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Abstract: Bone marrow (BM) is an essential part of the hematopoietic system, which generates
all of the body’s blood cells and maintains the body’s overall health and immune system. The
classification of bone marrow cells is pivotal in both clinical and research settings because many
hematological diseases, such as leukemia, myelodysplastic syndromes, and anemias, are diagnosed
based on specific abnormalities in the number, type, or morphology of bone marrow cells. There
is a requirement for developing a robust deep-learning algorithm to diagnose bone marrow cells
to keep a close check on them. This study proposes a framework for categorizing bone marrow
cells into seven classes. In the proposed framework, five transfer learning models—DenseNet121,
EfficientNetB5, ResNet50, Xception, and MobileNetV2—are implemented into the bone marrow
dataset to classify them into seven classes. The best-performing DenseNet121 model was fine-tuned
by adding one batch-normalization layer, one dropout layer, and two dense layers. The proposed
fine-tuned DenseNet121 model was optimized using several optimizers, such as AdaGrad, AdaDelta,
Adamax, RMSprop, and SGD, along with different batch sizes of 16, 32, 64, and 128. The fine-tuned
DenseNet121 model was integrated with an attention mechanism to improve its performance by
allowing the model to focus on the most relevant features or regions of the image, which can be
particularly beneficial in medical imaging, where certain regions might have critical diagnostic
information. The proposed fine-tuned and integrated DenseNet121 achieved the highest accuracy,
with a training success rate of 99.97% and a testing success rate of 97.01%. The key hyperparameters,
such as batch size, number of epochs, and different optimizers, were all considered for optimizing
these pre-trained models to select the best model. This study will help in medical research to
effectively classify the BM cells to prevent diseases like leukemia.

Keywords: bone marrow cell; classification; transfer learning; medical research; deep learning;
attention mechanism

1. Introduction

Around four percent of a mature human’s body weight is densely innervated, heavily
vascularized tissue known as bone marrow (BM). It is a critical part of the hematopoietic
system in the human body, producing blood cells and being essential to the immune
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system [1]. Red and yellow bone marrow are the two different varieties of bone marrow.
The red marrow predominantly synthesizes blood cells, including leukocytes, platelets, and
red blood cells (erythrocytes). The yellow marrow, seen in the interior chambers of long
bones, mainly comprises fat cells and functions as a reserve for storing energy [2]. Within
the marrow, specialized hematopoietic stem cells (HSCs) can transform into different types
of blood cells. HSCs can generate myeloid and lymphoid cells, which are crucial in immune
system functioning [3]. Without a healthy BM, the body would not be able to create these
vital blood cells, resulting in several health issues, including anemia. The generation of
blood cells takes place in the BM.

The importance of BM is seen in its crucial function in preserving an effective immune
system with a healthy blood supply. White blood cells (WBCs) aid in the fight against
infections and disorders, platelets are important in blood clotting, and red blood cells
provide oxygen to tissues and organs [2]. The red blood cells (RBCs) in a person’s body
guarantee that oxygen gets transferred throughout the body’s cells, while platelets aid
in clotting the blood in the event of an injury [4]. Numerous hematological disorders,
including anemias, myelodysplastic syndromes, and leukemia, are diagnosed on the basis
of certain anomalies in the number, kind, or appearance of bone marrow cells. Early and
accurate identification of these disorders can be facilitated by a detailed classification of
these cells. Any variation in the blood’s leukocyte (WBC) count indicates the reason for
concern. The body can suffer and develop illnesses if WBC levels are unusually high [5].
So, it is crucial to maintain a careful check on the WBC count to guard against any health
problems in the future.

It has been a standard practice for more than a century to analyze and classify bone
marrow cell specimens using optical microscopes to diagnose blood disorders. BM biopsy
is performed to keep a check on the count of cells. During a BM smear procedure, a small
sample of bone marrow is collected from the patient’s hip bone (usually the posterior iliac
crest) or sometimes from the breastbone (sternum). The procedure is typically performed
by a hematologist or an oncologist in a hospital or clinic setting [6,7]. Therefore, a quick,
reliable, and objective approach to the morphology of cell diagnosis is urgently needed.

