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Abstract: Consumers today seek safe functional foods with proven health-promoting properties.
Current evidence shows that a healthy diet can effectively alleviate oxidative stress levels and reduce
inflammatory markers, thereby preventing the occurrence of many types of cancer, hypertension, and
cardiovascular and neurological pathologies. Nevertheless, as fruits and vegetables are mainly con-
sumed fresh, they can serve as vectors for the transmission of pathogenic microorganisms associated
with various disease outbreaks. As a result, there has been a surge in interest in the microbiome of
fruits and vegetables. Therefore, given the growing interest in sweet cherries, and since their micro-
bial communities have been largely ignored, the primary purpose of this study is to investigate their
culturome at various maturity stages for the first time. A total of 55 microorganisms were isolated
from sweet cherry fruit, comprising 23 bacteria and 32 fungi species. Subsequently, the selected
isolates were molecularly identified by amplifying the 16S rRNA gene and ITS region. Furthermore,
it was observed that the communities became more diverse as the fruit matured. The most abundant
taxa included Pseudomonas and Ralstonia among the bacteria, and Metschnikowia, Aureobasidium, and
Hanseniaspora among the fungi.

Keywords: sweet cherries; microorganisms; culturome; bacteria; fungi

1. Introduction

Nowadays, consumers seek safe functional foods with recognized health benefits
that can offset oxidative stress and inflammatory processes, thereby preventing or ame-
liorating the occurrence of many diseases, including cancer, metabolic abnormalities, and
neurological pathologies [1,2]. Therefore, given that fruits and vegetables contain nu-
merous secondary metabolites, notably phenolics and terpenes, whose health-promoting
potential is well-described, it is not surprising that their consumption has been increasing
worldwide [3,4]. These metabolites are synthesized from primary metabolites, including
organic acids, amino acids, and sugars, which in turn, are also essential to microorgan-
ism development [5]. In fact, an abundant and diverse community of microorganisms,
especially bacteria, is found on the surface of the above-ground plant parts, which are
collectively known as the phyllosphere [6]. The phyllosphere has a typical cell density of
106–107 cells cm−2 and is commonly subdivided into the caulosphere (stems), phylloplane
(leaves), anthosphere (flowers), and carposphere (fruit) [6,7]. Although the microbiome can
enhance the benefits of eating plants, namely by acting as probiotic agents, it is important
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to remember that most fruits and vegetables are commonly consumed raw without any pro-
cessing or thorough washing, and therefore, they can serve as vectors for the transmission
of pathogenic microorganisms (e.g., Escherichia coli, Listeria monocytogenes, Salmonella sp.)
that are associated with various disease outbreaks that have been increasing over the
years [8,9]. Indeed, it is estimated that one in every ten individuals in the world (an esti-
mated 600 million people) falls ill after ingesting contaminated food, with 420,000 people
dying each year [10]. Furthermore, microbiome communities can also affect a product’s
economic value and reduce its nutritional and organoleptic properties [11–13]. As far as we
know, microbiome communities are mainly influenced by cultivar genotype, maturation
stage, and cropping practices [14–17].

Consequently, investigating the microbiome of foods is critical for food safety and
consumption, as well as for preservation and growth control, and for contributing to the
discovery of novel sources of beneficial bacteria and bioactive metabolites [18]. Sweet
cherries (Prunus avium Linnaeus), which are diploid (2n = 16), are perishable and delicate
berries with vibrant color, sweet taste, and pleasant aroma, which have been a target of re-
cent interest in scientific research due to their richness in minerals, vitamins, and phenolics
and their high water content [19–23]. Their popularity has grown as scientific data have
demonstrated clinical evidence of their ability to relieve oxidative stress, reduce blood pres-
sure and inflammatory markers, and improve aging and sleep [23–28]. Consequently, their
incorporation in new supplements, nutraceuticals, and cosmetics is expanding worldwide
(40% rise since 2000) [28,29]. These fruits are native to southern Asia and Europe, belonging
to the Rosaceae family, Prunoideae subfamily, Prunus genus, which has about 430 species,
and Cerasus and Padus subgenera [30]. They are deciduous trees, from 15 to 32 m in height,
and with a trunk up to 1.5 m in circumference [31].

