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Abstract: Chemotherapy based on taxane-class drugs is the gold standard for treating advanced
stages of various oncological diseases. However, despite the favorable response trends, most patients
eventually develop resistance to this therapy. Drug resistance is the result of a combination of
different events in the tumor cells under the influence of the drug, a comprehensive understanding
of which has yet to be determined. In this review, we examine the role of the major classes of
non-coding RNAs in the development of chemoresistance in the case of prostate cancer, one of the
most common and socially significant types of cancer in men worldwide. We will focus on recent
findings from experimental studies regarding the prognostic potential of the identified non-coding
RNAs. Additionally, we will explore novel approaches based on machine learning to study these
regulatory molecules, including their role in the development of drug resistance.

Keywords: prostate cancer; chemoresistance; docetaxel; microRNAs; lncRNAs; circRNAs; exosomes;
machine learning; deep learning

1. Introduction

Prostate cancer (PCa) is a socially significant cancer and is the second most common
type of cancer in men worldwide [1]. Most patients with PCa have localized disease and are
treated with radical prostatectomy and/or radiation therapy followed by androgen depri-
vation therapy. However, within 10 years after androgen deprivation in patients, in 10–20%
of cases, the disease develops into a prognostically unfavorable form—castration-resistant
prostate cancer (CRPC), which is characterized by a significant deterioration in the quality
of life and high mortality of patients. The median overall survival of patients with CRPC is
less than 2 years [2]. Chemotherapy based on taxane-class drugs, such as paclitaxel and
docetaxel, is the gold standard for the first-line therapy in this patient category. Docetaxel
is the most commonly used first-line chemotherapy drug for CRPC. However, despite its
widespread use in therapy, most patients eventually develop resistance, which is one of the
reasons for the ineffectiveness of chemotherapy in patients [3].

Drug resistance is conventionally divided into two main classes: primary (existing
initially) and acquired [4]. Primary resistance is characterized by the presence of various
factors in tumor cells prior to the action of the drug, whereas acquired resistance represents
a stepwise and slower process involving various molecular genetic and epigenetic events in
the presence of the drug [5]. The mechanisms underlying acquired drug resistance are quite
complex and involve alterations in the regulation of numerous genes and different signaling

Life 2023, 13, 2304. https://doi.org/10.3390/life13122304 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life13122304
https://doi.org/10.3390/life13122304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-5492-1361
https://orcid.org/0000-0002-4421-4364
https://orcid.org/0000-0002-6893-4673
https://orcid.org/0000-0002-2942-6393
https://orcid.org/0000-0003-3494-9807
https://orcid.org/0000-0002-3722-8207
https://doi.org/10.3390/life13122304
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life13122304?type=check_update&version=1


Life 2023, 13, 2304 2 of 12

pathways, which act independently or in combination with other factors to inhibit the
function of taxanes in tumor cells. Several studies have identified a range of mechanisms
involved in the development of taxane resistance, yet the full extent of the picture is still to
be determined [6].

For a long time, non-coding RNAs were considered as by-products of transcription
with little biological significance, in contrast to messenger RNAs (mRNAs). However,
since the development of approaches such as high-throughput sequencing and in-depth
bioinformatic analyses, new types of RNAs that do not encode proteins, collectively known
as non-coding RNAs (ncRNAs), have been discovered. Currently, the most studied types
of “classic ncRNAs” are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs). It has been shown that these molecules participate in many
signaling cascades, regulate various physiological processes, and also play a role in diseases.
Moreover, many ncRNAs have been identified as tumor suppressors/oncogenic factors
in various types of cancer, including prostate cancer, and they may also participate in the
development of drug resistance [7].

In addition to the regulatory role of ncRNAs in the context of drug resistance directly
in tumor cells, the modulation of resistance development through tumor-derived exosomes
has also been observed. Exosomes are spherical extracellular vesicles with a diameter of
40–150 nm containing various regulatory molecules (including ncRNAs) that have been
found in various biological fluids. These vesicles mediate intercellular communication
and perform important functions in tumor biology, such as inducing proliferation, an-
giogenesis, metastasis, and more. Furthermore, it has been shown that exosomes from
chemosensitive/resistant tumor cells can significantly influence other tumor cells during
chemotherapy by transferring specific regulatory molecules [8].

