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Abstract: Alzheimer’s disease (AD) has become one of the leading causes of health problems in the
elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide.
The two main pathological features of Alzheimer’s disease are the extracellular deposition of β-
amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau
protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to
elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved
in the development of AD, no effective drugs have been found to stop the progression of the disease.
Currently, the mainstay drugs used to treat AD can only alleviate the patient’s symptoms and do not
have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests
that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria
can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory
mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in
the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and
mechanisms of action.
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1. Introduction

In 2021, the world entered a population aging stage, and with the new longer life ex-
pectancy, dementia has become a major health issue for older adults worldwide. According
to the World Alzheimer’s Disease Report 2021, more than 55 million people worldwide
currently have dementia [1], and this number is expected to increase to 152 million by
2050 [2]. About 70% of dementia is caused by Alzheimer’s disease [3]. AD is the most
common form of dementia and is a complex and irreversible neurodegenerative disease.
Its main manifestation is the progression of patients from mild cognitive impairment (MCI)
to severe mental impairment as they age [4]. AD is divided into early-onset AD (EOAD)
and late-onset AD (LOAD). EOAD is a very uncommon condition associated with genetic
factors such as mutations in susceptibility genes like amyloid precursor protein (APP),
apolipoprotein E4 (ApoE4), presenilin 1 (PSEN1), and presenilin 2 (PSEN2), which can
lead to an overproduction of amyloid beta. LOAD (more than 90%) is associated with
environmental and risk factors such as age, gender, lifestyle, education, diet, substance
abuse, disease history, and family history [5].

Since 1906, when German neuropathologist Dr. Alzheimer reported the first case of
AD, various hypotheses have been developed from pathophysiology and other aspects,
mainly including cholinergic hypothesis, β-amyloid cascade hypothesis, Tau protein phos-
phorylation hypothesis, neuroinflammation hypothesis, etc. [6]. However, due to the
complexity of the pathophysiological factors involved in the development of AD, and
with various pathological changes occurring in the years preceding—and in the decade
following—cognitive decline [7], the exact pathogenesis has not yet been elucidated, and
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available treatments and clinical drugs are scarce. Therefore, the study of AD pathogenesis
and potential causative factors will be of great benefit to the search for new therapeutic
pathways and strategies in the future and will be of great importance to the protection of
the health of the elderly.

About a decade ago, S. Poole et al. [8] detected the presence of Porphyromonas gingivalis
LPS in the brains of AD patients by studying the bacterial composition of periodontal dis-
ease in the brain tissue of AD patients 12 h after death. In a review by A.R. Kamer et al. [9],
it was also suggested that periodontal-derived pro-inflammatory molecules and Porphy-
romonas gingivalis can enter the brain through the somatic circulation or neural path-
ways and increase Aβ synthesis, leading to Aβ deposition and cognitive dysfunction.
N. Ishida et al. [10] found that cognitive function was impaired in mice infected with Por-
phyromonas gingivalis compared to control mice. All of these ideas suggest a correlation
between periodontitis and the onset and progression of AD. Although the involvement
of periodontitis in the pathogenesis of AD is not yet clear, it points to new directions for
exploring therapeutic avenues for AD.

This paper summarizes the pathogenesis of AD and current principal therapeutic
drugs and reviews the progress of research on the link between AD and periodontitis to
provide ideas for the development of new ways to treat AD.

2. Pathogenesis of Alzheimer’s Disease

The two main pathological features of Alzheimer’s disease that are recognized world-
wide are the formation of senile plaques via extracellular deposition of β-amyloid (Aβ) and
neuronal fibrillary tangles (NFTs) via intracellular hyperphosphorylation and the aggrega-
tion of Tau protein [11]. In response to these identified pathological features, researchers
have been investigating the pathogenesis of AD and have proposed various hypotheses,
including the cholinergic hypothesis, the β-amyloid cascade hypothesis, the Tau protein
phosphorylation hypothesis, and the neuroinflammatory hypothesis [12,13].

2.1. Cholinergic Injury Hypothesis

The cholinergic damage hypothesis was the first hypothesis proposed for the patho-
genesis of AD, which suggests that memory and cognitive dysfunction in AD patients is
mainly related to cholinergic neuronal damage and reduced acetylcholine (Ach) levels [12].
Cholinergic neurons in the normal basal forebrain synthesize large amounts of Ach and
deliver it to the cerebral cortex and hippocampus via projection fibers. The hippocampus
is the central region of the human brain associated with learning, memory and cognition,
and is also the first area to be damaged in AD [14]. Ach is the main neurotransmitter con-
trolling learning and memory functions in the hippocampus and has a role in facilitating
neurotransmission and long-term potentiation (LTP) [15]. However, in AD patients with a
significant decrease in cholinergic neurons in the basal forebrain, the synthesis and release
of Ach and the number of nicotinic Ach receptors (nAChRs) are also reduced, ultimately
leading to impaired learning and cognitive function [16].

2.2. The β-Amyloid Cascade Hypothesis

The β-amyloid (Aβ) cascade hypothesis originated in the 1980s and is one of the
most widely known mechanisms for the pathogenesis of Alzheimer’s disease [17]. The Aβ

cascade hypothesis proposes that the neurodegeneration of AD is caused by an abnormal
deposition of β-amyloid plaques in various regions of the brain due to an overproduction
of Aβ or failure of its clearance mechanisms [18–22]. Generally, in a young brain, Aβ

production and elimination are kept in balance [23], and the Aβ produced is soluble.
However, this equilibrium is disrupted by aging and neurodegeneration, resulting in Aβ

forming insoluble proteins and depositing them in the brain [24–28], affecting neuronal
transmission and impairing memory [29,30].