Furthermore, the analysis of communities associated with edible vegetables has been
the subject of study due to their health implications, as they can act as vectors of diseases or
influence the development and quality of the vegetables [32]. In the case of cherries, research
has primarily focused on studying microbial communities under infection conditions
that affect fruit quality, although interannual variation in surface populations has been
studied [33,34]. For the Summit and Jiahong cultivars, the distribution and composition of
bacterial communities follow a pattern similar to that observed in other plants, with high
diversity in the root systems decreasing as we move away from them [35]. However, the
composition of fruit microbiota remains poorly understood. Regarding fungal communities,
there appears to be high variability, influenced by environmental factors and ascomycetes
dominance [36].

Studies on microbial populations inhabiting fruits such as cherries have, therefore, gar-
nered attention due to factors related to these fruits’ commercialization, such as extending
the shelf life or post-processing procedures. These communities play a significant role in
maintaining the fruit under optimal conditions, and the balance between saprophytes and
pathogens may be essential for the fruit’s proper preservation [37]. Furthermore, certain
yeast species, such as Metschnikowia pulcherrima or Pichia kudriavzevii, have demonstrated
excellent biotechnological potential due to their antagonistic role against saprophytic mi-
croorganisms that could alter the product during long-distance transportation [38].

With these facts in mind, and with the knowledge that sweet cherries’ microbial
communities are understudied, the main goal of the present work is to investigate their
culturome at different maturation stages for the first time. Consequently, the selected
isolates were molecularly identified via amplification of the 16S rRNA gene.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals utilized were of analytical grade, and standard compounds were obtained
from various suppliers. A Milli-Q water purification system (Millipore Ibérica, S.A.U., Madrid,
Spain) was used to deionize the water (Millipore Ibérica, S.A.U., Madrid, Spain).
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2.2. Sample Collecting

Sweet cherry fruits from the cultivar Saco, widely cultivated in the Beira region,
were supplied by a producer located in the Fundão region, Portugal (40◦6′54.655′′ N
7◦36′26.701′′ W). In 2021, samples were taken five times during their development on the
mornings of the days 5 April (T1), 20 April (T2), 6 May (T3), 26 May (T4), and 7 June (T5)
(Figure 1), from trees aged between 5 and 7 years old, their optimum productive stage.
Samples were collected from five different trees, taking 10 cherries per tree and mixing
them together. The harvesting was undertaken aseptically, using gloves and immediately
placing the fruit into sterile plastic tubes. Then, the samples were promptly transferred
to the laboratory facilities for processing at low temperatures. Transport was performed
at 4 ◦C in an isothermic receptacle to ensure the appropriate refrigeration of the samples.
Five to ten cherries were picked to study the microorganism culturome present at each
stage of maturation.
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2.3. Isolation, Cultivation, and Conservation of Microorganisms

The isolation of microorganism communities present in Portuguese cherries was per-
formed using Sabouraud dextrose agar (SDA) with chloramphenicol for fungus, MRS agar,
potato dextrose agar (PDA), and tryptic soya agar (TSA) for bacteria, and Reasoner’s 2A
agar (R2A) medium for the possible growth of both microorganisms, and it was performed
according to Gonçalves et al. [39]. To find out what microorganisms live in cherry tissues,
collected samples were first washed three times with sterile deionized water and then
surface-sterilized through immersion in 70% ethanol for 30 s and 2% sodium hypochlorite
for 3 min. Finally, they were rinsed five times with sterile deionized water and sonicated for
2 min at 25 ◦C. Ten grams of superficially sterilized cherries were macerated under axenic
conditions until achieving a homogeneous mass, and then resuspended in 90 mL of sterile
distilled water. The mixtures were stirred for one hour at 125 rpm. The samples were then
serially diluted and seeded in the appropriate media. Then, Petri dishes were incubated at
22 ◦C and 28 ◦C to encourage possible fungal and bacterial growth, respectively, and the for-
mation of colonies was monitored for four days. Two sterilization controls were employed.
In the first one, entire surface sterilized fruits were placed in Petri dishes to ensure that
isolates were endophytes, while in the second one, 100 µL of water employed for sonication
in the last step of sterilization was spread in TSA and SDA media. Growth controls were