Considering the fact that the content of tumor-derived exosomes closely reflects the
characteristics and metabolic status of their releasing cells, as well as the abundance,
stability, and accessibility of exosomes in biological fluids, these vesicles represent a valu-
able source of biomarkers, including ncRNAs, for cancer diagnosis and the prediction of
response to drug therapy [9–11].

Despite the existing experimentally confirmed data on the connections between ncR-
NAs and the development of drug resistance, their full role in this process remains unclear.
Experimental research results can unveil new associations between ncRNAs and drug
resistance. However, they present a challenging task due to significant time and financial
investments. Addressing this issue can be achieved by employing computational methods
that can predict potential connections between ncRNAs and drug resistance. In recent
years, the use of machine learning methods has achieved a new level of forecasting for
regulatory interactions between different molecules (such as DNA–RNA, RNA–microRNA,
etc.) and associations between molecules and biological processes, including the correlation
between ncRNAs and drugs [12]. Thus, machine learning methods can be successfully
applied to predict potential connections between ncRNAs and drug resistance, allowing
for in-depth and extensive exploration of the influence of these regulatory molecules on
the development of drug resistance in tumor cells. In this review, we will examine the
most prominent representatives of each class of ncRNAs, which recent studies have shown
to play a significant role in the development of docetaxel resistance in PCa, and we will
also explore novel approaches for studying ncRNAs in cancer using various machine
learning-based tools.

2. MicroRNAs

MicroRNAs (miRNAs) are regulatory molecules with a length of 20–22 nucleotides
that are formed from longer stem-loop structures and can bind to and inhibit mRNA. These
molecules are transcribed as primary miRNAs (pri-miRNAs) and processed in the nucleus
by the proteins Drosha and Dgcr8 into precursor miRNAs (pre-miRNAs). After export to
the cytoplasm, pre-miRNAs are cleaved, forming a miRNA/miRNA duplex. Only one
of the two miRNAs formed will exert its inhibitory function, while the other undergoes
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degradation. The total number of known human miRNAs is constantly expanding and
currently includes 1917 precursors and 2654 mature molecules (miRBase, version 22.1).

Many miRNAs are often suppressed in drug-resistant cells, but under normal cellular
conditions, they help regulate signaling pathways that promote cell survival. The ability
to avoid programmed cell death, apoptosis, is one of the key characteristics of tumor
cells that ensures their survival. Tumor cells, like normal cells, also possess proteins
from the BCL-2 family that regulate apoptosis. These include Bad and Bax, which initiate
cascades that activate apoptosis, and Bcl-2, Bcl-XL, and Mcl-1, which inhibit the apoptosis
process [6]. Several microRNAs (miRNAs) have been demonstrated through various
studies to regulate the development of docetaxel resistance in PCa cells by enhancing cell
survival and inhibiting apoptosis. These miRNAs include miR-143, the miR-200 family,
miR-21, miR-129-5p, miR-27a, miR-27b, miR-34a, miR-183, miR-195, miR-223-3p, miR-323,
and miR-4735-3p (Figure 1, Table 1).
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Figure 1. miRNAs and their targets associated with the development of resistance to docetaxel in
PCa. The black arrows shows the connection between the target and the biological process. The green
arrows indicate the connection of the process with the development of resistance to docetaxel.

The downregulation of miR-143 can induce docetaxel resistance by enhancing the
regulation of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate 1
(IRS1), resulting in the activation of downstream signaling molecules such as VEGF (vascu-
lar endothelial growth factor A). Activation of the IGF-1R/IRS1/VEGF signaling cascade
promotes the survival pathways of PCa cells and reduces sensitivity to docetaxel [13]. Fur-
thermore, it has been found that miR-143 can regulate the KRAS (KRAS Proto-Oncogene,
GTPase) gene, which is involved in the activation of the oncogenic MAPK/Ras pathway,
and the overexpression of miR-143 can increase the sensitivity of cells to docetaxel [14].