The amyloid precursor protein (APP) produces Aβ [31,32]. APP is a single channel
receptor-like type I transmembrane glycoprotein that plays an important role in neural
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growth, migration, and maturation during different stages of brain development [33–35].
APP is located on human chromosome 21 and contains 18 exons, which are selectively
spliced to produce three major isoforms: APP695, APP751, and APP770. APP695 is mainly
expressed in the brain [36,37]. APP undergoes sequential protein hydrolytic cleavage during
intracellular transport and is cleaved in both amyloid and non-amyloid pathways [38,39].

The non-amyloid pathway is the process by which APP is cleaved by α-secretase.
When APP is catabolized by α-secretase at the cell surface, a soluble APP-α (sAPPα)
fragment and a C-terminal fragment 83 (αCTF83) are produced. Then, αCTF83 is cleaved by
γ-secretase to produce an extracellular P3 fragment and amino-terminal APP intracellular
domain (AICD50) [37,40,41]. About 90% of APPs are cleaved by α-secretase [42].

The amyloid pathway refers to the cleavage of APP by two transmembrane enzymes,
namely β-secretase and γ-secretase (a multimeric protein complex) [43]. γ-secretase consists
of four subunits: Presenilin (PS), Presenilin enhancer 2 (PEN-2), APH-1, and Nicastrin
(NCT) [44]. APP is cleaved by β-secretase within the lipid bilayer to produce a soluble
APP-β (sAPPβ) and β C-terminal fragment 99 (βCTF99). Subsequently, βCTF99 is cleaved
by γ-secretase to produce the Aβ and AICD50 (Figure 1). Since this process is not precise,
the resulting Aβ varies in size [37,40,45]. Aβ polypeptides of 40 and 42 amino acids in
length are the predominant forms [46], with Aβ40 accounting for 90% of the total, but
Aβ42 is more aggregated and more neurotoxic than Aβ40 [47,48]. The generated Aβ forms
neuroinflammatory plaques in the vasculature and parenchyma by self-aggregating to
form oligomers of different sizes [49]. These oligomers and plaques are neurotoxic and can
trigger various immune inflammatory responses and neurotoxic cascades, causing neuronal
degeneration and even death. For example, they interfere with synaptic function and
thus promote neuroinflammatory processes; or they increase Ca2+ levels in mitochondria,
leading to abnormal mitochondrial function [30,50].
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Figure 1. The formation of Aβ: APP cleavage by β-secretase produces soluble fragments sAPPβ
and βCTF99, and βCTF99 cleavage by γ-secretase produces Aβ40/Aβ42 and amino-terminal APP
intracellular domain (AICD50) [32].
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2.3. Mechanism of Tau Protein Hyperphosphorylation

The Tau protein is an important axonal microtubule-associated protein (MAP) that
is widely distributed throughout the central nervous system (CNS) and accounts for
approximately 80% of MAP [51–53]. In humans, the Tau protein is located on chromosome
17q21 and has six isoforms [54]. Tau proteins are highly soluble [55] and are essential
for regulating and promoting proper microtubule assembly, nutrient transport, protein
synthesis, neuroprotection, and apoptosis, and they play a key role in maintaining the
stability of neuronal microtubules and regulating axonal growth and transport [56–58].
Tau proteins in the normal mature brain contain only two to three phosphate groups,
but an abnormal phosphorylation process leads to the conversion of Tau proteins into
hyperphosphorylated Tau proteins (P-Tau) (five to nine phosphate groups per molecule of
P-Tau protein) and the loss of their normal biological functions. The P-Tau is misfolded and
aggregated to form neuronal fiber tangles (NFT), which are one of the typical pathological
features of AD [3,59].

There is a close link between Tau protein hyperphosphorylation and Aβ.
David E.H. et al. [60] found that Aβ aggregation accelerated Tau protein hyperphosphory-
lation and NFT formation. In a study by Götz.J et al. [61], that Aβ was also clearly shown to
be able to lead to the phosphorylation of Tau protein and promote the formation of NFT. All
these studies demonstrate that Tau protein hyperphosphorylation is a downstream event
of Aβ deposition [60–62]. In the normal brain, kinases that phosphorylate Tau proteins
and dephosphorylated phosphatases together regulate the phosphorylation process of
Tau proteins, and the activities of the two enzymes are in relative balance. However, in
the brains of AD patients, the increased concentration of Aβ activates two major Tau ki-
nases: glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5), which
promote the process of Tau protein phosphorylation. The imbalance of Tau kinase and
phosphatase activities induces and accelerates the production of the P-Tau protein, which
self-aggregates into many paired helical filaments (PHF) and further competes for binding
to form NFTs, ultimately leading to microtubule destabilization and impaired neuronal
transport (Figure 2). Moreover, the low affinity of the P-Tau protein for microtubules leads
to both malfunctioning communication among neurons and apoptosis [6,63].
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Figure 2. The formation of NFT: In the presence of GSK3β and CDK5, the Tau protein is hyperphos-
phorylated into P-Tau. After microtubule disassembly, the P-Tau loses its binding to microtubules
and self-aggregates into multiple pairs of helical filaments (PHF), further forming neurofibrillary
tangles (NFT).
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Researchers use age spots formed by Aβ deposits as a sign of early disease and NFT
formed by P-Tau protein aggregation as a sign of late disease [64]. On the one hand, Aβ

can cause the hyperphosphorylation of Tau proteins. With the increase in P-Tau protein
content, the immune response to Aβ is also significantly higher. On the other hand, the
Tau protein is necessary for the neurotoxicity of Aβ. Aβ can only cause a degeneration of
Tau protein-containing neurons, and in the absence of the Tau protein, Aβ does not cause
neurodegenerative mechanisms that lead to memory impairment [42]. Both synergistically
advance disease progression in neurodegeneration and AD.

