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Abstract: Introduction: Vitamin D plays a vital role in maintaining homeostasis and enhancing the
absorption of calcium, an essential component for strengthening bones and preventing osteoporosis.
There are many factors known to relate to plasma vitamin D concentration (PVDC). However, most
of these studies were performed with traditional statistical methods. Nowadays, machine learning
methods (Mach-L) have become new tools in medical research. In the present study, we used four
Mach-L methods to explore the relationships between PVDC and demographic, biochemical, and
lifestyle factors in a group of healthy premenopausal Chinese women. Our goals were as follows:
(1) to evaluate and compare the predictive accuracy of Mach-L and MLR, and (2) to establish a
hierarchy of the significance of the aforementioned factors related to PVDC. Methods: Five hundred
ninety-three healthy Chinese women were enrolled. In total, there were 35 variables recorded,
including demographic, biochemical, and lifestyle information. The dependent variable was 25-OH
vitamin D (PVDC), and all other variables were the independent variables. Multiple linear regression
(MLR) was regarded as the benchmark for comparison. Four Mach-L methods were applied (random
forest (RF), stochastic gradient boosting (SGB), extreme gradient boosting (XGBoost), and elastic
net). Each method would produce several estimation errors. The smaller these errors were, the
better the model was. Results: Pearson’s correlation, age, glycated hemoglobin, HDL-cholesterol,
LDL-cholesterol, and hemoglobin were positively correlated to PVDC, whereas eGFR was negatively
correlated to PVDC. The Mach-L methods yielded smaller estimation errors for all five parameters,
which indicated that they were better methods than the MLR model. After averaging the importance
percentage from the four Mach-L methods, a rank of importance could be obtained. Age was the most
important factor, followed by plasma insulin level, TSH, spouse status, LDH, and ALP. Conclusions:
In a healthy Chinese premenopausal cohort using four different Mach-L methods, age was found to
be the most important factor related to PVDC, followed by plasma insulin level, TSH, spouse status,
LDH, and ALP.

Keywords: machine learning; premenopausal women; vitamin D

1. Introduction

Vitamin D plays a crucial role in maintaining homeostasis and promoting the absorp-
tion of calcium, an essential component for strengthening bones and preventing osteo-
porosis [1,2]. It is a pro-hormone that, in the classical pathway, is activated by sequential
hydroxylation at C25 and C1 to produce 1,25(OH)2D3, which is biologically active and
acts predominantly on the vitamin D receptors in the classical pathway [3]. In addition,
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new pathways of vitamin D activation by CYP11A1 were established, describing the pro-
duction of several biologically active hydroxyderivatives [4–8], acting on different nuclear
receptors in addition to the vitamin D receptors [9]. While severe vitamin D deficiency is
rare, it can lead to rickets in children and osteomalacia in adults [1]. On the other hand,
a widespread subclinical deficiency of this vitamin is linked to osteoporosis, increasing
the risk of falls and fractures [2]. Apart from its primary function in calcium metabolism,
vitamin D receptors are present in various organs and tissues, suggesting its potential
impact on multiple biological processes. Research indicates that vitamin D deficiency
may contribute to the progression of conditions such as tuberculosis [10], respiratory tract
infections [11], asthma [12], and atopic dermatitis [13], as it influences both innate and
adaptive immunity. Furthermore, studies have documented increased risks of hyperten-
sion, cardiovascular diseases, cancer, musculoskeletal pain, and migraines associated with
vitamin D insufficiency [14–17].

Vitamin D can be obtained efficiently through various means, including dietary con-
sumption, exposure to sunlight, or supplementation. Specific guidelines for vitamin D
supplementation may vary, taking into account factors such as age, health conditions, and
individual considerations. Research has shown that vitamin D deficiency is prevalent in
the general population. According to the 2013 National Health and Nutrition Examina-
tion Survey, approximately 70% of women are reported to experience this deficiency [18].
Similarly, the National Nutrition Survey, conducted from 2006 to 2008 and involving 2,596
participants aged 19 and above, revealed that 66.2% of individuals had inadequate vitamin
D levels [19]. Surprisingly, even regions known for high sunlight exposure, like the south-
ern United States, show a significant incidence of vitamin D deficiency [20]. Adequate
supplementation of vitamin D is essential to prevent various diseases, improve prognosis,
and maintain proper cellular functioning in organs. Therefore, understanding the factors
that influence the concentration of vitamin D in the bloodstream of the general population
is of significant interest.