Regarding the expression of the miR-200 family of regulatory molecules, a correlation
has been found with participants involved in epithelial–mesenchymal transition such as
E-cadherin and ZEB1 (Zinc Finger E-Box Binding Homeobox 1). Decreased expression
of miR-200 family members leads to increased expression of ZEB1, which negatively
regulates E-cadherin. It was experimentally shown that the overexpression of miR-200
family members in PCa cells resulted in increased expression of E-cadherin and increased
apoptosis induced by docetaxel [15]. Inhibition of epithelial–mesenchymal transition by
suppressing the expression of the ZEB1 gene has also been found in the context of docetaxel
resistance in PCa cells due to the overexpression of miR-27b and miR-34a [16].
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Similarly, miRNAs whose expression is normally at low levels can excessively stimu-
late cell survival pathways or inhibit pro-apoptotic factors. For example, it has been shown
that miR-21 can inhibit programmed cell death 4 (PDCD4), leading to a resistant phenotype
in PCa cells. Inhibiting miR-21 in this case increases the expression of PDCD4 and restores
sensitivity to docetaxel [17].

Regarding miR-129-5p, it has been shown that increased expression of this regulatory
molecule leads to the suppression of the CAMK2N1 (Calcium/Calmodulin Dependent
Protein Kinase II Inhibitor 1) gene, resulting in the inhibition of apoptosis in PCa cells and
the development of docetaxel resistance [18].

The most well-known tumor suppressor gene is TP53 (Tumor Protein P53), and al-
terations in its expression or function are often associated with resistance to standard
anti-cancer agents. In the case of PCa, it has been shown that exosomal miR-27a can
induce resistance to cisplatin, docetaxel, and doxorubicin in recipient cells by degrading
p53 mRNA, resulting in reduced expression of the negative regulator of the PI3k/Akt
signaling pathway, PTEN (Phosphatase and Tensin Homolog). This leads to decreased
dephosphorylation of PIP3, increased cell survival, and proliferation of tumor cells [19].

miR-183 also regulates cell survival pathways in PCa and contributes to docetaxel
resistance. It has been shown that miR-183 regulates the expression of the tumor suppressor
gene SPRY2 (Sprouty RTK Signaling Antagonist 2), and its activation inhibits SPRY2
expression, thereby promoting resistance to docetaxel [20].

The expression level of miR-195 is often decreased in docetaxel-resistant cells. It has
been demonstrated that the CUL ( Cullin 3) gene, which is involved in the anti-apoptotic
mechanism of docetaxel-resistant cells, is a direct target of miR-195. Thus, overexpression
of miR-195 inhibits CUL gene expression and increases the sensitivity of PCa cells to
docetaxel [21].

Regarding miR-223-3p, miR-323, and miR-4735-3p, their increased expression in PCa
cells inhibits docetaxel-induced apoptosis. miR-223-3p directly targets the FOXO3 (Fork-
head Box O3) gene, miR-323 targets the tumor suppressor p73, while miR-4735-3p inhibits
the expression of the MEKK1 (Mitogen-Activated Protein Kinase Kinase Kinase 1; also
known as MAP3K1) gene [22–24].

The expression of miR-122 has also been linked to the development of docetaxel
resistance, but through another key process for the survival of tumor cells, glycolysis.
It is known that a high level of PKM2 (Pyruvate Kinase M1/2) expression is crucial for
inducing glycolysis. However, it has been shown that miR-122 reduces the expression level
of PKM2 to inhibit glycolysis, which also leads to the reversal of resistance in tumor cells to
docetaxel [25].

