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Abstract: Wild upland rice species, including Oryza granulata, possess unique characteristics that
distinguish them from other Oryza species. For instance, O. granulata characteristically has a GG
genome and is accordingly classified as a basal lineage of the genus Oryza. Here, we deployed a ver-
satile hybrid approach by integrating Illumina and PacBio sequencing data to generate a high-quality
mitochondrial genome (mitogenome) assembly for O. granulata. The mitogenome of O. granulata was
509,311 base pairs (bp) with sixty-seven genes comprising two circular chromosomes, five ribosomal
RNA (rRNA) coding genes, twenty-five transfer RNA (tRNA) coding genes, and thirty-seven genes
coding for proteins. We identified a total of 378 simple sequence repeats (SSRs). The genome also
contained 643 pairs of dispersed repeats comprising 340 palindromic and 303 forward. In the O. gran-
ulata mitogenome, the length of 57 homologous fragments in the chloroplast genome occupied 5.96%
of the mitogenome length. Collinearity analysis of three Oryza mitogenomes revealed high structural
variability and frequent rearrangements. Phylogenetic analysis showed that, compared to other
related genera, O. granulata had the closest genetic relationship with mitogenomes reported for all
members of Oryza, and occupies a position at the base of the Oryza phylogeny. Comparative analysis
of complete mitochondrial genome assemblies for Oryza species revealed high levels of mitogenomic
diversity, providing a foundation for future conservation and utilization of wild rice biodiversity.

Keywords: mitochondrial genome; Oryza granulata; repeat sequences; horizontal transfer; phylogenetic;
rearrangement

1. Introduction

Of the 27 species recognized in the genus Oryza, 25/27 are wild species, while 2/27
represent the cultivated species [1–3]. Depending on morphological, cytological, and molec-
ular features, members within the genus Oryza are sub-classified into 11 genome types.
These genotypes include six diploids (AA, BB, CC, EE, FF, and GG), and five tetraploids
(BBCC, CCDD, HHJJ, HHKK, and KKLL) [4,5]. Within the collection of wild rice species in
the genus Oryza, O. granulata belongs to the O. meyeriana complex that characteristically
possesses the GG genome and falls within the lower cladogram in the Oryza phylogeny [4,6].
The wild rice genomes serve as a valuable reservoir of genetic data, offering crucial infor-
mation for investigating the genome evolution [7]. While the occurrence of severe droughts
significantly underscored the genetic engineering of drought-tolerant rice cultivars. The
absence of adequate knowledge on drought-tolerant species within the genus Oryza to
facilitate the breeding of highland rice represents an enormous challenge because the opti-
mum growth and output of most species within the genus Oryza inherently ocurrs under
damp and even aquatic conditions. O. granulata is a resilient shade- and drought-tolerant
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upland wild rice species and poses durable resistance to economically essential pests and
pathogens compared to other cultivated and non-cultivated rice species [8]. Genomic and
bioinformatic advancements have significantly propelled rapid genomics, transcriptomics,
and metabolomic investigations on Oryza species [9–14], setting the scientific groundwork
for future improvements in Oryza characteristics and assuring global rice safety. However,
human disturbance and habitat fragmentation made many natural populations of O. gran-
ulata endangered and some even went extinct [15]. Although our previous studies have
obtained novel insights into the population genetic structure of this wild species [16,17],
efficient conservation strategies are urgently required to sustain the quality and integrity of
the gene pool.