Before the era of artificial intelligence developed, most of the studies used multi-
ple linear regression (MLR) to evaluate the relationships between independent variables
and dependent variables. It should be noted that both variables should be continuous.
MLR could adjust the confounding effects between variables. However, with the recent
emergence of artificial intelligence, machine learning (Mach-L) has become a powerful
alternative. Unlike MLR, Mach-L enables machines to learn from past data or experiences
without explicit programming. Moreover, it could capture non-linear interactions between
complicated variables, including continuous, ordinal, and categorical variables, which
makes it a strong competitor in the medical research field [21–23].

One of the key advantages of Mach-L is its ability to understand non-linear relation-
ships and complex interactions among multiple predictors. This capability positions it to
excel over traditional MLR in disease prediction [24]. As a result, Mach-L offers promising
potential for advancing research in understanding and predicting conditions, like vitamin
D deficiency, and their associated risk factors.

To the best of our knowledge, no previous study has explicitly examined the as-
sociations between plasma 25-OH vitamin D concentration (PVDC) and demographic,
biochemical, and lifestyle factors using machine learning (Mach-L) techniques. In this
research, we recruited participants from a health-checkup chain clinic with two main ob-
jectives: (1) to assess and compare the predictive accuracy of Mach-L and MLR, and (2) to
establish a hierarchy of the significance of factors—including demographic, biochemical,
and lifestyle aspects—in relation to the plasma concentrations of PVDC.

2. Methods
2.1. Participants and Study Design

The data for this study were obtained from the MJ Health Screening Center, a private
clinical chain with three centers located in northern, central, and southern Taiwan. The
MJ Health Database only comprises individuals who have given informed consent. All
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or part of the data used in this research were authorized by and received from the MJ
Health Research Foundation (authorization code: MJHRF2022011A). Any interpretations or
conclusions described in this paper are those of the authors alone and do not represent the
views of the MJ Health Research Foundation. Initially, a total of 1532 healthy women were
included. After excluding subjects with missing data, those taking vitamin D supplements
at the time of the study, and individuals with significant medical diseases, the final analysis
comprised 593 women between 20 and 50 years old (Figure 1). The main reason to select
this age range was to exclude participants with menopause. The criteria for participant
inclusion can be found in Table 1. Prior to their routine health examination, all participants
provided informed consent, and the collected data were anonymized. The study protocol
was approved by the institutional review board of the Zuoying Branch of Kaohsiung Armed
Forces General Hospital (IRB No. KAFGHIRB 110-23). Participants with serious health
conditions, such as cancer, were not included in the study.
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Figure 1. Participant selection scheme.

Throughout the study, a senior nursing staff member took a comprehensive record of
the participants’ medical history, including information about their current medications.
The status of education level, family income, having a spouse, drinking alcohol, having
betel nuts, smoking, daily sport hours, and sleep hours were also recorded.

Table 1. Demographic, biochemical, and lifestyle data of participants.

Variable Values

n 593
Age (year) 37.98 ± 7.58
Body fat percentage (%) 29.65 ± 7.42
Systolic blood pressure (mmHg) 108.5 ± 13.87
Diastolic blood pressure (mmHg) 70.92 ± 9.86
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Table 1. Cont.