Table 1. The influence of microRNA expression on the resistance to docetaxel.

miR Target Process Effect Reference

miR-143 KRAS proliferation,
migration inhibition [14]

miR-143 IGF1 survival inhibition [13]
miR-200 ZEB1 apoptosis inhibition [15]

miR-21 PDCD4 proliferation,
survival induction [17]

miR-122 PKM2 glycolysis induction [25]
miR-323 p73 proliferation induction [23]

miR-129-5p CAMK2N1 apoptosis induction [18]
miR-27a P53 apoptosis induction [19]
miR-27b ZEB1 EMT, apoptosis inhibition [16]
miR-34a ZEB1 EMT, apoptosis inhibition [16]
miR-183 SPRY2 survival induction [20]
miR-195 CUL apoptosis inhibition [21]

miR-223-3p FOXO3 apoptosis induction [22]
miR-4735-3p MEKK1 apoptosis induction [24]
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3. LncRNAs

Long non-coding RNAs (lncRNAs) are regulatory molecules that are more than 200 nu-
cleotides long and can be transcribed from introns, exons, intergenic regions, or non-coding
regions. These molecules can perform various functions, such as participating in transcrip-
tion as factors, acting as “sponges” in protein–protein interactions, but their most interesting
action lies in inhibiting miRNAs. Specific lncRNAs can act as competing endogenous RNAs
(ceRNAs), which sequester or inhibit microRNAs involved in pro-apoptotic pathways [26].
The exact number of known lncRNA genes is constantly increasing, and currently, the num-
ber of registered lncRNAs has reached 100,000 [27]. There are now hundreds of thousands
of cataloged lncRNAs and dozens of databases with carefully curated information, such as
LncATLAS, LncBook, LNCipedia, lncRNAKB, and others [28].

The upregulation of key lncRNAs and the subsequent suppression of corresponding
miRNAs is also associated with taxane resistance in PCa. Based on various studies, a
number of lncRNAs have been identified whose interaction with miRNAs is associated
with the development of docetaxel resistance in PCa: NEAT1, UCA1, PCAT1, DANCR,
CASC2, MALAT1, and LINC01963 (Figure 2, Table 2).
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Figure 2. lncRNAs and their targets associated with the development of resistance to docetaxel in
PCa. The black arrows shows the direction of communication between participants. Green arrows
indicate the association with the development of docetaxel resistance.

According to research findings, lncRNA NEAT1 is considered a promising target for
PCa treatment. Its increased expression leads to enhanced glycolysis by activating the
LDHA (Lactate Dehydrogenase A) gene and suppressing T-cell immune surveillance [29].
Furthermore, NEAT1 plays an important role in PCa oncogenesis by acting as a sponge for
miRNA-766-5p, resulting in increased expression of the transcription factor E2F3 [24]. High
levels of NEAT1 expression are also associated with docetaxel resistance in PCa, through
the suppression of miR-34a-5p and miR-204-5p, leading to increased expression of the
ACSL4 (Acyl-CoA Synthetase Long Chain Family Member 4) gene, thereby promoting
tumor progression and development of chemoresistance [30].

The activation of another lncRNA, UCA1, has also shown a connection with decreased
expression of miR-204 and a positive correlation with increased expression of Sirt1, both of
which regulate drug-induced apoptosis avoidance [31].

An important role in regulating the response to docetaxel in PCa has been found for
lncRNA PCAT1, and there is increasing evidence of its involvement in PCa progression
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regulation [32]. It has been shown that the expression level of PCAT1 increases under the
influence of TFAP2C (Transcription Factor AP-2 Gamma) in PCa cells. As a result of PCAT1
overexpression, the expression level of the SLCA11 (Solute Carrier Family 4 Member 11)
gene is increased by binding to miR-25-3p. This process is crucial for preventing the death
of tumor cells from ferroptosis and developing resistance to docetaxel [32].

LncRNA DANCR is significantly activated in docetaxel-resistant PCa. Research has
shown that DANCR suppresses the degradation of JAG1 (Jagged Canonical Notch Ligand 1)
induced by miR-34a-5p, thereby causing resistance to docetaxel [33]. Another lncRNA,
CASC2, acts as a tumor suppressor in human malignancies, serving as a ceRNA for miR-
183 and positively amplifying the expression of another tumor suppressor, SPRY2, a key
antagonist of receptor tyrosine kinase signaling. The overexpression of CASC2 and SPRY2
can suppress the proliferation of PCa cells, promote their apoptosis, and increase sensitivity
to docetaxel [34].

