are utilized, with the corresponding Python code provided.
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1. Patch Generation: In this preliminary step, the ground truth labels are input to
extract coordinates from the WF-OCT imaging data. The resulting output consists
of labeled image patches, each distinctively named and characterized according
to their morphological feature types. These patches are further sorted based on
specific margins and unique subject directories. Concentrated data augmentation is
implemented to enhance the representation of suspicious features, ensuring a balanced
training dataset to the possible extent.

2. Model Generation: This crucial step encompasses both the model training, with spec-
ified hyperparameters, and the evaluation of its performance. The model selection
emphasizes the epoch exhibiting the lowest validation loss and peak accuracy. Fol-
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lowing this, the chosen model undergoes testing using the distinct “test” patches
to ascertain key performance metrics and the model’s overall efficacy on a blinded
test set.

3. Margin Processing: When a model fulfills the pre-defined performance criteria, it is
tested in a simulated real-world environment using the WF-OCT Processing tool. This
stage involves the simultaneous processing of designated and complete subject scans
as well as the application of a clustering algorithm. The foremost aim is to identify
correctly classified key suspicious features and ensure that the model presents the
most accurate “Key Thumbnail Images” of the relevant patches to the clinical user.
This method boosts user accessibility and efficiency in identifying suspicious features
during surgical procedures.

The subsequent sections provide detailed insights into each of these steps and the
composition of the training data, as well as the model selection process.

2.1. Data Collection and Curation

Our model is designed to offer a swift and accurate assessment of surgical margins.
Specifically, it assesses both suspicious and non-suspicious breast morphology through su-
pervised learning. WF-OCT images and their corresponding pathology data were amassed
during an IRB-approved clinical trial (Title: “Wide-field optical coherence tomography
imaging of excised breast tissue for evaluation of the computer-aided detection tool Im-
gassist”. IRB #2019-1225) conducted between 2019 and 2021. All participants provided
informed consent. The WF-OCT data were partitioned into three distinct sets: the train-
ing, validation, and test sets. The first two sets (training and validation, highlighted in
Table 1) comprise a total of 585 WF-OCT margin scans from 151 subjects (average age:
63 ± 11.7). It should be noted that some subjects in the training set are not in the validation
set and vice versa, which leads to the number of subjects in either set being lower than
151. An independent test set, utilized to benchmark the final model, consisted of 155
margin scans (31 positive and 124 negative) from 29 subjects (average age: 58.5 ± 9.1)
with histopathology-confirmed status. A detailed breakdown of the patient demographics,
which is proportional to the targeted demographics of model deployment, for the training,
validation, and test datasets can be found in Tables 1 and 2.

Table 1. Subject demographics. study cohort is limited to adult female breast cancer patients.

Characteristic Training and Validation
(n = 151)

Testing
(n = 29)

Age, years, mean (SD) 63 (11.7) 58.5 (9.1)

Race, n (%)

White 116 (76.8%) 20 (69%)

Black 18 (11.9%) 6 (20.7%)

Asian 10 (6.6%) 3 (10.3%)

Other 6 (4%) 0 (0%)

Not reported 1 (0.7%) 0 (0%)

Ethnicity, n (%)

Hispanic or Latino 29 (19.2%) 7 (24.1%)

Not Hispanic or Latino 121 (80.1%) 22 (75.9%)

Unknown 1 (0.7%) 0 (0%)

The training and testing datasets encompass benign and malignant findings and are
listed in Table 2. The inclusion of Tables 1 and 2 highlights the efforts that were made
to include subjects in both training and testing with a variety of benign findings that
would pose a challenge to OCT interpretation, including lymphatic invasion, atypical
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ductal hyperplasia, lobular carcinoma in situ, atypical lobular hyperplasia, usual ductal
hyperplasia, and duct ectasia.

Table 2. Subject disease type statistics, which include both malignant and benign, cancer precursors,
findings.

Characteristic
Training and
Validation
(n = 151)

Testing
(n = 29)

Malignant Tumor type, n (%)

Invasive Ductal 27 (17.9%) 8 (27.6%)

Invasive Lobular 4 (2.6%) 0 (0%)

Ductal carcinoma in situ 34 (22.5%) 5 (17.2%)

Mixed 77 (51%) 15 (51.7%)

Benign (Not applicable for tumor type) 5 (3.3%) 1 (3.4%)

Other findings, n (%)

Lymphatic invasion 6 (4.0%) 1 (3.4%)

Atypical ductal hyperplasia 23 (15.2%) 7 (24.1%)

Lobular carcinoma in situ 16 (10.6%) 3 (10.3%)

Atypical lobular hyperplasia 15 (9.9%) 9 (31%)

Usual ductal hyperplasia 26 (17.2%) 12 (41.4%)

Duct Ectasia 3 (2.0%) 6 (20.7%)

For each margin scan, between 200 and 900 WF-OCT images are generated, with the
exact number of B-Scan images contingent on the specimen’s size and a user-determined
scan density. Figure 3 presents a breakdown of the training, validation, and test datasets,
showing margin-level statistics. The figure also delineates the workflow, detailing the
specific usage of each dataset during various phases of the training and validation processes.
Figure 3 illustrates that the test set is completely independent of the training and validation.
The training and testing of the model are limited by the number of positive margins, as
there is no shortage of negative margins in the database. The positive margins are separated
between training and testing to maximize their utility towards generating a model.
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The model training workflow involved splitting the wide-field OCT (WF-OCT) images
into smaller, overlapping patches with a 0.5 step size, each 420 by 188 pixels. Demonstrating
the breakdown of the data in a lumpectomy patient is important to understand the full
magnitude of information that would be typically reviewed by a clinician and what the
model is trained on. A subject would typically have six margins assessed, each margin
(formed from a stack of WF-Bscan images) has around 400 b-scans where each WF-Bscan
image is divided into overlapping rectangular regions of interest, known as patches, with
approximately 30 patches per B-scan image. Ignoring the extra shaves that might have
been taken during surgery, this sums up to 72,000 patches for each scan. In our training
process, this technique of extracting data was used except for annotated features, where
the step size is further reduced to a fifth of the width step to produce an additional five
translated patches. Figure 4 provides a visual representation of the relationship between a
margin, b-scan, and a patch.
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relationship of the margin (red arrow), composed of sequential WF-Bscans (orange arrows), and a
patch (blue box) formed by a sliding window (yellow arrow) over a B-scan.