Variable Values

Fasting plasma glucose (mg/dL) 95.14 ± 7.72
Glycated hemoglobin (%) 5.3 ± 0.37
Plasma insulin level (µU/mL) 6.67 ± 3.65
Triglyceride (mg/dL) 77.1 ± 41.28
HDL-cholesterol (mg/dL) 65.08 ± 14.15
LDL-cholesterol (mg/dL) 109.34 ± 30.4
Hemoglobin (g/dL) 13.06 ± 1.29
Platelet cell count (*103/µL) 249.46 ± 58.51
White blood cell count (*103/µL) 5.95 ± 1.56
Alkaline phosphatase (IU/L) 50.02 ± 15.78
Glutamic oxaloacetic transaminase (IU/L) 20.42 ± 7.29
Glutamic pyruvic transaminase (IU/L) 20.43 ± 16.48
Total bilirubin (mg/dL) 0.9 ± 0.31
γ-Glutamyltransferase (IU/L) 19.16 ± 13.24
Plasma calcium level (mg/dL) 9.59 ± 0.36
Plasma ferritin level (µg/dL) 82.1 ± 35.97
Plasma phosphate level (mg/dL) 3.88 ± 0.47
Uric acid (mg/dL) 4.71 ± 1.06
Alfa-fetoprotein (ng/mL) 3.15 ± 10.52
Carcinoembryonic antigen (ng/mL) 1.34 ± 0.74
Estimated glomerular filtration rate (mL/min/1.73m2) 86.54 ± 12.63
Lactic dehydrogenase (IU/L) 150.41 ± 23.64
High-sensitivity C-reactive protein (mg/L) 1.4 ± 2.28
Forced expiratory volume in one second (L) 93.52 ± 15.07
Thyroid-stimulating hormone (uIU/mL) 1.75 ± 1.03
Free-testosterone level (pg/mL) 3.53 ± 1.93
25-OH vitamin D (ng/mL) 20.86 ± 7.69
Exercise hour 7.58 ± 8.29

With or without spouse

Single 211 (38.86) 19.1 ± 7.4 *
With spouse 332 (61.14) 22.0 ± 7.6

Sleep hours

0–4 h/day 7(1.25) 21.6 ± 9.1
4–6 h/day 147 (26.25) 21.1 ±7.6
6–7 h/day 267 (47.68) 20.2 ± 7.5
7–8 h/day 113 (20.18) 18.9 ± 6.7
8–9 h/day 23 (4.11) 19.1 ±4.4
>9 h/day 3 (0.54) 21.0 ± 5.0

Education level

Junior high school 9 (1.68) 21.4 ± 8.4
Senior high school 82 (15.27) 22.1 ± 7.2
College 97 (18.06) 21.5 ± 7.9
University 266 (49.53) 20.5 0 7.9±
Higher than master degree 83 (15.46) 20.4 ±6.8

Family Income (thousand USD/year)

<6.1/year 87 (16.93) 26.6 ± 9.1
<6.1–12.1/year 128 (24.90) 21.1 ± 7.6
12.1–24.2/year 175 (34.05) 20.2 ± 2.5
24.2–36.2/year 79 (15.37) 21.4 ± 7.4
36.2–48.3/year 22 (4.28) 18.9 ± 6.6
48.3–60.4/year 12 (2.33) 19.2 ± 4.4
>60.4/year 11 (2.14) 210 ± 5.0

* p < 0.001.

2.2. Proposed Mach-L Scheme

The following description of the methods related to Mach-L was published in our
previous work [25]. This research proposes a scheme based on four machine learning (Mach-
L) methods: random forest (RF), stochastic gradient boosting (SGB), extreme gradient
boosting (XGBoost), and elastic net. The primary objective is to construct predictive models
for forecasting plasma vitamin D levels and identify the significance of related risk factors.
These Mach-L methods, widely used in various healthcare applications, are advantageous
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as they do not make prior assumptions about data distribution [26–35]. For comparison,
multiple linear regression (MLR) was used as the reference.

The first method, random forest (RF), is an ensemble learning decision tree algorithm
that combines bootstrap resampling and bagging [36]. RF generates multiple random and
unpruned CART decision trees using the decrease in Gini impurity as the splitting criterion.
These trees are then assembled into a forest, and their predictions are averaged or voted
upon to generate output probabilities and a final model, providing robust predictions [37].