2.4. Neuroinflammatory Mechanisms

Neuroinflammation also plays a crucial role in the progression of neurodegeneration
in AD. In the early stages of the disease, neuroinflammation only occurs as a self-defense
response of the immune system to pathogens or stimuli. However, when this response turns
into chronic neuroinflammation, it can increase the production of neurotoxic mediators,
promote synaptic loss, result in axonal transport defects, and cause mitochondrial dysfunc-
tion, ultimately leading to neuronal death and cognitive dysfunction [65–68]. Cytokines
secreted by activated microglia and astrocytes are major players in neuroinflammatory
mechanisms [69].

Microglia are found in the CNS and account for approximately 10–15% of all glial cells,
are highly specific innate immune cells, and are resident macrophages in the brain [70–72].
Microglia exert their protective effects on brain tissue by removing cellular debris and
infection factors, and they also influence learning and memory functions by regulating
synaptic strength, which is important for regulating synaptic plasticity, maintaining normal
intracerebral environmental balance, and supporting brain development [73,74]. Under
normal physiological conditions, unactivated microglia called M0-type microglia remain in
a resting state. In an AD brain, deposited Aβ plaques can activate microglia. Activated
microglia can be divided into a pro-inflammatory phenotype, M1, and an anti-inflammatory
phenotype, M2. The M2 phenotype is dominant in the early stages of inflammation, but
as the duration of inflammation increases, the proportion of the M1 phenotype gradually
exceeds that of the M2 phenotype [75]. M1 phenotype microglia respond to damage
caused by Aβ deposition by releasing pro-inflammatory factors, such as interleukins IL-
1β, IL-6, IL-9, IL-10, tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS),
which cause peripheral neuronal damage. Microglia in pathological conditions are over-
activated, increasing the release of pro-inflammatory factors and leading to their excessive
accumulation, which eventually develops into chronic neuroinflammation, and which in
turn leads to neuronal death and drives the disease progression of AD [76–82]. Activated
microglia can drive Tau protein hyperphosphorylation and NFT formation [83,84].

Astrocytes are astral in shape and are the most numerous glial cell subtype in the cen-
tral system [85]. Astrocytes are involved in a variety of physiological processes, including
synaptogenesis and transmission, the regulation of synaptic plasticity, neurotransmitter
delivery, the regulation of metabolism, and the maintenance of ionic homeostasis, and
they are also involved in forming the blood–brain barrier (BBB) and maintaining its per-
meability [86] as well as providing nutritional support to neurons, which is essential for
the functioning of the central system [87]. By contrast, in the case of inflammatory in-
jury, astrocytes are induced by activated microglia and immediately undergo a process
of astrocyte proliferation to reactive astrocytes. Reactive astrocytes have two phenotypes:
the neurotoxic A1 phenotype and the protective A2 phenotype. Like microglia, reactive
astrocytes release pro-inflammatory factors, chemokines, complement factors, and ROS,
which exacerbate the neuroinflammatory response (Figure 3) [88–91].
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Figure 3. The role of microglia and astrocytes in neuroinflammation: in a non-inflammatory state,
microglia and astrocytes play their respective roles and work together to protect neurons. In an
inflammatory state, microglia are activated, and astrocytes are induced to become reactive astrocytes,
which together release pro-inflammatory factors that cause imbalance in the brain environment and
damage neurons, eventually forming senile plaques and neurofibrillary tangles [92].

3. Currently FDA-Approved Therapeutic Drugs

The treatment of AD has been researched and designed for a long time, but because
the cause of AD is very complex and several factors can affect the progression of the disease,
current treatment for AD is still unclear [93]. There are only eight drugs approved by the
FDA today for the treatment of AD, and these are not only scarce, but most of them only
relieve patients’ symptoms and do not provide a therapeutic effect nor do they stop the
progression of the disease. These drugs are classified into three categories according to
their mechanism of action: acetylcholinesterase inhibitors (AChEIs), N-methyl-D-aspartate
(NMDA) receptor antagonists, and β-amyloid-targeting drugs, which have emerged in
recent years [94–96]. Tables 1 and 2 summarize the basic information, target of action,
mechanism of action, and drug characteristics of each drug.

Table 1. Summary of basic information on drugs currently approved by the FDA [97].

Drug Name Band Name Category Development Company Time of FDA Approval

Tacrine Cognex Acetylcholinesterase inhibitors
(AChEIs) Warner-Lambert 1993

Donepezil Aricept Acetylcholinesterase inhibitors
(AchEIs) Eisai 1996

Rivastigmine Exelon Acetylcholinesterase inhibitors
(AchEIs) Novartis AG 2000

Galantamine Razadyne Acetylcholinesterase inhibitors
(AchEIs) Sopharma Trading 2001

Memantine Namenda N-methyl-D-aspartate (NMDA)
receptor antagonist Lundbeck 2003

Donepezil and Memantine Namzaric Co-medication Actavis 2014

Aducanumab Aduhelm Removal of Aβ protein Eisai and Biogen 2021

Lecanemab Leqembi Removal of Aβ protein Eisai and Biogen 2023
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Table 2. Summary of the targets, mechanisms, and characteristics of drugs currently approved by the FDA.

Drug Name Molecular Target Receptors/Proteins
/Enzymes

Applicable Treatment
Period Drug Effect Action Mechanism Drug Advantages and Characteristics Adverse Effects

Tacrine AChE Currently discontinued Relief of symptoms

Binds to the hydrophobic region of the
active surface of acetylcholinesterase,

thereby inhibiting its activity and
increasing the level of ACh in the

brain [98,99].

Wide range of targets and
pathways [100].

With hepatotoxicity: elevated serum
alanine aminotransferase (ALT) levels.

Cholinergic effects: gastrointestinal
reactions such as vomiting, dyspepsia,

and diarrhea [101].

Donepezil AChE Mild to
moderate AD Relief of symptoms

Inhibits acetylcholinesterase activity for
the purposes of alleviating neuronal
degeneration caused by cholinergic

impairment.
Upregulating nicotinic receptors in the

cortex to reduce glutamatergic
neurotoxicity.

Affecting APP processing to reduce Aβ
neurotoxicity [102,103].