The nuclear, mitochondrial (mitogenome), and plastid genomes are the three relatively
independent genetic components typically found in a plant cell. Mitochondria are double-
membraneous and ubiquitous cellular organelles that are the primary sites for oxidative
metabolism and energy transformation in eukaryotic cells, and are often referred to as
the “powerhouse” or “energy factory” of cells [18]. As semi-autonomous organelles, mito-
chondria have a genetic architecture independent of the nucleus [19]. Plant mitogenomes
have become crucial tools for efficient classification, determining the origin of species, and
gaining insights into the phylogeny [20–22]. Generally, prevailing variations in genome
size, the spatial distribution of genes, the proportion of non-coding DNA sequences, the
abundance of repetitive DNA sequences, the capacity to incorporate foreign DNA, the
proportion of conserved gene sequences, and the proportion of RNA-editable genes and
unique genomic features are frequently deployed to distinguish between genomes. Typ-
ically, distinguishing features of Oryza mitogenomes are common in the mitogenomes
of land plants [23–26]. Recent studies have demonstrated mitochondria’s unique and
significant roles in promoting plant growth and development [27,28]. These studies also
revealed that mitochondria are strongly associated with agronomic qualities such as cy-
toplasmic male sterility, disease resistance, and plant growth vigor [29,30]. Compared
to chloroplast genomes, there is limited research on the intricate structure dynamics of
plant mitogenomes. Besides the nuclear [31,32] and chloroplast [33] genomes, there are no
reports on O. granulata mitogenomes in public repositories, including the NCBI GenBank
database. Efforts are needed to generate the mitogenomic data of O. granulata in order to
comprehend how it evolved and how to conserve and utilize its precious genetic diversity.

In the present study, we integrated data from third-generation PacBio sequencing
and second-generation Illumina sequencing of O. granulata. We assembled and annotated
the full O. granulata mitogenome. Additionally, we examined the gene content, genome
structure, and evolutionary phylogeny of O. granulata with other species in the genus
Oryza. We performed a comparative mitogenome analysis of Oryza species to obtain vital
genome information, including variable genomic regions, conserved regions, and incidence
of mitogenome reshuffling or rearrangements. Additionally, we looked into the transfer of
genes between O. granulata’s chloroplasts and mitogenomes. Such a mitogenome contains
information that can support the development of efficient molecular markers, carry out
genetic engineering, and explain the phylogenetic and evolutionary relationships among
the Oryza species.

2. Materials and Methods
2.1. Plant Material Collection and Genome Sequencing

Genome sequence data were generated using DNA extracted from dozens of O.
granulata plants sampled from Menghai County, Yunnan Province, China. Briefly, seeds
harvested from O. granulata plant growing in Menghai County, Yunnan, were planted
in the greenhouse at Kunming Institute of Botany, Chinese Academy of Sciences. Fresh,
healthy, and intact leaves harvested from the individual seedlings were immediately frozen
in liquid nitrogen and later transferred into a −80 ◦C laboratory freezer before DNA
extraction. Total DNA was extracted using a modified CTAB method [34]. NanoDrop 2000
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and electrophoresis
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on a 0.8% agarose gel were deployed for qualitative and quantitative assessments of the
extracted DNA, respectively. PacBio SMRT and Illumina Hiseq sequencing platforms
were deployed to generate high-quality third-generation and second-generation genome
sequencing data.

2.2. Mitochondrial Genome Assembly and Annotation

Raw reads generated with PacBio SMRT technology were mapped to the complete
Oryza sativa L. spp. japonica cv. Nipponbare (Nip) mitogenome (Accession Number:
NC011033) [35] using BWA v0.7.17 [36] and SAMtools v1.12 [37]. The mitochondrial
genome was generated through a complete de novo assembly using CANU v1.8 [38] using
the automatic pipeline with default parameter settings. PacBio-associated sequencing
errors in the final assembly were resolved using Pilon v1.23 [39] (available at https://
github.com/broadinstitute/pilon, (accessed on 8 June 2023)) using Illumina data with the
default parameters. Candidate mitochondrial genome contigs were identified by a BLASTn
search [40] and further verified through Sanger sequencing.

The mitochondrial genome was manually annotated with Mitofy, an online homology-
based prediction tool [41] (http://dogma.ccbb.utexas.edu/mitofy/, (accessed on 12 June
2023)). The tRNA and rRNA were annotated using tRNAscan-SE v1.21 [42] and RNAmmer
v1.2 [43]. Genome maps were drawn with OGDRAW [44] and edited with the Adobe
Illustrator CS6.

2.3. SSRs and Repeat Sequences

The simple sequence repeats (SSRs) in the assembled mitogenome were identified
using a Perl script MISA [45]. The minimum number of mononucleotide (mono-) repeats,
dinucleotide (di-) repeats, trinucleotide (tri-) repeats, tetranucleotide (tetra-) repeats, pen-
tanucleotide (penta-) repeats, and hexanucleotide (hexa-) repeats were set as 8, 4, 4, 3, 3, and
3, respectively. Furthermore, forward, reverse, palindromic, and complementary repeat
sequences were identified using the Vmatch [46] repfind.pl program, which replaced the
online website REPuter [47] with the following settings: a hamming distance of 3 and a
minimal repeat size of 30 bp.