LncRNA MALAT1 is currently the most well-characterized lncRNA, and its aberrant
expression is observed in various types of cancer, including PCa [35]. It has been shown that
MALAT1 is involved in CRPC progression both in vivo and in vitro. Silencing MALAT1 can
inhibit tumor cell proliferation by arresting the cell cycle at the G0/G1 phase [36]. Addition-
ally, it has been demonstrated that MALAT1 enhances the expression of AKAP12 (A-Kinase
Anchoring Protein 12) gene by directly targeting miR-145-5p, promoting resistance to
docetaxel [37].

There is also emerging evidence of another lncRNA, LINC01963, which has been
associated with the development of docetaxel resistance in PCa. It has been found that
overexpression of this lncRNA increases chemoresistance of PC3 cells to docetaxel by
binding to miRNA-216b-5p [38].

In this section, we will also discuss the lncRNA that plays a role in the response to
docetaxel independent of miRNAs-SOCS2-AS1. This lncRNA is an androgen-regulated
regulatory molecule that is overexpressed in long-term androgen-deprived CRPC cells.
SOCS2-AS1 promotes androgen receptor signaling by suppressing its apoptotic target genes.
Knockdown of SOCS2-AS1 activates the TNF gene family and increases cell sensitivity to
docetaxel, while overexpression of SOCS2-AS1 induces resistance [39].

Table 2. The influence of lncRNAs expression on the resistance to docetaxel.

lncRNA Target Process Effect Reference

NEAT1 LDHA glycolysis induction [29]
NEAT1 miR-766-5p overexpression of transcription factor E2F3 induction [30]
NEAT1 miR-34a-5p and miR-204-5p increased expression of the ACSL4 gene induction [31]
UCA1 miR-204 increased expression of Sirt1, avoidance of apoptosis induction [32]
PCAT1 miR-25-3p increase in SLCA11 gene expression, avoidance of ferroptosis induction [33]

DANCR miR-34a-5p increased expression of JAG1 gene induction [34]
CASC2 miR-183 proliferation and apoptosis inhibition [20]

MALAT1 miR-145-5p increased expression of AKAP12 gene induction [37]
LINC01963 miR-216b-5p - induction [38]
SOCS2-AS1 TNF family genes androgen receptor signaling by suppressing its apoptotic target genes induction [39]

4. CircRNAs

Circular RNAs (circRNAs) represent a new class of non-coding single-stranded RNA
molecules that are covalently linked to form a continuous closed loop and participate in
the regulation of transcriptional and post-transcriptional gene expression [40]. Circular
RNAs perform numerous unique and important biological functions: they act as traps
for miRNAs or proteins, serve as scaffolds for circRNA–protein complexes, and recruit
proteins to specific loci [40,41]. Additionally, some circRNAs can be translated into small
unique peptides [42]. Research has shown that circRNAs promote tumor progression in
various types of cancer by acting as RNA sponges and interacting with miRNAs, thereby
enhancing gene expression [43].
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CircRNAs are formed in circular transcripts through back-splicing of premature mRNAs,
resulting in various types of circRNAs, such as exonic–intronic circRNAs (ElcircRNAs) (consist-
ing of both exons and introns), circular intronic RNAs (formed by introns), exonic circRNAs
(resulting from splicing of introns), and tRNA intronic circRNAs (formed by pre-tRNA splic-
ing) [44]. To date, the total number of known circRNAs varies depending on the database.
For example, the isoCirc database includes 107,147 full-length circRNA isoforms in 12 human
tissues and one human cell line (HEK293), including 40,628 isoforms ≥ 500 nt in length [45].
The CircAtlas database contains 1,007,087 highly reliable circRNAs, with over 81.3% of them
assembled into full-length sequences [46].

Based on the research, the crucial role of circRNAs in the development of chemoresistance in
PCa has been highlighted, particularly regarding the molecules hsa_circ_0000735 and circFOXO3.
The circular RNA hsa_circ_0000735 is activated in tissues and cells of docetaxel-resistant PCa.
Functional analyses have shown that the suppression of hsa_circ_0000735 inhibits docetaxel
resistance and suppresses tumor progression. Moreover, hsa_circ_0000735 can act as a sponge for
miR-7, whose expression is decreased in docetaxel-resistant cells, thus promoting chemoresistance
in PCa [47]. CircRNA circFOXO3 is one of the most studied circRNAs, and its inhibition has been
shown to inhibit PCa progression and enhance docetaxel sensitivity by upregulating FOXO3
expression and repressing epithelial–mesenchymal transition of tumor cells [48].