High selectivity for targets and tissues,
low adverse effects, long half-life, safe
and effective, and well tolerated [104].

Nausea, vomiting, and diarrhea can
occur at high doses [105].

Rivastigmine AChE
BuChE

Mild to
moderate AD Relief of symptoms

Inhibits both acetylcholinesterase and
butyrylcholinesterase for up to 10 h and

increases the brain levels of ACh and
BuChE [106,107].

Has central nervous system selectivity,
with fewer peripheral side effects.

Dual inhibitors of AChE and BuChE,
and has advantages over AChE

inhibitors [106,108].

Cholinergic effects: gastrointestinal
reactions such as nausea, vomiting,

diarrhea, and anorexia [108].

Galantamine AchE
nAChRs

Mild to
moderate AD Relief of symptoms

Inhibits acetylcholinesterase and
increases acetylcholine concentration.

Stimulates nicotinic receptors to release
more acetylcholine in the brain [109].

Competitive inhibitor, variant ligand
of nicotinic receptors.

Helps protect neurons and enhance
neurotransmitter release [109].

Cholinergic effects: gastrointestinal
reactions such as nausea, vomiting,

and diarrhea.

Memantine NMDAR Moderate to
severe AD Relief of symptoms

Binds to NMDA receptors and exerts
antagonistic effects, reducing

intracellular Ca2+ levels and the
excitatory neurotoxicity of

glutamate [110,111].

Safe and effective, well tolerated, with
low affinity, avoiding negative

learning and memory-related effects
due to prolonged receptor

blockade [112].

Bradycardia, weakness,
convulsions [113].

Donepezil and
Memantine

AChE
NMDAR

Moderate to
severe AD Relief of symptoms

Increases ACh levels.
Reduces glutamate

excitatory neurotoxicity.

Combination of drugs has advantages
over single-drug therapy.

Adverse reactions associated with
donepezil and memantine [114].

Aducanumab Soluble oligomers and insoluble
proto-fibers in Aβ

Early AD Changing the course of
disease development

Penetrates the BBB, selectively binds to
and removes Aβ protein from soluble
oligomers and insoluble protofibrils in

Aβ aggregates; reduces Aβ plaque
deposition in the brain [115,116].

High affinity for Aβ protein; the first
drug to target β-amyloid in the

brain [117,118].

ARIA edema, microhemorrhage,
headache, dizziness, nausea, diarrhea,

hypersensitivity reactions,
etc. [118,119].

Lecanemab Soluble Aβ aggregates MCI, Early AD Changing the course of
disease development

Binds to soluble Aβ aggregates;
neutralizes and promotes the clearance

of Aβ aggregates [120].
Well tolerated [121]. ARIA edema, microhemorrhage [122].
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3.1. Acetylcholinesterase Inhibitors (AChEIs)

The mechanism of action of the AChEI class of drugs is based on the hypothesis of
cholinergic impairment in AD pathology. AChEIs increase acetylcholine levels and promote
cholinergic neurotransmission by inhibiting acetylcholinesterase activity, thus acting as
a therapeutic agent to improve cognitive dysfunction in AD patients. AChEIs are well
tolerated, with mild and transient adverse effects, and are mainly used in the early or
intermediate stages of AD [123–125].

The earliest FDA-approved AD treatment, tacrine (1), is also an AChEI but is now
discontinued due to its high hepatotoxicity and short half-life [126]. AChEIs currently
approved by the FDA for application include donepezil (2), rivastigmine (3), and galan-
tamine (4) (Figure 4). Donepezil, also known as donepezil hydrochloride, was approved for
marketing by the FDA in 1996. As a second-generation non-competitive reversible AChE
inhibitor, donepezil has the advantages of high target and tissue selectivity, low adverse
effects, safety and efficacy, and good tolerability, and it has been widely used in clinic
settings. Rivastigmine, approved in 2000, is an inhibitor of AChE and butyrylcholinesterase
(BuChE). AChE and BuChE are the two most important enzymes responsible for acetyl-
choline hydrolysis. In a normal brain, BuChE is primarily found in glial cells, but in an
AD brain, BuChE activity rises by 40–90%, resulting in a decrease in ACh activity [127].
Rivastigmine is CNS selective and therefore has fewer side effects on the peripheral nervous
system. Galantamine, approved in 2001, is a competitive reversible inhibitor and a variant
ligand of nicotinic acetylcholine receptors (nAChRs) that protects neurons by binding
nAChRs [104,106,109,128].

Life 2023, 13, x FOR PEER REVIEW 10 of 25 
 

 

3.1. Acetylcholinesterase Inhibitors (AChEIs) 

The mechanism of action of the AChEI class of drugs is based on the hypothesis of 

cholinergic impairment in AD pathology. AChEIs increase acetylcholine levels and pro-

mote cholinergic neurotransmission by inhibiting acetylcholinesterase activity, thus act-

ing as a therapeutic agent to improve cognitive dysfunction in AD patients. AChEIs are 

well tolerated, with mild and transient adverse effects, and are mainly used in the early 

or intermediate stages of AD [123–125]. 

The earliest FDA-approved AD treatment, tacrine (1), is also an AChEI but is now 

discontinued due to its high hepatotoxicity and short half-life [126]. AChEIs currently ap-

proved by the FDA for application include donepezil (2), rivastigmine (3), and galanta-

mine (4) (Figure 4). Donepezil, also known as donepezil hydrochloride, was approved for 

marketing by the FDA in 1996. As a second-generation non-competitive reversible AChE 

inhibitor, donepezil has the advantages of high target and tissue selectivity, low adverse 

effects, safety and efficacy, and good tolerability, and it has been widely used in clinic 

settings. Rivastigmine, approved in 2000, is an inhibitor of AChE and butyrylcholinester-

ase (BuChE). AChE and BuChE are the two most important enzymes responsible for ace-

tylcholine hydrolysis. In a normal brain, BuChE is primarily found in glial cells, but in an 

AD brain, BuChE activity rises by 40–90%, resulting in a decrease in ACh activity [127]. 