Life 2023, 13, 2323 4 of 14

checked after 120 h to ensure the absence of colony development. At the conclusion of this
period, the microorganisms were isolated based on their phenotypic characteristics and again
cultivated to grow. This last procedure was repeated several times until pure cultures were
obtained. Finally, pure cultures were preserved at −80 ◦C in glycerol.

2.4. Infraspecific Diversity Analysis and Identification Based on 16S rRNA Sequencing

Total DNA extraction was performed using the NZY Plant/Fungi gDNA Isolation
Kit (NZY Tech, Lisbon, Portugal) according to the manufacturer’s instructions to identify
known microorganisms present in the cherry samples. The genetic diversity of isolated
strains was assessed using RAPD fingerprinting performed, as previously described [40],
with the primer M13 (5′-GAGGGTGGCGGTTCT-3′) and the Dream-Taq™ DNA Green
PCR Master Mix (Fisher Scientific, Waltham, MA, USA). PCR conditions were the following:
preheating at 95 ◦C for 9 min, 35 cycles of denaturing at 95 ◦C for 1 min, annealing at
45 ◦C for 1 min, and extension at 75 ◦C for 2 min, with a final extension at 72 ◦C for 7 min.
Aliquots of 17 µL of each PCR product were electrophoresed on 1.5% (w/v) agarose gel in
TBE buffer (100 mM Tris, 83 mM boric acid, 1 mM EDTA, pH 8.5) at 6 V/cm. The gels were
stained in a solution containing 0.5 mg/L ethidium bromide, and photographed under UV
light. Standard VI (Roche, Basilea, Switzerland) was used as a size marker. A dendrogram
was constructed based on the matrix generated using the UPGMA method and Pearson’s
coefficient with Bionumerics version 4.0 (Applied Maths, Austin, TX, USA). For RAPD
group delimitation, we applied a threshold of 70% similarity.

The amplification and sequencing of the 16S rRNA genes were carried out, as indicated
previously [39], using the primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1522R
(5′-AAGGAGGTGATCCANCCRCA-3′). The acquired sequences were compared to those
in GenBank using the BLASTN program, selecting “type strains” as the phylum to perform
the search [29]. The sequences obtained were deposited in GenBank. Table 1 includes
accession numbers of the representant strain from each RAPD group.

Table 1. Culturome of sweet cherry cultivars in different maturity stages. The presence of each strain
in different times of development was marked with an “x”.

Strain RAPD
Group Identity %

Identity
Accession
Number T1 T2 T3 T4 T5

Bacteria

B2 G18 Erwinia tasmaniensis 99.19 OR517226 x

B4 G20 Pseudomonas viridiflava strain 98.90 OR517224 x

B7 G22 Pseudomonas syringae 99.57 OR517209 x

B18 G15 Pseudomonas edaphica 99.93 OR517218 x x

M18 G17 Dermacoccus nishinomiyaensis 100 OR517219 x

B20 G8 Pseudomonas trivialis 99.34 OR517220 x

B22 G7 Staphylococcus epidermidis 99.59 OR517212 x

B24 G19 Staphylococcus pasteuri 100 OR517214 x

B28 G6 Erwinia billingiae 99.54 OR517221 x

B30 G3 Bacillus aerius 98.70 OR517228 x

B27 G5 Ralstonia pickettii 99.53 OR517208 x

B33 G9 Ralstonia pickettii 99.92 OR517210 x x x

B45 G2 Bacillus altitudinis 99.86 OR517211 x

B46 G11 Enterococcus rotai 99.34 OR517225 x

B48 G21 Tatumella terrea 98.47 OR517213 x

B49 G12 Ralstonia pickettii 99.33 OR517222 x
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Table 1. Cont.