Hematologists now frequently employ computer-aided diagnostics and testing to
support them in examining blood cell images. These instruments can employ computer-
assisted microscopy techniques to produce an analysis that appears more precise and
uniform [3]. Image processing technology improves the speed and precision of human
procedures and saves time, money, and resources. It is a cutting-edge method that combines
computer technology, artificial intelligence, digital picture processing, and blood smear-
based analysis [8].

This work utilizes a transfer learning approach to identify and count various cells in a
blood smear automatically. The suggested approach reduces inspection time, the impact of
human variables, and the possibility of an error in counting because of wariness. This study
utilizes fine-tuned pre-trained models to achieve the best accuracy model with specified
hyper-parameters. Pre-trained models, like EfficientNetB5, MobileNetV2, DenseNet121,
ResNet50, and the Xception model, were used to classify BM cells into seven categories.
For the classification, a BM cell classification dataset has been used. The best-performance
model was retrained by applying different optimizers and a modified value for the batch
size, and then further integrating it with an attention mechanism. The following points
highlight the critical contributions of the planned research.

• In this study, five TL models—EfficientNetB5, ResNet50, DenseNet121, Xception, and
MobileNetV2—are fine-tuned by adding a batch-normalization layer, a dropout layer,
and two dense layers for the BM cell classification task.

• The performance of five fine-tuned TL models was evaluated in terms of their accuracy
and loss, out of which the DenseNet121 model performed best.

• The fine-tuned DenseNet121 model was optimized using several optimizers, such as
AdaGrad, AdaDelta, Adamax, RMSprop, and SGD, along with different batch sizes of
16, 32, 64, and 128.
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• Furthermore, the fine-tuned and optimized DenseNet121 model was integrated with
an attention mechanism to improve its classification performance. By leveraging the
attention mechanism’s ability to emphasize the important features and DenseNet121’s
ability to concatenate feature maps iteratively, this fusion provides a potent combina-
tion for precise and comprehensible categorization.

2. Literature Review

Analyses of medical images have recently made substantial use of convolutional
neural networks (CNN) and deep learning (DL). Naturally, given that it offers a solution
to the requirement for big-sized training datasets, the use of transfer learning (TL) is also
encouraged in this discipline [9]. To provide the most up-to-date information on this topic,
Morid, Mohammad Amin, et al. [10] examined a few studies using various ImageNet-
trained transfer learning models to interpret clinical images. Their investigation suggests
that the employment of models relies on the kind of photos being analyzed. Faruk, Omar
et al. [11] used four distinct transfer learning models to identify tuberculosis employing
X-ray images: MobileNetV2, InceptionResNetV2, InceptionV3, and Xception. In their study,
three MaxPooling2D layers, four Conv2D layers, a flattened layer, two dense layers, and
the activation function of ReLU were all present in each model.

Regarding the accuracy (99.36%), InceptionResNetV2 performed better than the other
models. The leukocyte classification approach employing segmentation and modified
ResNet50-based categorization, as suggested in [12], offers test accuracy above 90%. For
the categorization of the blood cells, the research by [13] developed a model that merged
the deep convolutional generative adversarial network (DC-GAN) and the ResNet model
using a transfer learning strategy on the ImageNet dataset. The outcomes reveal a 1.2%
improvement in its accuracy on DC-GAN-enriched images and a 91.68% testing accuracy
overall. This study [14] used a CNN-based method that used the VGG16 and InceptionV3
algorithms to categorize blood cell types using 17,902 digital images and 8 classifications.
Although both techniques had 90% overall accuracy, there was a significant difference in
the rate of true positives for different groups. Another research effort [15] suggested using
a deep learning framework based on patches to quickly localize bone marrow and create
ROIs to categorize 16 types of cells. The suggested model has an overall validation recall
of over 90% and has been trained using 12,426 labelled cells. Test findings on a second
batch of 3000 photos, which achieved an accuracy rate of over 98%, demonstrate that the
predictive model does not overfit the training set.

In specific research, white blood cells are located on microscopic views using image-
segmentation techniques. In [16], RGB color space input photos were transformed into the
hematoxylin eosin-diaminobenzidine (DAB) format. Then, a double filter with canny edge
segmentation was applied to recover the individual lymphocytes. The seed of every part
was eventually determined using a watershed method. The accuracy of this technique was
over 90%. The research conducted by [17] employed SoftMax to categorize the acute form
of leukemia into various subtypes along with normal states and suggested the construction
of neural networks with deep layers utilizing CNN’s AlexNet model. The accuracy was
97.78% on the 330-piece test set.