The second method, stochastic gradient boosting (SGB), is a tree-based gradient boosting
learning algorithm that combines bagging and boosting techniques to minimize the loss
function and mitigate overfitting issues encountered in traditional decision trees [38,39].
Through multiple iterations, SGB generates a series of stochastic weak learners in the form
of trees. Each tree aims to correct or explain the errors made by the preceding tree. The
residual of the previous tree serves as input for the newly generated tree. This iterative process
continues until a convergence condition or stopping criterion is met. The final robust model is
determined by the cumulative results of these trees.

Thirdly, extreme gradient boosting (XGBoost) is an optimized extension of SGB based
on gradient boosting technology [40]. It trains numerous weak models sequentially and
combines them using the gradient boosting method, resulting in improved prediction
performance. XGBoost employs Taylor binomial expansion to approximate the objective
function and differentiable loss functions to expedite the model’s construction conver-
gence process [41]. Additionally, XGBoost applies regularized boosting techniques to
penalize model complexity and address overfitting, thereby enhancing the overall model
accuracy [40].

The final method is elastic net regression, which is a linear regression technique
that incorporates a penalty term to shrink the coefficients of the predictors. This penalty
term is a combination of the l1-norm (absolute value) and the l2-norm (square) of the
coefficients, weighted by a parameter called alpha. The l1-norm penalty, similar to lasso
regression, tends to produce sparse solutions by setting some coefficients to zero. On the
other hand, the l2-norm penalty, similar to ridge regression, aims to reduce the variance of
the coefficients by shrinking them toward zero. By combining the strengths of both lasso
and ridge, elastic net regression can handle situations where there are correlated predictors
and potentially improve the model’s predictive performance [42].

Figure 2 depicts the flowchart of the proposed prediction and significant variable
identification scheme that integrates the four Mach-L methods. The process begins with
the collection of patient data and the preparation of the dataset using the proposed method.
Subsequently, the dataset is randomly split into an 80% training dataset for model building
and a 20% testing dataset for model evaluation. During the training process, each Mach-
L method involves specific hyperparameters that necessitate tuning to construct high-
performing models. For this tuning, a 10-fold cross-validation technique is employed. The
training dataset is further divided into a training set, where various sets of hyperparameters
are used for model construction, and a validation set for model validation. A grid search
explores all possible combinations of hyperparameters, and the model exhibiting the lowest
root mean square error for the validation dataset is selected as the best model for each
Mach-L method. Consequently, the best-tuned models for RF, SGB, XGBoost, and elastic
net are generated, along with the variable importance ranking information. To determine
the significance of variables, the importance ranks from these four methods are averaged,
yielding the results of their importance.
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During the testing process, the testing dataset is employed to evaluate the predictive
performance of the best RF, SGB, and elastic net models. As the target variable in this
study is numerical, several metrics are used for model performance comparison, including
mean absolute percentage error (MAPE), symmetric MAPE (SMAPE), relative absolute
error (RAE), root relative squared error (RRSE), and root mean square error (RMSE). The
equations for these performance metrics are provided in Table 2.
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Table 2. Equations of performance metrics.

Metrics Description Calculation

SMAPE Symmetric Mean Absolute Percentage Error SMAPE = 1
n

n
∑

i=1

|yi−ŷi |
(|yi |+|ŷi |)/2 × 100

RAE Relative Absolute Error RAE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi)

2

RRSE Root Relative Squared Error RRSE =

√
∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−ŷi)

2

RMSE Root Mean Squared Error RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

2.3. Statistical Methods

The Kolmogorov–Smirnov test was employed to assess the normal distribution of
the data, while Levene’s test was utilized to check the homogeneity of the variances.
Continuous variables were represented as the mean plus or minus the standard deviation.
An independent t-test was used to analyze PVDC in subjects with or without a spouse.
For other ordinal variables, such as sleep hours, education level, income, and smoking, a
one-way analysis of variance was applied. For evaluating the relationships between PVDC
and other continuous variables, Pearson’s correlation was utilized. All statistical analyses
were conducted using version 13.0 of the SPSS software system (SPSS Inc., Chicago, IL,
USA). All p-values less than 0.05 were deemed statistically significant.