To produce the annotated patches, two subject matter experts performed manual an-
notation of each morphological feature, classifying them as either “suspicious” (malignant)
or “non-suspicious” (benign), with the pathology results being the definitive ground truth.
First, an expert produces reader label sets using a validated custom labeling tool. This tool
allows the reader to select regions of interest with a mouse and assign a label denoting
a specific feature type. Additionally, an expert reader uses final pathology to assign a
ground truth. The second reader is a clinician with subject matter expertise in the labeled
tissue domain. This reader may be a pathologist or breast surgeon. The second reader
either agrees or disagrees with the first set of annotations. Additionally, they may add
other suspicious region suggestions. Figure 5 provides the high-level workflow of the data
labeling process.
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2.2. Model Development

Convolutional Neural Networks (CNNs) excel in autonomously learning from data,
eliminating the need for manually designing image processing pipelines, including filters
for specific features [22]. This attribute is especially advantageous in detecting variable
lesions in WF-OCT, where lesion characteristics differ among patients. Due to their exten-
sive use in medical imaging and computer vision tasks [23,24], we opted for a CNN-based
architecture in our study. In recent years, several deep learning architectures, including
ResNet-18 [25], VGG [26], ShuffleNet [27], EfficientNet [28], and MobileNet [29], have
gained prominence for their robust performance in medical image classification tasks.
These models demonstrate remarkable efficacy in generating accurate ‘disease predictors’,
suitable for both binary classification and the nuanced allocation of multi-class disease
severity levels. The utility of these architectures is often further enhanced by transfer
learning, which allows the models to leverage pre-trained parameters and transfer knowl-
edge from natural images (ImageNet) to the medical imaging domain for more accurate
predictions.

However, the current application under investigation presents unique computational
constraints that render these conventional models less suitable. Network connectivity,
cybersecurity, and data privacy type concerns add additional complexity for cloud-based
clinical deployment. Therefore, our system is specifically engineered to classify thou-
sands of image patches in real-time on-edge devices for intraoperative use. This in turn
poses additional design constraints due to the inherently limited computational resources
available. This constraint mandates innovative approaches to optimizing computational
efficiency without compromising the system’s real-time processing and classification accu-
racy. Traditional architectures, while powerful, are typically designed with a primary focus
on achieving state-of-the-art accuracy, often at the expense of increased computational
complexity and latency [30]. This complexity manifests as many trainable parameters and
floating-point operations per second (FLOPs), both of which are resource-intensive metrics
that are not congruent with the real-time, low-latency demands of our application.

Our model, specifically designed to remain lightweight to reduce computational bur-
den in the Operation Room (OR), is based on a multi-layered convolutional neural network
whose architecture is primarily inspired by the VGG network [26] and other models used
for image classification tasks [31]. The final convolutional neural network (CNN) based
deep learning (DL) model was crafted to optimize computational efficiency for immedi-
ate feedback. It encompasses five convolutional layers (each employing a 3 × 3 kernel)
and three fully connected layers, with a cumulative parameter count of approximately
1,589,000. The design of a streamlined architecture for our AI model primarily addresses
the challenge of computational resource limitations, with a dedicated Nvidia Quadro RTX
4000 GPU on a device at the time of the model design. This is critical when simultaneously
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classifying up to 250,000 patches and processing OCT images in real-time on the edge. By
optimizing resource efficiency, our model not only manages these concurrent tasks but also
aims to significantly reduce time in the OR, a crucial factor in enhancing patient outcomes
and operational efficiency. Figure 6 provides an architectural detail of the CNN model
(CAUTION—Investigational device. Limited by United States law to investigational use.
ImgAssistTM is not available for sale in the United States).
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The ImgAssist CNN model exhibits distinct advantages over conventional architec-
tures like VGG16 and ResNet18 in our specific use case, specifically in computational
efficiency. Optimized for 1-channel grayscale images, its compact architecture with signifi-
cantly fewer parameters (1.5 M compared to 134.2 M for VGG16, 12.6 M for ResNet18, and
3.4 M for MobileNetV2) enhances its suitability for mobile and embedded systems, address-
ing the limitations of resource-intensive models [29]. ImgAssist also demonstrates reduced
computational complexity with lower FLOPs (154 M compared to 15.4 G for VGG16, 1.89 G
for ResNet18, and 3.4 M for MobileNetV2), making it less power intensive. Such efficiency
is vital for real-time image classification [32]. Moreover, its simplicity aids adaptability to
specific tasks [33], an essential feature in specialized domains. With its reduced size and
complexity, ImgAssist utilizes a straightforward training process, particularly advanta-
geous in data-limited scenarios [34]. Its architecture is also well-suited for edge computing
applications, where cloud data transfer is impractical [35]. In healthcare, a sector where
model transparency and compliance are imperative, ImgAssist’s simpler structure may
improve explainability and regulatory adherence [36]. These attributes make ImgAssist a
potentially more appropriate choice for this specific image classification task than larger,
more complex models [37].