2.4. Prediction of RNA Editing Sites

The prediction of C to U RNA editing sites in the mitogenome PCGs was performed
using the Deepred-mt [48]. The Deepred-mt tool’s prediction module involves convolu-
tional neural network (CNN) model predictions with high accuracy compared to previous
prediction tools. Results with probability values above 0.6 were chosen.

2.5. Mitochondrial Plastid Sequences and Collinearity Analysis

O. granulata chloroplast genome sequence was retrieved from the NCBI GenBank (Ac-
cession Number: KF359920) [33], and BLAST v2.11.0+ [40] was used to identify comparable
sequences in the mitochondrial and chloroplast genomes. The circus plot was drawn using
TBtools [49] by calling the Advanced Circos program [50].

We selected two additional species, O. rufipogon (RUF) and O. sativa L. spp. japonica
cv. Nipponbare (Nip) (Table S6) to conduct a colinear analysis with O. granulata. Colinear
blocks were identified based on sequence similarity using the BLASTn v2.11.0+ [40] pro-
gram, employing the e-value parameter 1 × 10−5. The multiple synteny plot was drawn
using LINKVIEW2 v1.0.5 (https://github.com/YangJianshun/LINKVIEW2/, (accessed on
12 July 2023)).

2.6. Phylogenetic Analysis

The published mitogenomes of fourteen plant species (O. rufipogon, O. sativa L. spp.
japonica Nipponbare, O. sativa L. spp. indica 9311, O. coarctata, O. minuta, Zea luxurians,
Zea mays, Sorghum bicolor, Eleusine indica, Triticum aestivum, Phoenix dactylifera, Glycine max,
Vitis vinifera, and Arabidopsis thaliana) were downloaded from the NCBI database and used

https://github.com/broadinstitute/pilon
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for phylogenetic analysis with Ginkgo biloba selected as the outgroup (Table S6). In all,
fourteen conserved protein-coding genes, including atp9, ccmC, ccmFn, cob, cox1, cox2,
cox3, matR, nad3, nad4L, nad6, nad9, rps12, and rps4, were identified and used for subse-
quent phylogenetic analyses. The MAFFT v7.505 program [51] with default parameters
was used to protein sequences. Sequences were aligned end-to-end and trimmed using
Gblocks v0.91b [52] with the default parameters. The trimAl v1.4. rev15 [53] was used for
aligning and converting sequences from fasta to nexus format. The Markov Chain Monte
Carlo (MCMC) in version 3.2.7a of MrBayes was used in the iterative analysis method [54]
to obtain a simulation pattern for a population of 500,000 generations with samples taken
at intervals of 100 generations, and produced a high-frequency tree. The quality of the
phylogenetic tree generated was further polished with the online website ITOL v6.8 [55].