Strain RAPD
Group Identity %

Identity
Accession
Number T1 T2 T3 T4 T5

B47 G10 Ralstonia pickettii 100 OR517223 x

M17 G1 Pseudomonas qingdaonensis 98.69 OR517215 x

M23 G14 Tatumella ptyseos 99.79 OR517216 x

M16 G4 Pseudomonas graminis 99.80 OR517217 x

M14 G16 Dermacoccus nishinomiyaensis 98.42 OR517227 x

M3A G14 Buttiauxella ferragutiae 99.80 OR517230 x

Fungus

F1 G56 Cladosporium subuliforme 99.80 OR584279 x

F2 G49 Aureobasidium pullulans 100 OR584267 x

F21 G35 Metschnikowia pulcherrima 100 OR584285 x

F8 G38 Aureobasidium pullulans 95.76 OR584276 x

F4 G46 Aureobasidum proteans 99.43 OR584284 x

F6 G40 Hanseniaspora uvarum 98.86 OR584286 x

F7 G54 Alternaria conjuncta 99.53 OR584275 x

F10 G45 Metschnikowia pulcherrima 100 OR584266 x

F29 G47 Metschnikowia pulcherrima 100 OR584265 x

F12 G43 Metschnikowia ziziphicola 97.02 OR584271 x

F23 G34 Metschnikowia pulcherrima 100 OR584294 x

F13A G50 Metschnikowia chrysoperlae 100 OR584277 x

F13D* G51 Metschnikowia pulcherrima 97.50 OR584274 x

F14A G55 Metschnikowia pulcherrima 99.73 OR584278 x

F15 G44 Aureobasidium pullulans 100 OR584293 x

F13C G52 Metschnikowia sinensis 98.78 OR584268 x

F18 G37 Aureobasidium pullulans 99.38 OR584262 x

F19 G30 [Candida] oleophila 99.62 OR584273 x

F25 G29 Hanseniaspora pseudoguilliermondii 99.04 OR584290 x

F28 G25 Metschnikowia pulcherrima 97.64 OR584287 x

F30 G53 Hanseniaspora uvarum 99.72 OR584264 x x

F31 G24 Metschnikowia pulcherrima 97.64 OR584263 x

F32 G48 Hanseniaspora pseudoguilliermondii 99.04 OR584272 x x x

M20 G31 Metschnikowia pulcherrima 98.85 OR584269 x

M38 G26 Hanseniaspora uvarum 99.46 OR584270 x

M22 G32 Penicillium crustosum 100 OR584280 x

M37 G39 Penicillium crustosum 100 OR584281 x

M31 G42 Hanseniaspora meyeri 100 OR584282 x

M34 G27 Metschnikowia pulcherrima 99.12 OR584283 x

M31 G42 Aureobasidium proteae 95.71 OR584288 x

M6 G28 Aureobasidium pullulans 95.76 OR584289 x

M4 G33 Aureobasidium pullulans 95.76 OR584291 x

M2 G36 Aureobasidium pullulans 95.76 OR584292 x
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3. Results and Discussion

As previously mentioned, investigating bacterial and fungal epiphytes and endo-
phytes is valuable and essential, as both communities have a significant impact on food
development, organoleptic characteristics, and nutritional value. Indeed, these assessments
may be regarded as providing baseline data for the discovery of new pharmaceutical and
therapeutic molecules, as well as to address wider ecological issues [5].