5. Deep Learning-Based Tools to Study the Relationship between ncRNAs and
Drug Resistance

Currently, one of the best machine learning approaches for solving prediction and
classification problems in various studies is deep learning, a method based on neural
networks that have many hidden layers and are based on the representation of biological
neural networks. Over the past decade, deep learning has been successfully applied to
various types of problems such as image recognition, speech, and language translation [49].
Deep learning is also widely used in bioinformatics, especially for working with RNA-Seq
data, which is especially relevant for oncology research [50]. In this section, we want to
highlight machine learning and deep learning tools for working with non-coding RNAs
that deserve attention and can take research on the development of drug resistance in
cancer to the next level.

First of all, it is worth noting that one of the key problems in research related to non-
coding RNAs is their identification, which is difficult due to the similarity in length and
sequence composition of protein-coding RNAs and ncRNAs. In the case of lncRNAs, tools
such as lncRNAnet, lncADeep, and lncFinder have recently been proposed with promising
results [51–53]. The identification of circRNAs from traditionally labeled mRNAs is also
challenging due to the difficulty of analyzing experimental data and the relatively low
expression of most circRNAs. Currently, the most accurate and preferred tool for identifying
this class of regulatory molecules is circDeep [54]. Basic information about these algorithms
and the key metrics used in these tools is presented in Table 3.

To analyze the assessment of the relationship between ncRNAs and the development
of drug resistance, tools such as LRGCPND, GSLRDA, and DeepLDA are currently par-
ticularly interesting [12,55,56]. The basic information about the algorithms and the key
metrics used in these tools is also presented in Table 3, but we will look at each of them in
more detail.

LRGCPND is based on a graph computational convolutional neural network used
to identify hidden relationships between ncRNAs and drug resistance through linear
transition and residual prediction. This tool presents the relationship between ncRNAs
and drug resistance in a bipartite plot and uses limited information to explore complex
latent factors to predict boundaries. A bipartite graph is a structure whose vertices can be
divided into two disjoint sets such that all edges connect a vertex in one set to a vertex
in another set. The use of a bipartite graph in data analysis allows the integration of
expression data for functional associations across many cancer types simultaneously [57]. A
special feature of the LRGCPND tool is the fact that it first combines the potential features
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of neighboring nodes in each convolutional layer of the graph, and then transforms the
information between layers using a linear function. Finally, LRGCPND combines the
representations of each layer to complete the prediction. The authors showed that this
tool can identify pairs of ncRNA–drug resistance associations, and in the specific case of
cisplatin and paclitaxel, with an average AUC value of 0.8987 [55].

Table 3. Machine learning models for identifying ncRNAs and analyzing associations with the
development of drug resistance.

Model Application Structure Metrics Reference

lncRNAnet lncRNAs identification convolutional neural network
and recurrent neural network

Sensitivity, Specificity, Accuracy,
F1 score, and AUC [51]

lncADeep lncRNAs identification deep belief network
Sensitivity, Specificity, Accuracy,
F1 score, Matthew’s correlation

coefficient, and AUC
[52]

lncFinder lncRNAs identification

random forest, support vector
machine, logistic regression,

extreme learning, machine and
deep learning

Sensitivity, Specificity, Accuracy,
and F1 score [53]

circDeep circRNAs identification
asymmetric convolution

neural network и recurrent
neural network

Accuracy, Matthew’s correlation
coefficient, and F1 score [54]

LRGCPND ncRNAs and drug
resistance association graph convolution network AUC, AUPR, Accuracy, Precision,

Recall, F1 score [55]

GSLRDA ncRNAs and drug
resistance association

bipartite graph, light graph
convolutional network AUC, F1 score [56]

DeepLDA lncRNAs and drug
resistance association

graph neural network and
graph attention mechanism

AUC, AUPR, F1 score, and
Matthew’s correlation coefficient [12]