2.3. Model Performance Assessment in a Clinical Simulation

To evaluate the model’s performance, we implemented an advanced testing methodol-
ogy that simulates real-world clinical scenarios for disease identification using our margin
processing tool. Utilizing the test cohort detailed in the preceding sections, we processed
155 full margins from 29 patients, which included 31 margins flagged as suspicious. This
processing was executed in a controlled setting analogous to our WF-OCT device oper-
ations, employing a Quadro RTX 4000 GPU for computational support. These margins
comprised a total of 1,835,905 image patches, among which 551 were labeled as positive, rep-
resenting unaugmented, singular patches and constituting a mere 0.03% of the total patch
count. We conducted concurrent inference of these patches, assessing both individual and
aggregated metrics such as processing time, and margin as well as subject-level accuracy.
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2.3.1. Clustering Algorithm Integration for Enhanced Diagnostic Precision

To augment the model’s diagnostic acumen, we incorporated a clustering algorithm
using DBSCAN, a density-based, non-parametric clustering technique [38]. This algorithm
identifies points in close proximity to each other to form clusters while designating isolated
points in sparse areas as outliers. In our application, DBSCAN was employed to cluster
adjacent suspicious feature B-scans based on shared x-coordinate values, thus aligning
successive patches along the z-axis. We defined a “cluster” as a collection of at least
two adjacent detections, which, given the morphological traits of Ductal Carcinoma In
situ (DCIS) and Invasive Ductal Carcinoma (IDC), aligns with the expected pattern of
manifestations at our chosen patch density. Consequently, this clustering approach shifted
our analysis from isolated patches to “Clusters”, enhancing the spatial representation of
suspicious areas in WF-OCT scans.

2.3.2. Key Thumbnail Selection for Clinician Review

The subsequent phase involved determining the most representative “Key Thumbnail”
for clinician review. We calculated this using a moving average maximum (MAMAX)
algorithm applied to 188 × 188 resized patches within a cluster. This selection algorithm
is specifically tailored for clusters larger than two to three thumbnails, addressing cases
where clusters could exceed 30 thumbnails, and where a simple midpoint or maximum
value selection does not accurately represent the cluster. The “Key Thumbnail” displayed
on the device’s user interface (UI) is thus chosen for its highest confidence rating within
a significant cluster. Figure 7 illustrates the clustering algorithm, the thumbnail selection
process, and the Thumbnail Display Page on the UI.
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Figure 7. A composite diagram illustrating the multifaceted image analysis process: (A) demon-
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Figure 7. A composite diagram illustrating the multifaceted image analysis process: (A) demon-
strates the clustering algorithm, retaining only adjacent patches (green) exceeding a set classification
threshold, non-suspicious (red) or single (yellow) patches are discarded. (B) Details the selection of a
‘Key Thumbnail’ using a moving average maximum (MAMAX) method, which identifies the top three
contiguous patches with the highest average probability in a cluster; the patch with the maximum
local value within this subset is then designated as the ‘Key Thumbnail’. (C) Displays the Thumbnail
Display Page on the OCT device’s user interface (UI), where clusters with higher confidence are
prioritized at the top. ‘Key Thumbnails’ serve as the most representative image of a cluster, providing
clinicians with a concise ‘highlight reel’ of suspicious areas within a margin, thereby streamlining the
review process, minimizing information overload, and reducing clinician fatigue.
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3. Results

We present the evaluation results of the WF-OCT system when enhanced with our
deep learning model. This assessment seeks to determine the model’s suitability for
practical clinical applications, specifically in the domain of breast cancer surgery margin
assessment. Our analysis leverages several performance metrics established by ISO/IEC
TS 4213:2022 [39].

3.1. Patch-Wise Performance

Utilizing a comprehensive blinded test set, the convolutional neural network (CNN)
model registered an Area Under Receiver Operating Characteristic curve (AUROC) value
of 0.976. This indicates a good generalization ability of the model. Given our patch-wise
test dataset’s imbalance where only 1.5% (3736 out of 255,682) were positive patches, a
baseline AUPRC of 0.146 was established. Against this backdrop, the model’s Area Under
Precision–Recall curve (AUPRC) of 0.812 is notably significant, suggesting its robustness
in classifying patches. Figure 8 represents an interpretation of the model’s localization
capabilities in detecting suspicious features in test patches. These heatmaps, generated by
Gradient-weighted Class Activation Mapping (Grad-CAM), indicate which regions in the
input image contribute the most to a model’s predictions.
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Figure 8. The suspicious thumbnail image on the left is followed by the gradient-weighted Class
Activation Maps, which uses the global average of the gradients flowing into the feature maps of the
last convolutional layer, a measure that focuses on which features in the image are contributing to
the model prediction. The accompanying heatmap overlay on the right provides transparency to the
model’s decision making.

3.2. Two-Tiered Confidence Threshold Analysis

Our two-tiered confidence threshold approach is specially crafted to offer clinicians
a balanced view of sensitivity and specificity. The classification confidence intervals are
found in the performance summary in Table 3. A lower threshold value provides better
sensitivity, but it comes at the expense of precision, as evidenced by a lower Positive
Predictive Value (PPV) and Matthew’s Correlation Coefficient (MCC). MCC is quite useful
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in binary classification problems as it summarizes the confusion matrix by incorporating
True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) in
one single metric (Equation (1)). In the absence of a single threshold that performs well
across all performance indicators, we opted for a dual-threshold setting (0.75 and 0.925) to
tier the findings. The first threshold is set to be highly sensitive, while the second threshold
(0.925) becomes more selective and displays only the higher confidence findings (Precision
jumps from 0.41 to 0.79; MCC increases from 0.61 to 0.74 when a higher confidence threshold
of 0.925 is used versus 0.75) while trading off to a lower sensitivity performance. This
tiered approach provides flexibility to the end user to balance the performance design
tradeoffs. A Positive Likelihood Ratio (PLR) of 234.00 at a 0.925 threshold indicates a
strong confirmatory value for positive test results. Similarly, a Negative Likelihood Ratio
(NLR) of 0.07 at the 0.75 threshold suggests that a negative result is highly indicative
of disease absence. These ratios affirm the test’s precision in guiding post-lumpectomy
clinical decisions.