3. Results

In total, there were 593 participants enrolled in this study. The mean age was
37.98 ± 7.58 years old, and the body fat percentage was 29.65 ± 7.42%. The mean and
standard deviation of 35 variables and their corresponding units are shown in Table 1. It
should be noted that PVDC was significantly higher in subjects with spouses compared to
their counterparts. At the same time, there was no significant difference in PVDC between
subjects with different sleep hours, education levels, and family incomes.

Table 3 shows the result of Pearson’s correlation between risk factors and PVDC. It
could be noted that age, HDL-cholesterol, LDL-cholesterol, and hemoglobin were positively
correlated with PVDC. At the same time, all other factors were not significantly correlated
with PVDC.

Table 4 shows the model performance of the MLR, RF, SGB, XGBoost, and elastic net.
The MAPE, SMAPE, RAE, RRSE, and RMSE values of RF, SGB, XGBoost, and elastic net
were all smaller than those of the MLR. This indicates that these Mach-L methods were
more accurate compared to MLR.

In Table 5, the variables of importance, their means, and the mean rank of importance
are displayed. From this table, age was the most important factor, followed by plasma
insulin level, TSH, spouse status, LDH, and ALP. The graphic illustration of these variables
and their importance is shown in Figure 3.
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Table 3. The results of Pearson’s correlation between baseline demographic, biochemical, lifestyle, and δ-T score.

Age Body
Fat SBP DBP HbA1c PI TG HDL-

C
LDL-

C Hb Platelet WBC ALP GOT GPT TB GGT Ca P Fe UA AFP CEA LDH Hs-
CRP TSH T

0.187
** −0.032 0.045 0.052 0.113 −0.030 0.058 0.090

*
0.099

*
0.094

* 0.009 −0.016 −0.012 −0.026 −0.057 0.041 0.019 0.073 0.083 0.064 0.047 −0.017 0.073 0.074 −0.006 −0.075 −0.081

SBP: systolic blood pressure, DBP: diastolic blood pressure, PI: plasma insulin level, HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, Hb:
hemoglobin, WBC: white blood cell count, ALP: alkaline phosphatase, GOT: glutamic oxaloacetic transaminase, GPT: glutamic pyruvic transaminase, TB: total bilirubin, GGT: γ-glutamic
transferase, Ca: plasma calcium level, P: plasma phosphate level, Fe: ferritin, UA: uric acid, AFP: a-fetoprotein, CEA: carcinoembryonic antigen, LDH: lactate dehydrogenase, Hs-CRP:
high-sensitivity C-reactive protein, TSH: thyroid-stimulating hormone, T: plasma testosterone level. * p < 0.05; ** p < 0.001.
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Table 4. The average performance of linear regression and four machine learning methods.

MAPE SMAPE RAE RRSE RMSE

LR 0.3896 0.32 1.1245 1.1447 8.1507
RF 0.3721 0.277 1.0045 0.9818 6.9913

SGB 0.3728 0.2915 1.0495 0.97 6.9069
XGboost 0.3703 0.2816 1.0316 1.0679 7.6038

Elastic net 0.3579 0.2721 0.9805 0.9736 6.9325
LR: linear regression, RF: random forest, SGB: stochastic gradient boosting, NB: naïve Bayes, XGBoost: extreme
gradient boosting.

Table 5. The importance, mean, and rank of the risk factors derived from linear regression and
machine learning methods.

Variable Linear RF SGB XGBoost Elastic net Mean MROI

Age 77.7 100.0 100.0 51.2 4.6 63.9 1.0
Plasma insulin level 58.1 95.1 47.2 100.0 4.3 61.6 2.0

Thyroid-stimulating hormone 58.1 80.7 49.9 73.0 15.8 54.8 3.0
Spouse status 100.0 33.1 27.8 35.5 100.0 49.1 4.0

Lactic dehydrogenase 79.8 91.7 51.8 49.3 1.6 48.6 5.0
Alkaline phosphatase 41.0 89.4 25.7 75.2 0.0 47.6 6.0