Further, the authors in [18] employed ImageNet rather than AlexNet and found
33 photos from the “Acute Lymphoblastic Leukemia” database (ALL-IDB). The algorithm
accurately recognized the lymphoblasts for about 94.1%. In [19], ALL classification was
performed using a convolutional neural network ResNeXt50 with a squeeze-and-excitation
module. At first, ImageNet was employed for pre-training of the network. An overall
precision of 89.7% was attained.

The initial approach for ALL identification, which utilizes histopathological transferred
learning, was presented by Genovese et al. [20]. Before being optimized on the ALL
database, CNN underwent training on histopathology databases to identify the various
lymphoblast tissues and their types, having an accuracy rating of 88.69%. A CNN was
used by [21] for classifying different WBC types to detect ALL, and previously trained DL



Life 2023, 13, 2091 4 of 22

frameworks, like AlexNet, GoogleNet, and VGG-16, were contrasted against one another to
determine the model that could classify the most accurately, having a 96.15% accuracy rate.
A technique [22] for leukemia detection was developed utilizing the Apache Spark BigDL
package and the CNN framework for GoogleNet deep transfer learning. A 96.42% accuracy
rate was attained using microscopic images of the human corpuscle. Employing transfer
learning frameworks, Ref. [23] claimed to have 100% accuracy in leukemia detection. Two
models were used for their study. To detect automated bone marrow cytology, the You-
Only-Look-Once (YOLO) framework was put out by [24]. From a digitized full-slide
picture of bone marrow, the framework recognizes and classifies every bone marrow cell
by automatically recognizing the areas appropriate for cytology. In terms of area detection
(the ROC curves was around 0.97 and AUC was 0.99, which indicates the accuracy levels),
cell identification and classification were given by a mean average precision of 0.75 and an
average F1-score of 0.78, respectively, suggesting that the system demonstrated outstanding
accuracy. A CNN was employed by the contributors of the article [25] to categorize different
leukemia kinds. Additionally, the dataset was diversified by using data augmentation.
Consequently, 231 test samples were used to categorize all leukemia variants with a rate
of 81% accuracy. Cross-validation was further used in each trial. Researchers from [26]
suggested using the Siamese network to categorize WBC. Implementing the Siamese
network framework, basophils and eosinophil cells were classified with an estimated
accuracy of about 89.66%. The research by [27] suggested a categorization system for
identifying WBC nuclei and nucleus characteristics. They employed an amalgamated
classifier based on SVM along with a network of neural networks. They were almost
100% successful in identifying WBC types like lymphocytes and basophils where the
cytoplasm was either absent or sparsely present. To categorize BM cell structure, Ref. [28]
suggested the ResNeXt model. Using the same topological structure, ResNeXt duplicates a
structural element that integrates many transformations. A comprehensive investigation
of the various approaches and difficulties encountered in classifying WBC classes from
a microscopic view of blood smear images was published by [29]. According to authors
of [30], the main obstacle to leukocyte categorization is the precise identification of various
images. They introduced a transfer learning strategy utilizing ResNet50 and an SVM-based
classifier for WBC identification and classification, which entails data enhancement to
increase precision.

In this study, a bone marrow (BM) cell categorization technique has been proposed to
classify BW cells into seven categories using a dataset that contains images of BM biopsies
of different patients. This enabled us to apply the information achieved from one activity
to other similar ones. Any model based on deep learning may be used for an image
classification approach employing transfer-based learning as a means of feature extraction.