MCC =
TN × TP − FN × FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

Table 3. CNN Model’s performance parameters across different binary classification thresholds of
suspicious findings using independent test data. MCC: Matthew’s Correlation Coefficient, NPV:
Negative Predictive Value, PPV: Positive Predictive Value, and LR: Likelihood ratio.

Classification
Threshold

Sensitivity
(Recall) Specificity F1-Score

Matthew’s
Correlation
Coefficient
(MCC)

Positive
Predictive
Value (PPV)
(Precision)

Negative
Predictive
Value (NPV)

Positive
Likelihood
Ratio

Negative
Likelihood
Ratio

0.5 0.96 0.969 0.73 0.542 0.317 0.999 30.97 0.04

0.6 0.948 0.974 0.749 0.567 0.35 0.999 36.46 0.05

0.7 0.935 0.978 0.768 0.594 0.387 0.999 42.50 0.07

0.75 0.928 0.98 0.779 0.609 0.41 0.999 46.40 0.07

0.8 0.894 0.986 0.808 0.648 0.479 0.998 63.86 0.11

0.9 0.768 0.996 0.871 0.743 0.727 0.997 192.00 0.23

0.925 0.702 0.997 0.868 0.737 0.782 0.996 234.00 0.30

1 0 1 0 0 1 0 - 1.00

First Confidence Interval (0.75)
The confidence threshold set at 0.75 yielded the following results:

• Sensitivity: 0.93
• Specificity: 0.98
• Precision (PPV): 0.41
• F1-Score: 0.78
• MCC: 0.61

Second Confidence Interval (0.925)
The metrics achieved at this higher confidence level are as follows:

• Sensitivity: 0.7
• Specificity: 1.0
• Precision (PPV): 0.79
• F1-Score: 0.87
• MCC: 0.74

3.3. Margin-Wise Analysis

Our evaluation delves further into assessing the model’s efficacy at full patient margins,
termed “clusters”. Additionally, we introduce the concept of “key thumbnails” that are
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essential for clinician interpretation. Table 4 breaks down the full performance results of
each of the chosen confidence intervals, which is followed by a closer look at the cluster-
level performance at the margin.

Table 4. Margin level performance statistics of simulated clinical test cases at 2 confidence thresholds.

Metric 1st Confidence Threshold (0.75) 2nd Confidence Threshold (0.925)

Number of Margins Evaluated 155 155

Number of Positive Margins 31 31

Positive Identification (Margins with
Clusters/Key Thumbnails) 30/27 26/26

True Positive Patches (%) 507 (92.0%) 387 (70.2%)

False Negative Patches (%) 44 (8.0%) 164 (29.8%)

True Negative Patches (%) 1,894,239 (97.3%) 1,825,709 (99.5%)

False Positive Patches (%) 53,225 (2.7%) 9645 (0.5%)

Average Patches per Margin
(Positive/Negative) 882/213 197/32

Discarded Single Patches (True
Positive/True Negative) 10/18,629 42/5234

Clusters (Total/with True Positives) 9135/154 1515/103

True Positive Key Thumbnails 91 74

Average Clusters per Margin
(Positive/Negative) 147/37 33/4

Scan Times (Seconds) (Total/Average
Margin/Std Dev) 1504.1/10.51/6.48

First Confidence Interval Patch-wise Results:

• Evaluated Margins: 155 (31 positive)
• True Positives: 507 (92%)
• True Negatives: 1,894,239 (97.3%)
• False Positives: 53,225 (2.7%)
• Average Positive Patches per Margin: 347 (Positive margins: 882, Negative margins: 213)

Second Confidence Interval Patch-wise Results:

• Evaluated Margins: 155 (31 positive)
• True Positives: 387 (70.2%)
• True Negatives: 1,825,709 (99.5%)
• False Positives: 9645 (0.5%)
• Average Positive Patches per Margin: 65 (Positive margins: 197, Negative margins: 32)

The performance evaluation of the ImgAssist model using two confidence thresholds
revealed significant findings. With the first threshold set at 0.75, the model identified
positive features within margins with high accuracy, resulting in 30 margins with positive
clusters and 27 with positive key thumbnails out of 31 evaluated. The true positive patch
detection rate stood at an impressive 92.0%, while the false positive rate was contained at
2.7%. On the other hand, the second threshold at 0.925 demonstrated a slightly reduced
true positive rate of 70.2% but substantially minimized false positives to 0.5%, reflecting its
precision in distinguishing relevant features. The model effectively discarded single patches
that were unlikely to represent disease, indicating an intelligent filtering mechanism. The
clustering algorithm proved to be instrumental in reducing the noise from single-patch
detections. At the first confidence threshold, 10 single true positive patches were discarded,
which, while slightly lowering sensitivity, significantly reduced the potential for false
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positive distractions. The second confidence threshold saw an increase in discarded single
true positives to 42, which aligns with the model’s emphasis on specificity at this level.