LDL-cholesterol 0.9 91.0 30.9 66.1 0.0 47.0 7.0
High-sensitivity CRP 34.2 81.0 66.6 39.3 0.0 46.7 8.0

HDL-cholesterol 90.5 84.9 67.0 30.0 2.7 46.2 9.0
Diastolic blood pressure 27.4 78.4 36.2 52.5 0.7 42.0 10.0

Alfa-fetoprotein 61.0 84.1 34.4 33.0 10.9 40.6 11.0
Glycated hemoglobin 52.7 71.0 0.0 24.4 61.2 39.1 12.0

Estimated glomerular filtration rate 3.7 92.5 21.1 38.0 0.0 37.9 13.0
FEV1 25.7 73.4 9.5 52.1 0.0 33.7 14.0

Uric acid 68.8 67.5 34.0 12.4 20.3 33.5 15.0
White blood cell count 21.5 73.0 15.5 43.1 0.0 32.9 16.0

Platelet cell count 25.9 73.2 35.8 21.4 0.0 32.6 17.0
Glutamic oxaloacetic transaminase 10.1 67.5 34.0 24.9 0.0 31.6 18.0

Plasma ferritin level 59.3 80.2 18.3 22.0 0.2 30.2 19.0
Body fat percentage 29.4 70.7 0.0 45.7 0.0 29.1 20.0

Carcinoembryonic antigen 22.0 68.1 0.0 44.5 0.0 28.1 21.0
Hemoglobin level 79.2 66.0 0.0 22.3 24.2 28.1 22.0

Free-testosterone level 49.7 66.9 9.4 28.9 2.1 26.8 23.0
Triglyceride 58.1 65.4 19.6 20.3 0.1 26.3 24.0

Systolic blood pressure 10.2 75.5 0.0 17.0 0.1 23.2 25.0
Sport hours/day 11.1 41.1 9.4 38.9 0.0 22.3 26.0

Total bilirubin 79.3 65.1 0.0 17.3 0.0 20.6 27.0
Plasma phosphate level 6.1 57.9 0.0 23.1 0.0 20.2 28.0
γ-Glutamyltransferase 30.2 61.9 0.0 17.8 0.0 19.9 29.0

Glutamic pyruvic transaminase 40.8 66.9 0.0 9.5 0.0 19.1 30.0
Family income/year 59.2 33.6 11.0 4.8 9.0 14.6 31.0
Plasma calcium level 11.9 44.2 0.0 8.8 0.0 13.2 32.0

Sleep hours/day 0.0 43.6 0.0 1.3 0.0 11.2 33.0
Education level 21.5 26.5 0.0 0.0 6.7 8.3 34.0

Betel nut 0.0 0.0 0.0 0.0 0.0 0.0 35.0

LR: linear regression, RF: random forest, SGB: stochastic gradient boosting, NB: naïve Bayes, XGBoost: extreme
gradient boosting, eGFR: estimated glomerular filtration rate, MROI: mean rank of importance. FEV1: forced
expiratory volume in one second.
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Figure 3. The means of importance of the risk factors derived from four different machine learn-
ing methods.