In the current investigation, a total of 55 microorganisms, including 23 bacteria and
32 fungi, were isolated from sweet cherry fruits over a period of approximately 9 weeks,
as described in Table 1 and Figures 2–4. In particular, a total of 125 × 103 UFC/g bacteria
and 212 × 102 UFC/g fungi were found on TSA and SDA media, respectively. Therefore,
several different strains with a relatively significant infraspecific diversity were isolated,
with a higher proportion of fungi than bacteria (Figures 2 and 3). As previously mentioned,
this is the first study of the sweet cherry culturome. The procedure was designed to isolate
the maximum possible quantity of microorganisms present during the development of the
current fruit.
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Focusing on bacteria, fingerprints RAPD were grouped into 22 clusters or clades
(Figure 4A), in accordance with the number of bands and molecular weights obtained
using M13-RAPD, and a representant of each group was selected for sequencing. Gen-
era Pseudomonas and Ralstonia were the most dominant strains, representing 26.09% and
21.74%, respectively, followed by Bacillus, Staphylococcus, Erwinia, Tatumella, Dermacoccus, and
Buttiauxella (each 8.70%). Enterococcus was the least abundant (4.35%). The Erwinia tasmaniensis,
Pseudomonas viridiflava, and Paucimonas lemoignei strains were only found in T1. On the other
hand, Pseudomonas edaphica was isolated at T2 and remained at T3, while Ralstonia pickettii
was present at the T3, T4, and T5 stages. Enterococcus and Buttiauxella were only detected
at the end of the development (T5). The richest bacterial stages were T3 and T5. With
regard to other red fruits, Curtobacterium (19.88%), Pseudomonas (15.06%), Microbacterium
(13.86%), and Clavibacter (12.65%) are considered the representative genera found in plums,
while Enterobacter (5.42%), Chrysomonas (4.82%), and Pantoea (4.22%) are less abundant.
Among them, Microbacterium and Curtobacterium predominate in the early stages of fruit
growth, while Pseudomonas and Clavibacter are predominant at the maturity stage [14].
Furthermore, Xu and colleagues [18] investigated the microbiome of mulberry fruits and
identified 608 distinct endophytic bacteria, with Proteobacteria (62.83%), Firmicutes (26.81%),
and Actinobacteria (9.87%) dominating, and the phyla Bacteroidetes (0.94%) being the least
abundant. With regard to strawberries, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria,
Deltaproteobacteria, and Bacteroidia represent the most prevalent bacterial groups, accounting
for about 80% [16]. Curtobacterium (21.31%) and Pseudomonas (19.99%) were the most frequent
genera identified in nectarine fruits, followed by Microbacterium (13.57%), Clavibacter (9.69%),
Pantoea (6.59%), and Enterobacter (4.26%) [15].

These studies highlight the significant diversity exhibited by plant tissues associated
with fruits, especially epiphytic ones, which are highly influenced by the environmental and
cultivation conditions to which the plant is subjected. Moreover, endophytic communities
in fruits appear to have low diversity and high susceptibility to pathogen presence. Due to
their biology, these pathogens efficiently colonize those tissues either internally or externally,
such as through transportation by animal vectors. Some of the genera found, such as Erwinia
bilingae or Pseudomonas syringae, may have a pathogenic nature towards the plant itself,
although their presence may not be of great significance if the microbiota composition
is balanced [41]. The well-known role of diverse microbiotas in controlling the action of
pathogens underscores this point. On the other hand, the isolation of opportunistic human
pathogens, such as Ralstonia picketti or Staphylococcus sp., is noteworthy, demonstrating
that these microorganisms are present in foods. However, their impact is influenced by
other factors such as the presence of pathogenicity genes, the number of individuals in the
sample, the host’s condition, and susceptibility to disease [42].