3. Results
3.1. Structural Characteristics of the O. Granulata Mitogenome

To obtain a complete mitogenome for O. granulata through the integrated assembly of
Illumina and PacBio reads. Firstly, we filtered mitochondrial sequence reads from whole
genome PacBio sequencing data of O. granulata. About 4.3 Gb of the filtered O. granulata
mitochondria sequence reads aligned to the previously reported mitogenome of Nip [35]
and covers an average-sized Oryza mitogenome (450~550 kb) [56] over 8600 times. We
obtained the two complete circular chromosomes, Chr1 and Chr2 (Figure 1), and a total
mitogenome length of 509,311 bp. The obtained O. granulata mitogenome’s features are
similar to features previously reported for Oryza mitogenome, especially for Nip [35],
RUF [57], and O. minuta [58]. The two chromosomes of the mitogenome had a length
of 329,447 bp and 179,864 bp and total GC contents of 43.70% and 43.19%, respectively
(Figure 1).
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Figure 1. Graphical maps of Chr1 and Chr2 in the O. granulata mitogenome. The inner circle in gray
denotes the GC content of the two individual chromosomes. The different color codes distinguish
genes belonging to diverse functional groups. Gene transcripts clockwise or counter-clockwise
strands are drawn on the inside and outside of the circles, respectively.
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The O. granulata mitogenome encoded thirty-seven protein genes, five rRNA genes,
and twenty-five tRNA genes (Table 1), totaling fifty-six unique genes (sixty-seven including
repeats). Nad3, rpl5, rps7, rps14, trnN-GTT, trnM-CAT, and trnP-TGG all had two duplicated
copies, rrn5 had three duplicated copies, and trnC had four duplicated copies. Intergenic
spacers constituted the largest part (468,954 bp, 92.08%) of the O. granulata mitogenome,
and protein-coding sequences comprised only 6.42% (32,679 bp) of the total length. The
non-coding sequences of the O. granulata mitogenome were almost 93.58%, which is higher
than the average of (89.46%) the coding sequences previously reported for angiosperm [59].

Table 1. Gene composition of the O. granulata mitogenome.

Group of Genes Genes
Chr1 Chr2

Complex I
NADH dehydrogenase

nad1, nad5, nad4L, Nad6, nad2, nad7,
nad9, nad3 nad4, nad3

Complex III
Cytochrome c biogenesis cob

Complex IV
Cytochrome c oxidase cox2, cox3, cox1

Complex V ATP synthase atp4, atp6, atp1, atp9, atp8
Ubiquinol cytochrome c

biogenesis ccmFn, ccmC, ccmFc, ccmB

Ribosome large subunit rpl2, rpl5 rpl5

Ribosome small subunit rps 7*2, rps1, rps19, rps2, rps4,
rps14, rps13 rps14

Ribosome RNA rrnL, rrn5 rrnS, rrn5*2

Transfer RNA

trnN-GTT*2, trnM-CAT*2, trnE-TTC,
trnI, trnD-GTC, trnP-TGG*2, trnL,
trnC*2, trnM-CAT, trnK-TTT, trnS,
trnS-GGA, trnH-GTG, trnW-CCA,
trnF-GAA, trnY-GTA, trnQ-TTG

trnC*2, trnL, trnS-GCT

Maturases matR
Transport membrane protein mttB

Note: The number following the * denotes the copy number in the genome.

3.2. Repeat Sequences

Simple sequence repeats (SSRs) are units of sequence repetition that can be one to six
base pairs long [60]. Due to their polymorphism, simplicity in PCR detection, co-dominant
inheritance, and widespread genome coverage, SSRs are helpful [61]. Simple sequence
repeats (SSRs) assessment results revealed 378 SSRs across the two chromosomes in the
O. granulata mitogenome, with dimeric repeats being the most abundant (Figure 2), while
monomeric SSRs accounted for 36%. Of these SSRs, monomeric thymine (A/T) repeats
occupied 92.03% (127/138). Dimeric SSRs occupied 47% of the total SSRs, and AG/CT
repeats accounted for 54.24% (96/177) of dimeric SSRs. Besides the major types of SSRs,
we also identified eighteen trimeric SSRs, thirty-five tetrameric SSRs, six pentameric SSRs,
and four hexametric SSRs (Table S1).

Additionally, 643 pairs of dispersed repeats with minimum lengths of 30 bp were
identified in the two chromosomes of the O. granulata mitogenome. These dispersed
repeats comprised 303 pairs of forward repeats, 340 pairs of palindromic repeats, and
340 palindromic repeats; the longest palindromic repeat of 3100 bp was recorded as the
length of the longest forward repeat (Figure 2 and Table S2).



Life 2023, 13, 2114 6 of 15

Life 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

palindromic repeats; the longest palindromic repeat of 3100 bp was recorded as the length 
of the longest forward repeat (Figure 2 and Table S2).  

 

Figure 2. The simple sequence repeats (SSRs) and dispersed repeats identified in the O. granulata 
mitogenome. (a) Type and number of SSRs. The blue and orange legends indicate Chr1 and Chr2 of 
the O. granulata mitogenome; (b) Dispersed repeats (≥30 bp, distributed within the same chromo-
some) identified on the two chromosomes. 