4. Discussion

In the present study, we employed four different Mach-L methods to identify six
parameters that are significantly related to plasma vitamin D levels (PVDL) in healthy
Chinese women aged 20–53 years old. As mentioned in the introduction, Mach-L techniques
are capable of capturing non-linear relationships, making them valuable tools for medical
research across various domains. While some previous studies have used Mach-L to
explore factors influencing vitamin D, most of them have focused on diagnosing vitamin D
deficiency, and as a result, statistical and Mach-L methods dealing with binary variables,
such as MLR, were predominantly used. For example, Sancar et al. performed a study on
481 subjects [43]. Four different Mach-L methods, namely, ordinal logistic regression (OLR),
elastic-net ordinal regression (ENOR), support vector machine (SVM), and random forest
(RF), were compared. They concluded that the accuracy of SVM was significantly and
negatively influenced when the method was examined. At the same time, RF was the most
robust among these four methods when the size of the training set varied. The accuracy,
sensitivity, precision, F1-score, and Cohen’s kappa were further provided, and they were all
higher than 0.9. From their findings, they suggested that RF was a potential better tool to
detect vitamin D levels and could be used in routine clinical settings. It is interesting to note
that the discussion of this article mainly focused on the details of Mach-L methods such as
parameter tuning, sensitivities to decreasing sample sizes, and classification performance.
Little was emphasized about which one of the variables (demographic, biochemical, and
lifestyle details) used was more clinically relevant to vitamin D concentrations. Thus,
even though the authors had shown that Mach-L methods were accurate enough to be
used, it would not be possible for medical providers to use these methods practically. In
fact, many of these studies were more closely related to the engineering and mathematics
fields. In contrast, our study focuses on predicting vitamin D levels using Mach-L and
identifying significant factors in a healthy population of Chinese women within a specific
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age range [44,45]. Our study is the first to use Mach-L methods to set PVDC as a continuous
variable. Moreover, the present study included demographic, biochemical, and lifestyle
information, whose importance, to the best of our knowledge, has never been previously
reported at the same time.

The most crucial factor identified by Mach-L in the present study was age, which
showed a positive correlation with PVDC. This finding differs from most other studies
that have shown a decrease in PVDC with increasing age. However, two major underlying
pathophysiological mechanisms may explain this relationship. First, an age-related decline
in renal function leads to a 50% reduction in the production of 1,25(OH)2D. Second, a
decrease in calcium absorption in aged individuals occurs before the decline in 1,25(OH)2D
by approximately 10 to 15 years. These factors may contribute to the observed positive cor-
relation between age and PVDC in our study [46–48]. However, in contrast to our findings,
other studies have reported opposite results. The conflicting results in the literature are not
entirely surprising and can be attributed to two main reasons. Firstly, the concentration
of PVDC may vary significantly among different ethnic groups. Secondly, most other
studies did not separate genders and included all age groups, which might introduce
confounding factors. Therefore, further studies with more sophisticated classifications and
larger sample sizes are needed to better understand the relationships between age and
PVDC in different populations.

The second factor identified by Mach-L in the present study was plasma insulin level.
However, it is essential to note that there is limited research on the direct relationship
between PVDC and plasma insulin levels. Most previous studies have primarily focused
on the potential improvement of insulin resistance after vitamin D supplementation. This
improvement is believed to occur through the effects of vitamin D on muscle cell receptors.
Vitamin D can increase insulin receptor expression or enhance the sensitivity of insulin
receptors to insulin. It is well established that individuals with insulin resistance tend to
have higher insulin levels. Therefore, vitamin D’s impact on insulin receptors and related
pathways may contribute to the observed association between plasma insulin level and
PVDC in our study [49]. The decrease in insulin resistance typically leads to a reduction
in plasma insulin and glucose levels following vitamin D supplementation, as observed
in previous studies. Conversely, there is evidence to suggest that vitamin D can stimulate
insulin secretion directly through its receptors or indirectly by regulating intracellular
calcium levels to facilitate insulin secretion [50,51]. These findings align with our present
study results, indicating that vitamin D may have a positive impact on insulin levels.
Moreover, indirect evidence also supports the increase in insulin levels seen in our study.
For individuals with vitamin D deficiency, supplementation with vitamin D may reduce
the incidence of type 2 diabetes, further supporting the potential beneficial effect of vitamin
D on insulin levels.

In the past, researchers were interested in the complex molecular interactions between
vitamin D and thyroid function. It has been noted that patients with hypothyroidism have a
higher chance of having low levels of vitamin D. The underlying cause for this phenomenon
was postulated due to the strong similarity between the two receptors of vitamin D3 and
thyroid hormone since they evolved from a single primordial gene [52,53]. The synthesis of
1,25 dihydroxy-vitamin D or calcitriol, the active vitamin D metabolites, all depends on the
enzyme 1-alpha hydroxylase, which is mainly expressed in the kidney [54]. These pieces of
evidence support the result of the present study, where a negative correlation was found
between PVDC and TSH levels.