The average number of clusters per margin presented interesting insights. At the first
threshold, there was an average of 59 clusters per margin, with 147 clusters on average in
positive margins, indicating a thorough search for suspicious areas. The second threshold
demonstrated a more selective approach, with averages of 10 clusters per margin and 33 per
positive margin, pointing to a more focused analysis. Our model processed 155 margins,
equivalent to around 1.9 million patches, in a total time of 1504.1 s. This equates to
an average of approximately 10.51 s per margin, with a standard deviation of 6.48 s,
demonstrating efficient performance suitable for clinical application without significantly
extending OR time.

4. Discussion
4.1. Interpreting Patch-Wise Results

The convolutional neural network (CNN) model’s AUROC value of 0.976 on the
blinded test set signifies its strong ability to differentiate between positive and negative
patches. An AUROC value close to 1 denotes a model’s excellent discrimination power. As
guided by ISO/IEC TS 4213:2022 [39], we also considered the AUPRC due to the high level
of data imbalance in the test set. An AUPRC of 0.812, significantly above the baseline of
0.146, underscores the model’s robust performance, especially in prioritizing the positive
class. Such high performance in the presence of data imbalance is particularly encouraging,
suggesting the model’s resilience against skewed data distributions, a common challenge
in medical imaging datasets.

4.2. Two-Tiered Confidence Threshold, Patch-Wise Performance

The introduction of a specialized two-tiered confidence threshold illustrates the sys-
tem’s versatility. Such an approach is instrumental in allowing clinicians to fine-tune their
diagnosis based on the desired balance between sensitivity and specificity. This flexibility
can be pivotal in diverse clinical scenarios, depending on the level of caution desired.

The sensitivity value of 0.93 at the first confidence interval (0.75) underscores the
model’s proficiency in capturing most true positive cases, which is paramount in a medical
setting. This is because overlooking a positive case (false negative) can lead to potential
clinical oversights, which can have severe repercussions. A specificity of 0.98 also ensures
that the model commits minimal errors in identifying negative cases. However, a precision
of 0.41 suggests that the model, while erring on the side of caution, might lead to several
false alarms. This tradeoff, capturing many true positives while still showcasing an excess
number of false positives or “false alarms” indicates that this first confidence interval acts
as a sort of “catch-all” being conservative in its approach and adding an additional level of
risk mitigation while in use by a clinician. The second confidence interval (0.925) appears
to be more exclusionary, prioritizing the minimization of false positives. With a dramatic
increase in precision to 0.79 and a specificity of 1.0, this threshold setting might be better
suited for situations where reducing false alarms is crucial. However, the tradeoff is evident
with a decrease in sensitivity to 0.7. This nuanced approach, balancing specificity and
sensitivity, showcases the potential of AI in adapting to varied clinical requirements.

4.3. Enhancing Clinical Decision-Making: Integrating AI Model and User Interface for Optimal
Margin Performance

This tiered approach, in practice, would allow a clinician to view the highest probabil-
ity “suspicious” areas first, followed by the lower probability features in case there is no
clear indication of disease. Figure 7C provides an example clinical scenario to showcase the
user interface (UI) with the two-tier threshold, image clusters, and key thumbnail images
built in.

The emphasis on evaluating the model’s efficacy on full patient margins, or “clusters”,
accentuates its applicability in real clinical settings. The elimination of isolated single-
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patch detections is informed by the inherent characteristics of OCT imaging and the
typical morphological patterns of DCIS and IDC. By focusing on clusters, the model
optimally leverages OCT’s volumetric imaging properties to reduce false positives without
compromising on the true positives. This approach signifies a profound understanding
of the clinical context in which the AI system operates and provides a novel approach
to enhancing the effectiveness of deep learning models using standard clinical practices.
Furthermore, the concept of “key thumbnails” facilitates quick clinical assessment, a
crucial feature given the time-sensitive nature of clinical decisions. By selecting the most
“suspicious” image based on probability metrics, the model aids clinicians in swiftly
pinpointing potential areas of concern.

One of the key metrics that emphasize the effectiveness of the system, in the context
of UI in a clinical setting, is the average number of clusters per margin, and even more
evidently, the ratio of the average number of clusters in a positive margin compared to
the number of clusters in a negative margin, 4:1 and 8.25:1, respectively, for the first and
second confidence intervals. This ratio provides a clear first indication at the time of surgery
whether a margin is more or less likely to contain a suspicious feature and, hence, requires
additional action. With 87% and 84% (first and second intervals, respectively) containing
the most evident key thumbnail images, a surgeon does not only rely on the reduced
number of detections but also can quickly focus on the suspicious areas.

The clinical application capabilities of the proposed classification and implementation
framework can be emphasized by highlighting its time-effectiveness in processing margins.
With a test dataset composed of 29 subjects (155 margins equivalent to 1.9 million patches),
the total scan time recorded in a device-comparable environment is 1504.1 s. This translates
to an average processing time of approximately 10.51 s per margin, with a standard devia-
tion of 6.48 s. This efficient processing capability demonstrates the model’s clinical utility
and applicability, as it ensures no significant additional time is required in the operating
room (OR). Furthermore, the feasibility of running this model in parallel with Wide Field
OCT image acquisition on our device further reinforces its practicality, allowing for seam-
less integration into clinical workflows without disrupting existing OR procedures. This
combination of speed and efficiency underscores the potential of ImgAssist in enhancing
clinical decision-making processes, offering timely and relevant insights without imposing
undue time burdens in critical medical settings.

Upon comparing the performance of the two confidence intervals, their distinct ad-
vantages become clear. Together, they equip clinicians with a versatile tool that effectively
reduces the risk of overlooking suspicious features, while simultaneously enhancing the
efficiency of the image review process. Overall, the model displayed robust performance
with the ability to reduce the workload for clinicians by presenting a concise overview of
suspicious areas, thereby streamlining the review process and potentially reducing clinician
fatigue. The results suggest that the ImgAssist model, particularly with its higher confi-
dence threshold, could significantly contribute to the efficiency and accuracy of disease
identification in a clinical setting.