3.3. Prediction of RNA Editing Sites 
Except for mosses, RNA editing events, including the insertion, deletion, or substitu-

tion of nucleotides, are restricted to conserved RNA-coding regions in terrestrial plants 
[62,63]. Deepred-mt aided analysis revealed 488 potential C to U RNA-editable sites in 33 
mitochondrial protein-coding genes (Figure 3). At the same time, we predicted the RNA-
editable sites for the individual genes (Figure 3 and Table S3). Among these mitochondrial 
genes, m B genes have 42 RNA-editable sites, while 40 RNA-editable sites were identified 
in ccmFn. The m B and ccmFn gene groups contain the top protein-coding genes. Addi-
tionally, we observed that individually, ccmC, ccmB, and nad7 contain more than 30 RNA-
editable sites. Meanwhile, C to U were the only RNA-prone editing sites identified in the 
rpl5 and rps1 gene groups.  

 

Figure 3. The distribution of RNA editing sites across the protein-coding genes of the O. granulata 
mitogenome. Numbers in the upper right corner of the rectangle denote numbers of RNA editing 
sites on each protein-coding gene, and colors represent various protein-coding genes. 

Figure 2. The simple sequence repeats (SSRs) and dispersed repeats identified in the O. granulata
mitogenome. (a) Type and number of SSRs. The blue and orange legends indicate Chr1 and Chr2 of
the O. granulata mitogenome; (b) Dispersed repeats (≥30 bp, distributed within the same chromosome)
identified on the two chromosomes.

3.3. Prediction of RNA Editing Sites

Except for mosses, RNA editing events, including the insertion, deletion, or sub-
stitution of nucleotides, are restricted to conserved RNA-coding regions in terrestrial
plants [62,63]. Deepred-mt aided analysis revealed 488 potential C to U RNA-editable
sites in 33 mitochondrial protein-coding genes (Figure 3). At the same time, we predicted
the RNA-editable sites for the individual genes (Figure 3 and Table S3). Among these
mitochondrial genes, mttB genes have 42 RNA-editable sites, while 40 RNA-editable sites
were identified in ccmFn. The mttB and ccmFn gene groups contain the top protein-coding
genes. Additionally, we observed that individually, ccmC, ccmB, and nad7 contain more
than 30 RNA-editable sites. Meanwhile, C to U were the only RNA-prone editing sites
identified in the rpl5 and rps1 gene groups.
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3.4. Homologous Sequence Analysis of Mitochondrial and Plastid Genomes

Higher plants’ mitogenomes contain substantial sequences that have migrated from
their plastomes and nuclear genomes. This study identified 57 MTPTs between the O.
granulata mitogenome and chloroplast genome, with a sequence similarity greater than 80%
in each matching pair. These 57 MTPTs recorded a length of 30,349 bp, thus constituting
5.96% and 22.32% of the mitogenome and chloroplast genome, respectively. The individual
length of the MTPTs MTPT1, MTPT8, MTPT9, MTPT10, MTPT11, MTPT17, and MTPT19
exceeded 1000 bp in length with MTPT1 being the longest, spanning 6166 bp. MTPT48 and
MTPT52 had the shortest length of 30 bp (Figure 4; Table S4).
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3.5. Comparative Mitochondrial Genomic Analyses of the Oryza Species

The mitogenomes of RUF and Nip were compared with O. granulata to assess mi-
togenomic rearrangement and collinearity. Despite minimal variances in gene content,
there were significant changes in gene order among the sequenced Oryza mitogenomes
(Table 1 and Figure 5a). Similarly, minimal variation occurred at the nucleotide level
(Figure 5b). However, the high incidence of rearrangements caused low levels of collinear-
ity between mitogenomic sequences from O. granulata and the other two Oryza species,
with only a few of these rearrangements rearranging significant DNA sequences within
O. granulata. Findings from these investigations showed that while many homologous
collinear blocks were detectable in O. granulata and the other two Oryza species, the lengths
of these blocks were relatively short, indicating a high degree of non-conservation in the
mitogenome sequences (Figure 5b and Table S5). Furthermore, the arrangement trends
displayed by the collinear blocks in the Oryza mitogenomes are unstable, primarily due
to the frequent incidence of genome reorganization in O. granulata and related species.
Additionally, we found numerous regions lacking homology between these mitogenomes.
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Figure 5. Evidence for mitochondrial rearrangement and mitogenome synteny in the genus Oryza.
(O. granulata, OGR; O. rufipogon, RUF; O. sativa L. spp. japonica cv. Nipponbare, Nip) (a) The linear
order of genes (orange, rRNA; green, tRNA; yellow, protein-coding genes) in the mitochondrial O.
granulata genomes (Chr1, purple box; Chr2, blue box) and related plant species. Genes with the same
annotation are connected with lines. Boxes are not proportional to actual gene length; (b) Bars indicate
the mitogenome, and the ribbons denote the homologous sequences between the adjacent species.