Rivastigmine is CNS selective and therefore has fewer side effects on the peripheral nerv-

ous system. Galantamine, approved in 2001, is a competitive reversible inhibitor and a 

variant ligand of nicotinic acetylcholine receptors (nAChRs) that protects neurons by 

binding nAChRs [104,106,109,128]. 

 

Figure 4. Structural formulas for five FDA-approved drugs. 

3.2. N-Methyl-D-aspartate (NMDA) Receptor Antagonist 

The only drug in the NMDA receptor antagonist class that has received FDA ap-

proval is memantine (5) (Figure 4), which was approved in 2003 and became the first drug 

to be used in the treatment of patients with moderate to severe AD [129]. 

The mechanism of action of the NMDA receptor antagonist class of drugs is based 

on the hypothesis of glutamate stimulant toxicity in AD pathology. When NMDA recep-

tors excessively bind to glutamate, Ca2+ concentrations in neurons increase and promote 

excitotoxicity, ultimately leading to neuronal death [130]. As a non-competitive NMDA 

receptor antagonist, memantine can bind NMDA receptors and produce antagonistic ef-

fects, thereby reducing intracellular Ca2+ levels and the excitatory neurotoxic effects of 

glutamate, providing neuroprotection and symptom relief. It also avoids the negative 

Figure 4. Structural formulas for five FDA-approved drugs.

3.2. N-Methyl-D-aspartate (NMDA) Receptor Antagonist

The only drug in the NMDA receptor antagonist class that has received FDA approval
is memantine (5) (Figure 4), which was approved in 2003 and became the first drug to be
used in the treatment of patients with moderate to severe AD [129].

The mechanism of action of the NMDA receptor antagonist class of drugs is based on
the hypothesis of glutamate stimulant toxicity in AD pathology. When NMDA receptors
excessively bind to glutamate, Ca2+ concentrations in neurons increase and promote excito-
toxicity, ultimately leading to neuronal death [130]. As a non-competitive NMDA receptor
antagonist, memantine can bind NMDA receptors and produce antagonistic effects, thereby
reducing intracellular Ca2+ levels and the excitatory neurotoxic effects of glutamate, pro-
viding neuroprotection and symptom relief. It also avoids the negative effects caused by
prolonged receptor blockade due to the low affinity of meperidine [112,131,132].

A combination of AChEIs and NMDA receptor antagonists can also be used to treat
AD, and this combination treatment strategy is more advantageous than monotherapy.
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Namzaric, which was approved by the FDA in 2014, is a combination of donepezil and
memantine for the treatment of patients with moderate to severe AD [114].

3.3. β-Amyloid Targeting Drugs

In 2016, Sevigny et al. [116] screened aducanumab from a pool of human memory B
cells through an Aβ plaque-triggered B cell cloning approach. Aducanumab is a human
monoclonal antibody (mAb) with a high affinity for Aβ proteins, and it can penetrate the
BBB to bind and remove Aβ proteins and reduce the deposition of Aβ plaques in the brain,
thus acting as a treatment for AD [116,118,133]. PET imaging was able to observe that
aducanumab reduced Aβ plaques in the brain in a dose- and time-dependent manner. In
October 2019, Biogen demonstrated significant cognitive decline relief in patients belonging
to a high-dose aducanumab-treated group in the EMERGE study of the Phase III trial, and
as a result, Biogen planned to submit a biologics license application in 2020 [134,135]. In
June 2021, aducanumab (Aduhelm) received accelerated approval from the FDA, making
it the first AD treatment approved for the removal of the Aβ protein as a mechanism of
action. However, clinical evidence for aducanumab has been incomplete to date, and its
efficacy has been questioned by scientists and regulatory experts, making the approval of
aducanumab controversial [136–138].

Lecanemab is the second drug to target β-amyloid for the treatment of AD. Lecanemab
is also a human monoclonal antibody with a specific affinity for β-amyloid aggregates
(called protofibrils), which positively affects AD pathology and slows disease progression
by neutralizing and removing these Aβ aggregates [120].

The results of the CLARITY AD study of lecanemab were presented at the Alzheimer’s
Disease Clinical Trials Conference in San Francisco, CA, on 29 November 2022. This is
a double-blind, placebo-controlled, parallel-group 2b clinical trial in patients with mild
cognitive impairment or early AD and confirmed amyloid pathology. The study showed a
dose-dependent decrease in beta-amyloid in the lecanemab-treated group, and lecanemab
slowed cognitive decline by 27% [122,139,140]. On 6 January 2023, lecanemab received
accelerated approval from the FDA [141], becoming the latest beta-amyloid target drug to
be approved.

4. Periodontitis and AD

Periodontitis is a chronic inflammatory disease with multi-factorial, multi-bacterial
infection. As the inflammation spreads, pockets form, and this results in the further loss of
supporting tissues around the teeth, including alveolar bone and periodontal ligaments,
eventually leading to tooth loss [142,143]. As periodontitis has been studied in depth,
there is growing evidence that periodontitis can affect systemic health status and that it is
strongly associated with AD.