4.4. Generalizability and Future Work
4.4.1. Generalizability

The application of Wide-Field Optical Coherence Tomography (WF-OCT) imaging
technology transcends beyond breast tissue imaging, presenting a viable approach for
surgical oncology margin assessment in various other tissues, provided the OCT image
depth of penetration adequately encompasses the pertinent area. The crucial consideration
for its extension to alternate tissue indications lies in procuring pathology-correlated WF-
OCT data to facilitate the training and optimization of a task-specific AI model. Given that
the breast AI model is already informed by WF-OCT images, leveraging transfer learning
could offer a more advantageous starting point, consequently reducing data dependence
for alternate tissue indications as opposed to constructing a model from the ground up. We
tested this hypothesis using existing breast data, comparing the construction of a model
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from inception against employing transfer learning on EfficientNet; the latter achieved
comparable performance utilizing merely 25% of the data needed for a Convolutional
Neural Network (CNN) model built de novo, though it did necessitate approximately 4×
longer inferencing times.

Another consideration in building training data is the need for fresh tissue specimen
imaging with WF-OCT before the pathology processing alters the specimen as tissue
composition changes in time as it dries out. The inking process generates artifacts in OCT
images, resulting in discrepancies between the training data and target application; it is
crucial to collect fresh specimen WF-OCT data for AI training.

4.4.2. Future Work

This work demonstrated the proof of concept for margin visualization through WF-
OCT, augmented by a deep learning-driven clinical decision support system. The aim is to
assist surgeons intraoperatively by offering suspicious feature identification. One limitation
of the study is that the presented results are limited to retrospective blinded test results.
A prospective trial is needed to demonstrate clinical efficacy. For this purpose, the AI
algorithm has recently been integrated into an investigational WF-OCT device that is being
evaluated in an ongoing prospective, multicenter, randomized, double-arm trial focused on
evaluating its influence on positive margin rates in breast conservation surgery [40,41]. An
analysis of the prospective trial results and the feedback from the trial will inform future
development work.

5. Conclusions

This paper details the meticulous journey of formulating an AI model tailored for
real-time applications in clinical settings, particularly focusing on breast cancer surgery
margin assessment, with numerous noteworthy strides being taken. The prudent engi-
neering of the model was a key design constraint, embedding computational efficiency to
align with the instantaneous and constrained computational resources typical of surgical
environments. Its evaluation, adhering to the rigorous metrics and standards established
by ISO/IEC TS 4213:2022 [39], unveiled the model’s discriminative capabilities even amidst
dataset imbalances, resulting in an AUROC of 0.976 and AUPRC of 0.812. From a clinical
perspective, the deep learning model accurately identified 96.8% of pathology-positive
margins, which suggests the potential to improve reported re-excision rates due to positive
margins from around 20% to below the 5% mark. This work is currently part of an active
prospective, multicenter trial that is randomized and double-armed, with the focus centered
on examining its impact on positive margin rates during breast-conserving surgery.

The employment of a two-tiered confidence threshold, conjuring a balanced view
of sensitivity and specificity, augments the model’s versatility and practicality in diverse
clinical scenarios. Additionally, the incorporation of Grad-CAM underscores a commitment
to model interpretability, ensuring that the bridge between AI-based decision support
systems and clinician interpretability is robustly constructed. Moving forward, it becomes
imperative to weave further into usability, human interpretability, and trust to drive clinical
adoption of such AI-based tools.

Supplementary Materials: The packaged Python code for patch generation, labeling, and model
generation tool can be downloaded at: https://www.mdpi.com/article/10.3390/life13122340/s1.
Please review the README file for further details on the usage and necessary libraries.

Author Contributions: Conceptualization, Y.L., A.B., S.L.B., D.R., M.S.-B. and E.B.; methodology,
Y.L., D.R., M.S.-B., E.B. and M.N.; software, B.L., A.Y., Y.L. and M.N.; validation, B.L., A.Y., Y.L.
and D.R.; formal analysis, Y.L. and D.R.; investigation, P.S., M.N., Y.L. and M.S.-B.; resources, A.B.
and S.L.B.; data curation, M.S.-B. and P.S.; writing—original draft preparation, E.B., Y.L. and D.R.;
writing—review and editing, M.S.-B., S.L.B., A.B., B.L., A.Y. and P.S.; visualization, Y.L., M.N. and
B.L.; supervision, E.B.; project administration, S.L.B.; funding acquisition, A.B. All authors have read
and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/life13122340/s1


Life 2023, 13, 2340 16 of 17

Funding: This research was funded by the Cancer Prevention and Research Institute of Texas (CPRIT),
grant number DP190087.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of MD Anderson
Cancer Center (IRB ID #2019-1225 approved 19 February 2020), Baylor College of Medicine, WIRB
#20200104 (Local Local—H-46713, UT Health San Antonio WIRB #20200104 (Local 1294936).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data is contained within the article and supplementary material.

Conflicts of Interest: Authors A.B. and D.R. are the co-founders of Perimeter Medical Imaging AI
Inc. Y.L., M.N., M.S.-B., P.S., S.L.B. and E.B. are the employees of the company. A.Y. and B.L. declare
no conflict of interest.

References
1. World Health Organization. Global Breast Cancer Initiative Implementation Framework: Assessing, Strengthening and Scaling

up of Services for the Early Detection and Management of Breast Cancer: Executive Summary. Available online: https://www.
who.int/publications/i/item/9789240067134 (accessed on 7 December 2023).