3.6. Phylogenetic Analysis

Mitogenome-based evolution among the examined species in the genus Oryza was
investigated through the deployment of protein sequences of conserved protein-coding
genes from O. granulata, and fifteen plant species were deployed for phylogenetic analyses
and obtained a well-supported phylogenetic tree, with most of the nodes having Bayesian
bootstrap values > 90%, showing the reliability of the recovered phylogeny (Figure 6).
The results revealed that the investigated species formed the two major clusters, mono-
cotyledons and dicotyledons with G. biloba as an outgroup. Furthermore, we found that the
clustering matches the individual species, their corresponding families, and their genera,
confirming the reliability of mitogenome-dependent clustering. The phylogenetic tree
indicated that O. granulata, O. coarctata, O. minuta, O. sativa L. spp. indica 9311, O. sativa L.
spp. japonica Nipponbare, and O. rufipogon were grouped together, and O. granulata was
located at the base of the Oryza phylogeny.
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4. Discussion

Plants receive life-sustaining energy from mitochondria and possess larger and more
sophisticated mitogenomes than animals due to the abundance of repetitive sequences [64].
Numerous studies have established that the expansion of the angiosperm mitogenome
is due to rapid buildups in repetitive sequences and the frequent insertion of foreign
sequences in the cause of foreign sequences via horizontal transfer [65,66]. The morpho-
logical architecture of mitochondria in angiosperms assumes diverse conformations. For
instance, under different recombination events, mitochondria can be linear, circular, ex-
tremely branching, sigma-like, or networked [20]. The O. granulata mitogenome-assembled
resource generated in this study contains two circular structures that are similar to the
core structure of the mitochondrial genome of MingHui63 (Oryza sativa L. spp. indica
cv. MingHui63) [67]. The length of the O. granulata mitogenome was 509,311 bp, and
its genome size is somewhat close to other Oryza species, such as Nip (490,520 bp) [35],
Shuhui498 (527,116 bp) [68], O. coarctata (491,065 bp) [69,70], and O. minuta (515,022 bp) [58],
but differ significantly from Camellia sinensis (800~1200 kb) [71,72], Arabidopsis thaliana
(367,808 bp) [73,74], and Ginkgo biloba (346,544 bp) [75]. The GC content of the O. granulata
mitogenome was 43.52% and fell in line with the GC content reported for the above species,
indicating tight conservation in GC content during evolutionary course of angiosperms.

Generally, there is no positive correlation between gene numbers and the proportion
of protein-coding genes identified in plant mitogenome due to the high incidence of gene
loss and accumulation of multiple gene copies resulting from the rearrangements of repeat
sequences [76–78]. We annotated thirty-seven genes coding proteins, twenty-five genes
coding tRNA, and five rRNA-coding genes in the assembled mitogenome of O. granulata.
Besides these protein-coding genes, tRNA and rRNA genes identified in the O. granulata
mitogenome were also in multiple copies. In contrast, the O. granulata mitogenome has
lost rpl10, rpl16, rps3, rps10, rps11, rps12, sdh3, and sdh4 genes. Before being lost from the
mitogenome, we speculated that a significant proportion of these genes, if not all, may have
functionally moved into the nucleus [35]. These two pronounced patterns, and, thus, the
significant reductions in the proportion of lineage-specific protein-coding genes recorded
as mitochondrial, and the seemingly mitogenomic restrictive loss of all ribosomal protein
and sdh genes are in tandem with the gene loss pattern observed in other species within the
genus Oryza [75].