Another algorithm, GSLRDA, also predicts the connection between ncRNAs and drug
resistance. In this tool, known associations between ncRNAs and drug resistance are
modeled as a bipartite graph of ncRNAs and a drug, and GSLRDA uses a Light Graph
Convolutional Network (lightGCN) to learn the embedding of ncRNAs and the drug
from the bipartite ncRNA–drug graph. Additionally, GSLRDA employs various data
augmentation methods to create diverse representations for ncRNAs and drug nodes and
performs self-supervised learning, further improving the quality of learned ncRNAs and
drug vector representations through contrastive learning between nodes. Finally, GSLRDA
uses an inner product for predicting the connection between ncRNAs and drug resistance.
The results of a large-scale analysis presented by the authors show that GSLRDA has an
average AUC metric of 0.9101, which is higher than the other considered models on the
data sets used [56].

Finally, it is worth mentioning DeepLDA, a deep learning-based computational model
that uses deep neural networks and a graph attention engine to learn mRNA and drug
embeddings to predict potential links between mRNAs and drug resistance. This model
first uses known association elements to generate mRNA–drug similarity networks. Deep
graph neural networks are then used to pre-train mRNA and drug properties, which are
ultimately fed into a graph attention network to learn mRNA and drug embeddings to
predict potential association pairs. The experimental results based on the NoncoRNA
and ncDR databases have shown that the DeepLDA model currently outperforms other
machine learning methods in predicting mRNA–drug resistance pairs on the data sets used
with an AUC value of up to 0.8889 [12].



Life 2023, 13, 2304 9 of 12

6. Discussion and Conclusions

Prostate cancer is one of the most common oncological diseases among men world-
wide, and for treating advanced stages of the disease, chemotherapy based on taxanes is
used as the “gold standard.” Despite significant progress in molecular oncology over the
past decades, the development of drug resistance in patients remains one of the most press-
ing issues in modern oncology. The mechanisms underlying drug resistance in cancer are
complex and involve changes in the regulation of numerous signaling pathways, although
the complete picture of their interactions is yet to be determined.

In this review, we discussed the class of non-coding RNAs—regulatory molecules
that play a key role in various cellular processes and diseases, including cancer. With the
rapid development of high-throughput sequencing methods, it has been discovered that a
large number of non-coding RNAs are aberrantly expressed in various tumor tissues and
cell lines. While the dysregulation of non-coding RNAs can contribute to the emergence
of cancer traits as oncogenes or counteract them as tumor suppressors, the mechanisms
underlying these events are not fully understood. In recent years, increasing evidence
has emerged regarding the important role of these molecules in the development of drug
resistance in various types of cancer, including prostate cancer, by influencing multiple
signaling pathways. This knowledge may be successfully applied in the future for the
development of new promising therapeutic approaches.

We discussed the major non-coding RNAs that recent studies have shown to be closely
associated with the development of docetaxel resistance in prostate cancer, including
miRNAs (miR-143, -200, -21, -122, -323, -129-5p, -27a/b, -34a, -183, -195, -223-3p, -4735-3p),
lncRNAs (NEAT1, UCA1, PCAT1, DANCR, CASC2, MALAT1, LINC01963, SOCS2-AS1), and
circRNAs (hsa_circ_0000735 and circFOXO3).

The identification of non-coding RNAs and the elucidation of their relationship with
diseases not only contribute to our understanding of the mechanisms of disease develop-
ment but also provide new ideas and solutions for their diagnosis, treatment, and prognosis.
Currently, research on predicting associations between non-coding RNAs and diseases
is gaining more attention, accompanied by an increasing number of prediction methods
based on machine learning. We also discussed modern computational tools based on
machine learning and deep learning methods for the identification of non-coding RNAs
from transcriptomic data, such as lncRNAnet, lncADeep, lncFinder, and circDeep. These
tools aid in the identification of non-coding RNAs from transcriptomic data and in pre-
dicting potential links between non-coding RNAs and drug resistance in cancer, such as
LRGCPND, GSLRDA, and DeepLDA.
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