2. Gray, R.J.; Pockaj, B.A.; Garvey, E.; Blair, S. Intraoperative margin management in breast-conserving surgery: A systematic review
of the literature. Ann. Surg. Oncol. 2018, 25, 18–27. [CrossRef]

3. Alison, L.; Brar, M.S.; Bouchard-Fortier, A.; Leong, B.; Quan, M.L. Intraoperative margin assessment in wire-localized breast-
conserving surgery for invasive cancer: A population-level comparison of techniques. Ann. Surg. Oncol. 2016, 23, 3290–3296.

4. McCahill, L.E.; Single, R.M.; Bowles, E.J.A.; Feigelson, H.S.; James, T.A.; Barney, T.; Engel, J.M.; Onitilo, A.A. Variability in
reexcision following breast conservation surgery. JAMA 2012, 307, 467–475. [CrossRef] [PubMed]

5. Jeevan, R.; Cromwell, D.A.; Trivella, M.; Lawrence, G.; Kearins, O.; Pereira, J.; Sheppard, C.; Caddy, C.M.; Van Der Meulen, J.H.P.
Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital
episode statistics. BMJ 2012, 345, e4505. [CrossRef] [PubMed]

6. Wilke, L.G.; Czechura, T.; Wang, C.; Lapin, B.; Liederbach, E.; Winchester, D.P.; Yao, K. Repeat surgery after breast conservation
for the treatment of stage 0 to II breast carcinoma: A report from the National Cancer Data Base, 2004–2010. JAMA Surg. 2014,
149, 1296–1305. [CrossRef]

7. Landercasper, J.; Whitacre, E.; Degnim, A.C.; Al-Hamadani, M. Reasons for re-excision after lumpectomy for breast cancer:
Insight from the American Society of Breast Surgeons Mastery SM database. Ann. Surg. Oncol. 2014, 21, 3185–3191. [CrossRef]
[PubMed]

8. Schulman, A.M.; Mirrielees, J.A.; Leverson, G.; Landercasper, J.; Greenberg, C.; Wilke, L.G. Reexcision surgery for breast cancer:
An analysis of the American Society of Breast Surgeons (ASBrS) Mastery SM database following the SSO-ASTRO “no ink on
tumor” guidelines. Ann. Surg. Oncol. 2017, 24, 52–58. [CrossRef] [PubMed]

9. Isaacs, A.J.; Gemignani, M.L.; Pusic, A.; Sedrakyan, A. Association of breast conservation surgery for cancer with 90-day
reoperation rates in New York state. JAMA Surg. 2016, 151, 648–655. [CrossRef]

10. Eck, D.L.; Koonce, S.L.; Goldberg, R.F.; Bagaria, S.; Gibson, T.; Bowers, S.P.; McLaughlin, S.A. Breast surgery outcomes as quality
measures according to the NSQIP database. Ann. Surg. Oncol. 2012, 19, 3212–3217. [CrossRef]

11. Blair, S.L.; Thompson, K.; Rococco, J.; Malcarne, V.; Beitsch, P.D.; Ollila, D.W. Attaining negative margins in breast-conservation
operations: Is there a consensus among breast surgeons? J. Am. Coll. Surg. 2009, 209, 608–613. [CrossRef]

12. Simiyoshi, K.; Nohara, T.; Iwamoto, M.; Tanaka, S.; Kimura, K.; Takahashi, Y.; Kurisu, Y.; Tsuji, M.; Tanigawa, N. Usefulness of
intraoperative touch smear cytology in breast-conserving surgery. Exp. Ther. Med. 2010, 1, 641–645. [CrossRef] [PubMed]

13. Klimberg, V.S. Accuracy of Intraoperative Gross Examination of Surgical Margin Status in Women Undergoing Partial Mastectomy
for Breast Malignancy. Breast Dis. Year Book Q. 2005, 3, 258. [CrossRef]

14. Chan, B.K.Y.; Wiseberg-Firtell, J.A.; Jois, R.H.; Jensen, K.; Audisio, R.A. Localization techniques for guided surgical excision of
non-palpable breast lesions. Cochrane Database Syst. Rev. 2015, 12, CD009206. [CrossRef]

15. Lange, M.; Reimer, T.; Hartmann, S.; Glass, Ä.; Stachs, A. The role of specimen radiography in breast-conserving therapy of ductal
carcinoma in situ. Breast 2016, 26, 73–79. [CrossRef] [PubMed]

16. Ihrai, T.; Quaranta, D.; Fouche, Y.; Machiavello, J.-C.; Raoust, I.; Chapellier, C.; Maestro, C.; Marcy, M.; Ferrero, J.-M.; Flipo, B.
Intraoperative radiological margin assessment in breast-conserving surgery. Eur. J. Surg. Oncol. 2014, 40, 449–453. [CrossRef]
[PubMed]

17. Ha, R.; Friedlander, L.C.; Hibshoosh, H.; Hendon, C.; Feldman, S.; Ahn, S.; Schmidt, H.; Akens, M.K.; Fitzmaurice, M.; Wilson,
B.C.; et al. Optical coherence tomography: A novel imaging method for post-lumpectomy breast margin assessment—A
multi-reader study. Acad. Radiol. 2018, 25, 279–287. [CrossRef] [PubMed]