The plant mitogenome contains many repeat sequences which the SSRs have ex-
tensively used as bio-markers to identify and assess genetic variation in species [79].
Characteristically, all monomeric SSRs in the O. granulata mitogenome consisted of A or
T nucleotides, making mitogenomes richer in A/T content than G/C content. Multiple
research findings suggested that plant mitogenomes are rich in A/T content [80,81]. The
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significant enrichment of the O. granulata mitogenome in AT repeats likely accounted for
the high A/T content. The current investigations showed that the predominant proportion
of 515 pairs (80.09%) of the dispersed repeat sequences identified in the mitogenome of
O. granulata ranged between 30–100 bp, which is comparatively higher than the propor-
tion of 30–100 bp types of dispersed repeat sequences reported in many plants. Plant
mitogenomes are not a single circle but a complex and dynamic variety of shapes [82]. In
plant mitogenomes, repetitions frequently mediate homologous recombination locations.
Numerous large repeats may serve as intra- or intermolecular recombination, generating
various configurations or isoforms [83,84]. Additionally, recombination caused by lengthy
repeats occurs more frequently than short repetitions. It is also possible that the splitting of
more substantial circular chromosomes produced the numerous chromosomes of the O.
granulata mitogenome.

The mitogenomes of higher plants contain large amounts of RNA-editable genes and
have been shown to play core roles in the initiation of essential steps in the expression
of genes [85]. It belongs to the class of alterations made after transcription. Typically,
the progression in angiosperms proceeds through site-specific cytosine (C) conversion
to uracil (U). RNA editing events accelerate the evolution of homologous mitochondrial
proteins across species [86]. These start and stop codons typically mediate the emergence
of more conserved and homologous proteins between species, allowing for improved gene
expression in mitochondrial counterparts in other species and improving gene expression
in mitochondria [87]. RNA editing processes have been cited as a crucial regulatory
process in plant development and growth [88–90]. We discovered 488 RNA editing sites
in the O. granulata mitogenome, which is remarkably similar to those in other terrestrial
plants [25,26,91]. Meanwhile, the rpl5 and rps1 genes only have one RNA editing site,
indicating that the rpl5 and rps1 genes are conserved.

Dynamic intercellular phenomenons, including horizontal gene transfer (HGT), and
intracellular gene transfer (IGT), are vital fundamental parameters that are known to
drive the exchange and the integration of organellar and nuclear genomes and DNA
fragments into nuclear genomes to create NUMTs and NUPTs in plants [92,93]. Studies
have shown that plastome to mitogenome often undergo frequent orientation, and re-
orientation occurs between the two plant organellar genomes. We observed massive
mitochondrial plastid fragments (MTPTs) in the plant mitogenomes. Plant mitogenomes
typically contain 0.56 percent (M. polymorpha) to 10.85 percent (P. dactylifera) of sequences
originating from plastids [94]. Here, we similarly detected MTPTs in the O. granulata
organellar genomes and found that the O. granulata mitogenome integrated 57 (30,349 bp)
MTPTs. In angiosperm, tRNA-coding genes are often translocated from the chloroplast
genome to the mitochondrial genome [76].

Mitogenomic collinearity results showed that sequences of the three Oryza species
are non-conservative, indicating the likely occurrence of rapid genome recombination
throughout the lengthy evolutionary process. Contrary to the outstanding level of conser-
vation seen in animal mitogenomes [95,96], significant rearrangement has been observed
in the mitochondrial genomes of several plant families [58]. Therefore, rearrangements
at the whole-genome level are possibly a significant driving force for the evolution and
mitogenomic diversification of Oryza.

The phylogenetic tree inferred based on six Oryza species and ten other plant species’
mitochondrial genomes was consistent with the taxonomic data associated with those
species. These results demonstrate the potential for using data from organelle genomes in
plant phylogeny research [97]. The availability of the O. granulata mitogenome and com-
parative genomic analysis provides a solid foundation for future Oryza plant-relatedness
studies. Furthermore, the current study will serve as a valuable alternative methodology
for investigating plant diversity and evolution.
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