4.1. Study of the Correlation between Periodontitis and AD

Several studies have now confirmed that periodontitis is associated with AD. In a
study by Giselle et al., 60 elderly subjects were divided into AD and control groups, and
the relationship between AD and oral health status was illustrated by examining the oral
health status of the subjects in both groups. Compared to the controls, AD subjects had
fewer natural teeth [144], and periodontitis was the main cause of tooth loss, suggesting an
association between AD and oral health status and periodontitis. In a retrospective study
by Chen et al., a sample of 9291 periodontitis patients and 18,672 non-periodontitis patients
were selected, and both groups of subjects returned between 1996–2013 until the subjects
were diagnosed with AD or died. The authors found that patients with periodontitis for
10 years also had an increased risk of AD, suggesting a strong association between chronic
neuroinflammation and AD [145]. By testing serum anti-periodontal bacterial antibody
levels in subjects with ultimately confirmed AD versus non-AD controls, Stein et al. found
that periodontal bacterial antibody levels were already elevated in AD subjects in the years
before the onset of cognitive impairment, suggesting that periodontitis may increase the
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risk of developing AD [146]. Ide et al. recruited 60 subjects with mild to moderate AD to
test their cognitive abilities, dental health, and circulating levels of inflammatory markers.
Forty-three of these subjects were followed up after 6 months and retested for inflammatory
marker levels, and the authors found that periodontitis in the participants was associated
with increased rates of cognitive decline and inflammatory marker levels, suggesting that
periodontitis advances the disease process in AD [147]. Batty et al. recruited 11,140 patients
with type II diabetes aged 55–88 years and followed them regularly over the following
5 years to determine their status of cognitive decline. They found that the greater the
number of missing teeth, the greater the risk of dementia and cognitive decline. This
suggests that tooth loss is associated with an increased risk of cognitive decline [148,149].
Kaye et al. selected 597 male subjects between the ages of 28–70 years for a 32-year period
with return visits every three years. The results showed that the risk of cognitive decline
was higher for subjects aged over 45.5 years and in those with a greater number of tooth loss.
This suggests that cognitive decline is associated with periodontal and oral health [150,151].

Sufficient evidence for an association between Porphyromonas gingivalis and AD has
been provided in a study by Dominy et al. Porphyromonas gingivalis, the main causative
agent of periodontitis, produces a virulence factor, gingipains, a cysteine protease con-
sisting of lysine-gingipain (Kgp), arginine-gingipain A (RgpA) and arginine-gingipain B
(RgpB), which can hydrolyze the Tau protein and exacerbate the hyperphosphorylation of
the Tau protein. The levels of Kgp and Rgp in the brains of AD patients were significantly
higher than those of non-AD patients, and the specific gene hmuY of Porphyromonas gin-
givalis was detected in the brains and cerebrospinal fluid of AD patients, confirming the
presence of Porphyromonas gingivalis infection in the brains of AD patients and revealing
that Porphyromonas gingivalis is a potential pathogenic factor for the inducing of AD [152].

Díaz-Zúñiga et al. orally injected rats with Porphyromonas gingivalis; assessed hippocampus-
dependent spatial memory by means of the Oasis maze; and collected maxilla, cerebrospinal
fluid, and hippocampus samples for evaluation from the rats that completed the maze. They
found that rats with an oral infection of Porphyromonas gingivalis had worse spatial memory;
significantly more alveolar bone loss; significantly higher levels of proinflammatory factors in
cerebrospinal fluid, serum, and hippocampus; and more P-Tau staining of the CA1 hippocampal
regions. Via q-PCR quantification, they identified the presence of RgpA and Kgp gingipain
genes in the rat hippocampus [127,153]. Kantarci et al. investigated the status of alveolar bone
loss and changes in neuroinflammatory responses in AD model mice and wild-type (WT) mice
by placing silk ligatures at the maxillary second molar in mice to cause oral bacterial colonization
and induce periodontitis. They found that experimental periodontitis increased alveolar bone
loss in WT and 5xFAD mice and led to significantly higher levels of insoluble Aβ42 in the brains
of 5xFAD mice. Experimental periodontitis also increased neuroinflammation in WT mice
and triggered abnormal inflammatory regulation in the brains of 5xFAD mice [154]. Ting et al.
administered Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs) via gavage to
mice and found that Pg-OMVs impaired memory and learning; decreased the expression of tight
junction-related genes and proteins in the hippocampus; and triggered pathological features
of AD such as memory dysfunction, neuroinflammation, and the phosphorylation of the Tau
protein [155]. A study by Jiang et al. found that chronic systemic exposure to Porphyromonas
gingivalis lipopolysaccharide advances AD disease progression, including deficits in learning
and memory function, microglia-mediated neuroinflammation, and hyperphosphorylation of
Tau proteins in APPNL-F/NL-F mice [156].

All of these studies indicate that periodontitis is one of the risk factors for the develop-
ment of AD, that Porphyromonas gingivalis is the main pathogen linking the two diseases,
and that neuroinflammatory mechanisms are an important linking mechanism between
the two diseases.

At the same time, the link between periodontitis and AD is bidirectional. While
periodontitis affects the progression of AD disease, it is difficult for AD patients to maintain
their own oral cleanliness and to take the initiative to receive professional dental treatment
and care due to the loss of their self-care abilities. Caregivers conducting studies in hospitals
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have observed that AD patients may refuse to brush their teeth or forget to brush their teeth.
These factors may increase the risk of periodontal bacterial infection, which can eventually
trigger periodontitis and lead to tooth loss [157,158]. In a study by Aragón et al., a sample of
70 subjects with AD and 36 control subjects were selected, and an evaluation was conducted
on their oral health indices, DMFT/DMFS, CPI, prosthetic conditions, oral hygiene, salivary
volume, and pH, as well as specific microbiological parameters controlling the risk of dental
caries. The results showed that AD subjects had poorer oral health, more mucosal lesions,
and poorer saliva volume and quality [159]. D’Alessandro et al. collected dental data on
dementia severity; medications; physical status; and decayed, filled, and remaining natural
teeth in 120 AD subjects and 103 control subjects, and they found that the oral health of AD
patients declined as the severity of the disease worsened and that gingival bleeding rates,
calculus, probing depths, and gingival indices were significantly higher in the AD patients
as compared to the control group [160,161]. Martande et al. assessed the periodontal health
status of 58 AD subjects and 60 non-AD subjects and showed that the decrease in clinical
periodontal parameters (including gingival and plaque indices, pocket depth, and bleeding
rate on probing) was significantly greater in AD subjects than in non-AD subjects [162]. All
of this suggests that AD has an impact on periodontal health status as well.