18. Savastru, D.; Chang, E.W.; Miclos, S.; Pitman, M.B.; Patel, A.; Iftimia, N. Detection of breast surgical margins with optical
coherence tomography imaging: A concept evaluation study. J. Biomed. Opt. 2014, 19, 056001. [CrossRef]

https://www.who.int/publications/i/item/9789240067134
https://www.who.int/publications/i/item/9789240067134
https://doi.org/10.1245/s10434-016-5756-4
https://doi.org/10.1001/jama.2012.43
https://www.ncbi.nlm.nih.gov/pubmed/22298678
https://doi.org/10.1136/bmj.e4505
https://www.ncbi.nlm.nih.gov/pubmed/22791786
https://doi.org/10.1001/jamasurg.2014.926
https://doi.org/10.1245/s10434-014-3905-1
https://www.ncbi.nlm.nih.gov/pubmed/25047472
https://doi.org/10.1245/s10434-016-5516-5
https://www.ncbi.nlm.nih.gov/pubmed/27581607
https://doi.org/10.1001/jamasurg.2015.5535
https://doi.org/10.1245/s10434-012-2529-6
https://doi.org/10.1016/j.jamcollsurg.2009.07.026
https://doi.org/10.3892/etm_00000100
https://www.ncbi.nlm.nih.gov/pubmed/22993587
https://doi.org/10.1016/S1043-321X(05)80204-8
https://doi.org/10.1002/14651858.CD009206.pub2
https://doi.org/10.1016/j.breast.2015.12.014
https://www.ncbi.nlm.nih.gov/pubmed/27017245
https://doi.org/10.1016/j.ejso.2014.01.002
https://www.ncbi.nlm.nih.gov/pubmed/24468296
https://doi.org/10.1016/j.acra.2017.09.018
https://www.ncbi.nlm.nih.gov/pubmed/29174226
https://doi.org/10.1117/1.JBO.19.5.056001


Life 2023, 13, 2340 17 of 17

19. Nguyen, F.T.; Zysk, A.M.; Chaney, E.J.; Kotynek, J.G.; Oliphant, U.J.; Bellafiore, F.J.; Rowland, K.M.; Johnson, P.A.; Boppart, S.A.
Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 2009, 69, 8790–8796. [CrossRef]

20. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.;
et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [CrossRef]

21. Schmidt, H.; Connolly, C.; Jaffer, S.; Oza, T.; Weltz, C.R.; Port, E.R.; Corben, A. Evaluation of surgically excised breast tissue
microstructure using wide-field optical coherence tomography. Breast J. 2020, 26, 917–923. [CrossRef]

22. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
23. Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022,

15, 1–22. [CrossRef]
24. Khan, S.; Rahmani, H.; Shah, S.A.A.; Bennamoun, M. Applications of CNNs in Computer Vision. In A Guide to Convolutional

Neural Networks for Computer Vision; Synthesis Lectures on Computer Vision; Springer: Cham, Switzerland, 2018. [CrossRef]
25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
26. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
27. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
28. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019.
29. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
30. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
31. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

32. Greenwood, R.J.; Hughes, S. Real-Time Image Classification in Video Surveillance. J. Comput. Vis. Image Underst. 2022, 204, 103020.
33. Zhao, Y.; Wang, X. Adapting Convolutional Neural Networks for Specialized Tasks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32,

2123–2134.
34. Taylor, J. Efficient Training of Convolutional Networks in Data-Limited Regimes. Mach. Learn. Res. 2022, 23, 77–89.
35. Murphy, K.; O’Connell, A. Edge Computing: A New Paradigm for Constrained Environments. Comput. Netw. 2023, 68, 456–469.
36. Khan, M.A.; Gupta, A. Model Transparency and Compliance in Healthcare AI. Health Inform. J. 2021, 27, 1460458220985691.
37. Nguyen, P.T. Comparative Study of CNN Architectures for Image Processing. Pattern Recognit. Lett. 2022, 150, 136–143.
38. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

KDD 1996, 96, 226–231.
39. ISO/IEC TS 4213:2022; Information Technology—Artificial Intelligence—Assessment of Machine Learning Classification Perfor-

mance. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
40. Rempel, D.; Berkeley, A.; DiPasquale Sr, A.A.; Elmi, M.; Fine, R.E.; Lee, M.C.; O’Brien, B.; Wilke, L.G.; Thompson, A.M. A

Prospective, Multicenter, Randomized, Double-Arm Trial to Determine the Impact of the Perimeter B-Series Optical Coherence
Tomography and Artificial Intelligence System on Positive Margin Rates in Breast Conservation Surgery. J. Am. Coll. Surg. 2022,
235, S4. [CrossRef]

41. Wide Field OCT + AI for Positive Margin Rates in Breast Conservation Surgery. (RCT). Available online: https://clinicaltrials.
gov/study/NCT05113927?a=1 (accessed on 16 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/0008-5472.CAN-08-4340
https://doi.org/10.1126/science.1957169
https://doi.org/10.1111/tbj.13663
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.1007/978-3-031-01821-3_7
https://doi.org/10.1186/s40537-021-00444-8
https://www.ncbi.nlm.nih.gov/pubmed/33816053
https://doi.org/10.1097/01.XCS.0000895624.54167.5c
https://clinicaltrials.gov/study/NCT05113927?a=1
https://clinicaltrials.gov/study/NCT05113927?a=1

	Introduction 
	Materials and Methods 
	Data Collection and Curation 
	Model Development 
	Model Performance Assessment in a Clinical Simulation 
	Clustering Algorithm Integration for Enhanced Diagnostic Precision 
	Key Thumbnail Selection for Clinician Review 


	Results 
	Patch-Wise Performance 
	Two-Tiered Confidence Threshold Analysis 
	Margin-Wise Analysis 

	Discussion 
	Interpreting Patch-Wise Results 
	Two-Tiered Confidence Threshold, Patch-Wise Performance 
	Enhancing Clinical Decision-Making: Integrating AI Model and User Interface for Optimal Margin Performance 
	Generalizability and Future Work 
	Generalizability 
	Future Work 


	Conclusions 
	References