The next factor found in the present study was whether the participant had a spouse,
and, in this cohort, participants with a spouse were defined as ‘not living alone’. It is
intriguing to note that there was a significant difference in PVDC between those with a
spouse and those without (22.0 ± 7.6 versus 19.1 ± 7.36, respectively). This relationship
has rarely been reported in the literature, and to our knowledge, only one other study
has reached a similar conclusion. Khalfa et al. demonstrated that vitamin D3 levels were
significantly lower in single women compared to their counterparts. While this finding
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could be partially explained by sexual activity, these studies only provided indirect evidence.
In support of our present study’s results, a study by Canguven and colleagues [55] showed
that vitamin D treatment improved the sexual activity of men. This is closely related to
what we observed in our study, where single females were more likely to have deficient
vitamin D3 levels due to a potential lack of sexual activity and the interplay of hormones.
Furthermore, another study by Kidir [56] showed that sexual dysfunction in dialysis
patients improved after vitamin D treatment, providing additional support for the potential
role of vitamin D in sexual function. Although these findings offer valuable insights, further
studies with more detailed designs are needed to explore the precise role of marital status
and its association with PVDC.

The fifth factor chosen by Mach-L was plasma LDH concentration. LDH is generally
considered a marker for inflammation [57]. At the same time, vitamin D has been proven to
have anti-inflammatory effects [58]. These pieces of evidence contradict the results of our
present study. Our data showed a non-significant but positive correlation between PVDC
and LDH levels in a Pearson’s correlation analysis. At present, it is challenging to explain
this discrepancy. Several factors might contribute to this disparity. Firstly, the fact that
only healthy young women were enrolled in our study could have influenced the relation-
ship between PVDC and LDH levels. It is possible that this specific population’s unique
characteristics may have affected the correlation between the two variables. Secondly,
differences in ethnic groups could also play a role in the observed discrepancy. Genetic and
physiological variations among ethnic populations may impact the associations between
PVDC and LDH levels.

Kover et al. were pioneers in establishing alkaline phosphatase (ALP) as a marker for
vitamin D3 deficiency in premature infants [59]. Subsequently, numerous other studies
have provided further support for the negative relationships between ALP levels and
vitamin D3 levels [60–62]. It is important to note that only one study has been conducted in
a diverse age group ranging from 10 to 80 years old. However, this study had a relatively
small sample size, enrolling only 110 subjects, and did not find any significant correlation
between ALP and PVDC [63]. Elevated serum levels of ALP are often indicative of increased
bone turnover, and some researchers and clinicians consider it a bone formation marker [64].
This relationship is particularly strong in patients with osteomalacia [65], which could
provide an explanation for the results of our present study. Our finding, which utilized
Mach-L methods and included a larger cohort of 593 women, could further contribute to
understanding this complex relationship.

It is interesting to note that either LDL-C or HDL-C were not selected by Mach-L in the
present study. This is in contrast with others’ findings. For example, Li et al. reported that
total cholesterol, LDL-C, and TG decreased if vitamin D concentration increased [66]. These
relationships could be explained by the recently found roles of liver X receptors (LXRs).
LXR is a nuclear receptor for oxysterol, which is an oxygenated derivative of cholesterol. At
the same time, LXR is also a nuclear receptor for 1,25(OH)2D3 and 20,23(OH)2D3. Further
studies are needed in the future to explore these relationships [67].

The present study still has limitations. First, this is a cross-sectional study, which
is less solid than a longitudinal study. Secondly, this study was performed on only one
ethnic group. Extrapolation to other ethnic groups should be exercised with caution.
Further studies with a longitudinal design and a larger cohort are needed to elucidate the
influencers of PVDC.

5. Conclusions

By using four different Mach-L methods, the six most important factors were selected.
Age was the most important one, followed by plasma insulin level, TSH, having a spouse,
LDH, and ALP in a group of healthy Chinese premenopausal women.

Author Contributions: Conceptualization, C.-K.W. and C.-Y.C.; methodology, T.-W.C.; writing—
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