Table 3 summarizes descriptions of clinical studies on the association of AD with oral
health and periodontitis.

Table 3. Summary of clinical trials on the association of AD with periodontitis.

Clinical Trial Models Trial Methods Results Conclusions Authors Reference

60 elderly subjects,
divided into control and

AD groups.

Testing the oral health
status of subjects in

both groups.

AD subjects had fewer
natural teeth.

AD associated with oral
health status. Giselle et al. [144]

9291 patients with
periodontitis and

18,672 patients
without periodontitis.

Two groups of subjects
were returned between

1996 and 2013.

Patients who had had
periodontitis for 10 years or more

were also at increased risk
for AD.

There is a link between
chronic neuroinflammation

and AD.
Chen et al. [145]

Subjects with final
diagnosis of AD patients

and control subjects.

Testing the serum
anti-periodontal bacterial

antibody levels in both
groups of subjects.

AD subjects had elevated levels
of periodontal bacterial

antibodies several years before
the onset of

cognitive impairment.

Periodontitis increases the
risk of AD. Stein et al. [146]

60 subjects with mild and
moderate AD.

Testing subjects for
cognitive ability, dental

health, and inflammatory
marker levels.

Cognitive decline and elevated
levels of inflammatory markers

were associated with
periodontitis in the subjects.

Periodontitis advances the
disease process in AD. Ide et al. [147]

11,140 type II diabetic
patients aged 55–88 years.

Regular follow-up over
the next 5 years.

The greater the number of
missing teeth a patient had, the
greater the risk of dementia and

cognitive decline.

Tooth loss is associated with
an increased risk of
cognitive decline.

Batty et al. [148]

597 male subjects between
28 and 70 years of age.

Return visits every 3 years
for a period of 32 years.

The risk of cognitive decline was
higher for subjects aged over
45.5 years and the number of

teeth lost increased.

Cognitive decline is
associated with dental

health status.
Kaye et al. [150]

AD subjects and
non-AD subjects.

Testing the brain and
cerebrospinal fluid

in subjects.

The levels of Kgp and Rgp in the
brains of AD subjects were

significantly higher than those of
non-AD subjects, and the specific

gene hmuY of Porphyromonas
gingivalis was detected in the

brains and cerebrospinal fluid of
AD patients.

Porphyromonas gingivalis is
a potential causative factor
in the predisposition to AD.

Dominy et al. [152]

70 AD subjects and 36
control subjects.

Evaluating oral health
indices, DMFT/DMFS,

CPI, prosthetic conditions,
oral hygiene, saliva

volume and pH, and
specific microbiological
parameters for control
caries risk assessments.

AD subjects had poorer oral
health, more mucosal lesions,

and poorer saliva quantity
and quality.

AD has an impact on
periodontal and oral health. Aragón et al. [159]
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Table 3. Cont.

Clinical Trial Models Trial Methods Results Conclusions Authors Reference

120 AD subjects and 103
control subjects.

Collecting data on
subjects’ dementia

severity; medications;
physical status; and
decayed, filled, and

remaining natural teeth.

The oral health of AD patients
declined as the severity of the

disease worsened, and gingival
bleeding rates, calculus, probing

depths, and gingival indices were
significantly higher in the AD
patients as compared to the

control group.

AD has an impact on
periodontal and oral health. D’Alessandro et al. [160,161]

58 AD subjects and 60
control subjects.

Evaluating the subjects’
clinical

periodontal parameters.

The decrease in clinical
periodontal parameters was
significantly greater in AD

subjects than in non-AD subjects.

AD has an impact on
periodontal and oral health. Martande et al. [162]

4.2. Possible Mechanisms of Action between Periodontitis and AD

Although there is no definitive evidence today on the mechanisms by which periodon-
titis influences and advances the disease process of AD, the most accepted view is that
periodontitis is associated with AD through a neuroinflammatory mechanism. This effect
advances the disease progression of AD through both the direct invasion of periodontal
pathogens into the central nervous system and through the induction of neurodegeneration
by a systemic inflammatory response [163].

The first is the pathway of direct invasion of periodontal pathogens into the central
nervous system. The development and progression of periodontitis is associated with
more than a dozen pathogenic bacteria, approximately 85% of which are Gram-negative,
with Porphyromonas gingivalis considered to be the most critical pathogen. The periodontal
barrier is disrupted under the action of periodontitis, which provides favorable conditions
for the invasion of Porphyromonas gingivalis and its lipopolysaccharide (LPS) into the blood
and nervous system [164–166]. Porphyromonas gingivalis and its LPS can also invade the
bloodstream through daily actions such as brushing, chewing, flossing, or oral surgery,
causing bacteremia [167] and crossing the blood–brain barrier (BBB) to the brain (Figure 5).
Singhrao et al. also hypothesized that the BBB initially becomes weakened during aging,
which makes it easier for Porphyromonas gingivalis to enter the brain to further damage
the BBB, which in turn allows more periodontal bacteria and virulence factors to enter the
CNS through the BBB [166,168], creating a vicious cycle. LPS from Porphyromonas gingivalis
is an important factor in causing central neuroinflammation. After the invasion of the brain,
LPS acts on TLR-4 receptors and CD14 on leptomeninges (Figure 6), activating NF-κB
signaling and stimulating microglia to release the proinflammatory factor IL-1β. IL-1β
stimulates neurons and increases BACE1 activity and expression, thereby exacerbating the
deposition of Aβ. Moreover, while LPS acts on TLR-4 receptors, it also activates glycogen
synthase 3, which promotes the hyperphosphorylation of the Tau protein. This series of
events ultimately leads to synaptic damage and neuronal death, advancing the disease
process of AD [164–166,169,170].