On the other hand, Erwinia tasmaniensis and Pseudomonas viridiflava are epiphytic species
that invade necrotic tissues, while also being used as antagonists for fire blight biocon-
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trol [43–45]. Nonetheless, most Pseudomonas and Dermacoccus promote plant growth by sup-
pressing pathogenic microorganisms and offering protection against climate change [46–49].
A Dermacoccus nishinomiyaensis strain, in particular, produces considerable amounts of indole-
3-acetic acid, an auxin involved in seed germination, root formation, and embryo and fruit
development [50]. The genus Bacillus is a broad genus that currently includes 109 valid species
of bacteria, alongside a further 17 different genera recently described as independent, though
they traditionally belonged to this genus [51]. The isolation of strains of this genus from
plant tissues is reported as common in numerous studies, and they can be isolated from
any plant tissue, although they are more abundant in rhizospheric and epiphytic environ-
ments [52]. Within Bacillus and other related genera, we found some species associated
with plant development and protection, particularly after harvesting, conferring to plants
a high resistance against disease and degradation [53]. The potential of this genus is
widely recognized, as it encompasses bacteria with multiple desirable characteristics from
a biotechnological perspective. The technological features of these bacteria, attributed
to the formation of resistant spores and their broad metabolic capabilities, have led to
numerous studies focusing on them [54]. Conversely, P. lemoignei is unique among poly(R)-
3-hydroxyalkanoates-degrading bacteria, since it is capable of synthesizing at least six
different extracellular poly(R)-3-hydroxyalkanoate depolymerases, and hence, it can be a
useful tool in degrading plastics [55]. Staphylococcus epidermidis, which is largely found in
meat products, has been linked to hospital infections [56]. Staphylococcus warneri, which is
also found in apples, is a common commensal microorganism present in the skin microbiota
of individuals who are highly resistant to penicillin. Although it rarely causes infections in
healthy people, in immunosuppressed patients or individuals with cirrhosis, it can cause
multiple subcutaneous abscesses or urinary infections, respectively [57,58]. Buttiauxella
ferragutiae, which is also found in mulberries, is a novel species of Kluyvera that is associated
with urinary tract infections in children [18,59]. Furthermore, clinical evidence has already
been reported of a positive correlation between Enterococcus spp. presence and urinary
tract infections [60]. Tatumella ptyseos is related to a food-borne opportunistic pathogenic
microorganisms related to neonatal sepsis, urinary tract infections, and bacteraemia [61],
whereas Ralstonia pickettii is found in the gut microbiota of individuals with metabolic
disorders, and in mesothelioma patients [62,63].

In contrast, 34 RAPD groups were obtained for fungi, and 7 different genera of fungi
were identified (Figure 4B). Metschnikowia sp. (40.63%) was the most common genera found
during cherry development, followed by Aureobasidium (25.00%) and Hanseniaspora (18.75%).
Cladosporium and Alternaria species, in particular, were only detected in the early stage of
development, i.e., in T1. The Aureobasidium pullulan strain was detected in both T1 and T2
stages, while most Metschnikowia subclasses were present in T2. In contrast to bacteria, T3
was low in fungi development, with the only detected species being Hanseniaspora uvarum
and Hanseniaspora pseudoguilliermondii. Hanseniaspora pseudoguilliermondii was also found in
T4 and T5, while Hanseniaspora pseudoguilliermondii was again detected in T5. In addition to
Hanseniaspora pseudoguilliermondii, Aureobasidium pullulans and Candida oleophila were the
only other fungi found in T4. At the last stage of cherries’ development, i.e., in T5, nine
different fungi were identified, with the presence of Penicullium crustosum, Hanseniaspora
uvarum, and Metschnikowia pulcherrima strains standing out. A higher number of fungi in
T5 is to be expected, contributing to the fermentation process. With regard to other fruits,
Mycosphaerella (45%), followed by Mortierellaceae (11.3%) and unidentified Capnodiales (10.5%),
are the fungal families most found in strawberries [64], while Aureobasidium (49.86%),
Alternaria (18.43%), Hanseniaspora (17.63%), and Pleospora (6.63%) are commonly identified
in grapes [65]. In apples, Articulospora, Bullera, Cryptococcus, Dioszegia, Erythrobasidium,
and Sporobolomyces are the most dominant (49.5%), while Cladosporiaceae, Sclerotiniaceae,
and Mycosphaerellaceae are highly abundant in blueberries, accounting for 40.9% of total
fungi [66,67]. These data indicate that the composition of the fungal community associated
with sweet cherries from the Beira Interior region in Portugal shares numerous common
elements with other fungal communities in edible fruits. While it is known that plants
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have a significant capacity to select the taxa that form their microbiome [39,68], there may
be a greater environmental influence on more exposed organs such as fruits or flowers.
Alternatively, the specific conditions of these tissues may favor the development of similar
taxa across different plant species.