S. Poole et al. examined brain tissue from AD patients and non-AD patients by im-
munolabeling and immunoblotting and eventually detected the presence of Porphyromonas
gingivalis LPS in brain tissue from AD patients 12 h after death [8]. Thus, the possibility of
this pathway was also confirmed.

Kitazawa M et al. and Lee JW et al. induced chronic neuroinflammation by injecting
Porphyromonas gingivalis LPS into an AD mouse model and found that it exacerbated the
production of pro-inflammatory factors and thus promoted Aβ aggregation and Tau protein
hyperphosphorylation [171,172]. In a study by Ishida et al., they induced periodontitis by
inoculating a transgenic AD mouse model with Porphyromonas gingivalis. After comparing
with control mice, they found that cognitive function was significantly impaired in mice
inoculated with the bacteria, and their Aβ levels and levels of pro-inflammatory factors
such as IL-1β and TNF-α were higher in the hippocampus and cortex than in control mice.
In addition, they found that LPS levels in the serum and brain of the bacteria-infected mice
were significantly higher than those of the control mice by measuring [10]. Ilievski et al.
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and Singhrao et al. found Porphyromonas gingivalis and gingipains in frontotemporal lobe
and hippocampal tissue sections from mice orally infected with Porphyromonas gingivalis.
In addition, Porphyromonas gingivalis and gingipains were also present in microglia,
astrocytes, and neurons, suggesting that they mediate neuroinflammatory activity through
glial cells and neuronal cells [166–168]. These studies all suggest that Porphyromonas
gingivalis and its LPS participate in and advance the pathogenesis of AD by triggering
inflammation in brain tissue.
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Figure 5. BBB damage due to bacterial infection: Porphyromonas gingivalis penetrates the blood–brain
barrier into brain tissue by triggering bacteremia. Under normal conditions, the blood–brain barrier
prevents harmful substances from entering the brain; however, in inflammatory states, the blood–
brain barrier is damaged by pro-inflammatory factors and is no longer structurally intact, providing
favorable conditions for Porphyromonas gingivalis and LPS to enter the brain.

The second is the induction of the neurodegenerative pathway through a systemic
inflammatory response. Infection by periodontal pathogenic microorganisms stimulates
the secretion of large amounts of pro-inflammatory cytokines, such as TNF-α, IL-1β, and
C-reactive protein (CRP), which dramatically increase their concentrations in the systemic
circulation and lead to a prolonged state of systemic inflammation. These peripheral pro-
inflammatory factors can cross the blood–brain barrier through the systemic circulation into
the central nervous system, where inflammatory signals are transmitted to microglia in the
brain through the leptomeninges. Activated microglia secrete IL-1β to increase the activity
of BACE1, which ultimately causes neuronal functional impairment (Figure 6). In addition,
peripheral pro-inflammatory factors can also affect the brain through neural pathways, the
main means of which occurs via further increasing the level of pro-inflammatory factors in
brain tissue by stimulating trigeminal nerve fibers, contributing to Aβ deposition and Tau
protein hyperphosphorylation, inducing neuronal degeneration, and ultimately leading to
cognitive decline [5,163,173–175].
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Figure 6. Mechanism of action of bacterial infection-induced inflammation in the central ner-
vous system: After Porphyromonas gingivalis invades brain tissue, inflammatory signals and Por-
phyromonas gingivalis LPS activate microglia through leptomeninges, and activated microglia release
pro-inflammatory factor IL-1β to increase BACE1 activity while activating glycogen synthase kinase
3, which exacerbates Aβ deposition and Tau protein hyperphosphorylation, ultimately leading to
neuronal death.

5. Conclusions and Outlook

To date, the pathogenesis of AD remains a key issue for researchers to explore. The
pathogenesis of AD is extraordinarily complex, involving not only multiple signaling
molecular pathways but also interconnections and interactions among the pathogenic
mechanisms, and the multiple hypotheses proposed so far have failed to provide a complete
and comprehensive explanation of AD pathogenesis. This complexity has also led to a lack
of therapeutic tools and drugs for AD. The only two classes of drugs approved by the FDA
are AChEIs and NMDA receptor antagonists, which can only improve the symptoms of
cognitive dysfunction but not change the disease process.

Recent years have seen significant breakthroughs in the development and research of
drugs for AD. FDA-approved aducanumab in 2021 and 2023’s newly approved lecanemab
became the first drugs to target the pathophysiology of AD, acting by directly removing
Aβ, a feature of AD pathology. These drugs not only treat disease symptoms but can
also influence and modify AD disease progression. The approval of aducanumab and
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lecanemab not only offers new hope for the treatment of AD but also provides directions
and ideas for new drug development: firstly, targeting Aβ and targeting phosphorylated
Tau protein can be an important direction for new drug development based on the two
major pathological features of AD. For example, by using GSK-3β as a drug target, the
hyperphosphorylation of the Tau protein can be inhibited via inhibiting the activity of
GSK-3β or reducing the formation of NFT by inhibiting the intracellular aggregation of
Tau to achieve treatment of AD at a pathophysiological level. Secondly, drug targets can be
identified for the currently proposed hypothesis of AD pathogenesis. Combination studies
on existing drugs can also be conducted to find more effective therapeutic strategies.

Current research on the pathological mechanism of AD infection is also very popular.
As research progresses, a growing amount of evidence indicates that AD is associated
with periodontitis and Porphyromonas gingivalis infection, and this connection is of great
importance and can provide new ideas for finding a treatment for AD. Periodontitis is
a treatable disease compared to AD. Therefore, the risk of AD can be reduced or the
progression of AD can be indirectly mitigated by raising awareness of oral protection
and keeping teeth clean and healthy. Although a large amount of evidence suggests that
periodontitis is involved in the advancement of AD disease progression, the mechanism of
interaction between the two diseases has not yet been clarified, and it is still necessary for
researchers to conduct in-depth studies and identify new and effective treatments, which
are of great importance for the early diagnosis and treatment of AD and for slowing down
disease progression.
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