Cladosporium subuliforme has been linked with fruit diseases [69]. However, [Candida] olep-
phila; Aureobasidium sp., particularly, pullulans; and Metschnikowia sp., such as M. pulcherrima,
protect against postharvest fruit decay. This again applies particularly to A. pullulans, which is
also involved in the production of volatile organic compounds [70–73]. Nonetheless, other
authors highlight the ability of strains of the species Aureobasidium pullulans and Metschnikowia
pulcherrima, isolated from the carposphere of P. avium, to control degradative processes me-
diated by microorganisms or plant pathogens such as Sporobolomyces roseus or Cryptococcus
wieringae. Additionally, they show significant antagonistic activity against strains of their own
genus and others, such as Saccharomyces cerevisiae [36]. These data indicate that the activity
depends on the specific strain studied and the dominance of a particular strain among
populations. The strains studied are derived from fruits in a perfect condition, showing no
signs of rot or degradation and thus being in an optimal state for consumption. However,
Hanseniaspora uvarum also produces volatile compounds, that contribute to fruits’ flavor and
defense during storage at cold temperatures [74], while H. pseudoguilliermondii degrades
organic acids and, consequently, reduces acidity [75]. Together with H. meyeri, both have
already shown potential to produce amylases, pectinases, cellulases, and proteases [76].
Metschnikowia sinensis is related to a cider aroma [77]. Alternaria sp. are invasive fungi that
infect fruits and vegetables and produce Alternaria toxins resulting in deleterious effects
on human health, such as damaging the heart and lungs [78], while Penicillium crustosum
produces mycotoxins associated with fruit blue mold decay, principally of apples [79].
However, the presence of strains belonging to the genus Penicillium, and also strains of the
species P. crustosum, is common in fruit samples, especially in mature samples. They be-
come particularly abundant when degradation processes commence due to the saprophytic
nature of this genus [80].

Finally, the current study offers further evidence that the fermentative yeasts Hanseniaspora
and Metschnikowia are typically found in the later phases of development.

4. Conclusions

Given the current consumption of fruits and vegetables, it is crucial to investigate their
culturome, since most of them are commonly consumed fresh and may be potential vectors
of food-borne pathogen diseases. In addition, their microorganisms may be regarded as
a rich reservoir of bioactive compounds that influence foods’ quality, characteristics, and
nutritional value and exert positive effects on human health. Although sweet cherries are
highly appreciated by consumers, there has been a lack of analysis with regard to their
culturome. The present study has, however, achieved the identification of 23 bacterial and
25 fungal strains. With regard to bacteria, Ralstonia and Pseudomonas were the most dom-
inant, each representing around 21.74% of the total, followed by Bacillus, Staphylococcus,
Erwinia, Tatumella, and Dermacoccus (each 8.70%). With regard to fungi, Metschnikowia sp.
(44.00%) is the most abundant genera, followed by Hanseniaspora (20.00%) and Aureobasidium
(16.00%). The microbial community of cherries from different sources and environments, and
related fruit produce, need further investigation, as do the interactions between microbial
species, to ensure their safety and increase their economic value.
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