3. Proposed Methodology

The proposed methodology is divided into two sections, as shown in Figures 1 and 2.
Figure 1 shows the data augmentation, the fine-tuning of five TL models, and selection
of the best fine-tuned TL model. Figure 2 shows the optimization and integration of the
best-performing DenseNet121 model with an attention mechanism. This methodology aims
to develop a transfer learning classification workflow that is both precise and effective [20].
It can separate the input BM cell images into seven classes: abnormal eosinophils, faggot
cells, immature lymphocytes, hairy cells, basophils, smudge cells, and other cells [31]. As
can be seen in Figure 1, preprocessing steps are performed on the images before they are fed
to the network in order to eliminate noise and data imbalances, allowing the model to be
trained for the classification task more successfully. To balance the classes where the images
are flipped both vertically and horizontally with distinct angles, a data augmentation
technique is used. Furthermore, augmented images are fed to five TL models: Xception,
EfficientNetB5, DenseNet121, ResNet50 and MobileNetV2, which are fine-tuned by adding
a batch normalization layer, a dropout layer, and two dense layers. Subsequently, the
images are ready for feature extraction and training. The BM cell classification dataset was
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used for training and testing of all these models, and accuracy and loss were used to assess
each model’s performance individually. From the analysis of the results, it was noticed that
the DenseNet121 performance outperformed the other models’ performances. Ultimately,
DenseNet121 is the best fine-tuned TL model selection, as determined by the findings.
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Figure 1. Proposed methodology for best TL model selection.

Figure 2 shows the proposed fine-tuned DenseNet121 model with the integration of
an attention mechanism. Here, the pre-processed images are passed to the best-performing
fine-tuned DenseNet121 model.

In the next step, this model is optimized with four different optimizers. A variety of
optimizers are used in this optimization step, including AdaGrad, which modifies learning
rates based on previous gradients; SGD, which iteratively updates weights using data
subsets; RMSprop, which modifies AdagGrad for non-static objectives; and AdaDelta,
which corrects AdaGrad’s diminishing learning rate. Different batch sizes (16, 32, 64, and
128) were explored in conjunction with these optimizers. After this, the integration of
the DenseNet121 model takes place by adding an attention mechanism [32] to improve
performance by allowing the model to focus on the most relevant features or regions of the
image. The attention mechanism recapitulates the context-based data in the input sequence
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with variable length. Self-attention implements attention to a single context of data as
compared to multiple contexts, therefore allowing direct long-distance interdependency.
The proposed fine-tuned DenseNet121 model with self-attention, as illustrated in Figure 2,
divides the DenseNet121 input feature map into three parts: Query, Key, and Value of the
same shape as (Bsize × LQuery × Dmodel). These are the mean batch size, query length,
and model dimension, respectively. The attention score was obtained by first convolution of
the Query and Key, and then passing through the soft-max layer. The result of the attention
process is the attention score, which is further convoluted with the Value. The feature map
obtained through convolution process is passed to a fully connected layer. The final output
of self-attention is used for the classification of BM cells into seven classes through the fully
connected layer.
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3.1. Dataset

This work used the bone marrow cell classification dataset from Kaggle [28]. Apply-
ing May–Grunewald–Giemsa staining, about 170,000 labeled images of BM stains from
945 individuals were included in the collection. The images were captured using a light
microscope with a 40-fold magnification and oil immersion. According to each image’s
hematological condition or feature, there are 21 different categories for the BM, out of
which, 7 classes were chosen for this study. These categories, along with their abbreviations,
are listed in Table 1. Figure 3 shows sample images of these classes.

Table 1. List of hematological disease cell images included in the dataset.

Abbreviation Meaning Number of Images

ABE Abnormal eosinophil 8
BAS Basophil 441
FGC Faggot cell 47
HAC Hairy Cell 409
LYI Immature lymphocyte 65
KSC Smudge cell 42
OTH Other cells 294
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3.2. Data Augmentation for Balancing

Data balancing is necessary to solve the problem of class imbalance in datasets. Class
imbalance occurs when there is a significant skew in the distribution of classes within
a dataset, with one or more classes having disproportionately fewer samples than the
others [11]. It affects the performance of the image classification model. A class disparity
may result in biased model performance [33]. Because they are exposed to more examples
of that class during training, machine learning models often have higher accuracy in
predicting the majority class. As a result, the minority class may be neglected or incorrectly
categorized, resulting in subpar performance. Imbalanced datasets can produce decision
boundaries skewed towards the dominant class. This indicates that even if the model
achieves high accuracy, it can have trouble generalizing successfully to new data, especially
when the minority class is of major concern. The model learns more representative decision
limits and improves generalization when the dataset is balanced [28].

Various methods, such as oversampling, under-sampling, data augmentation, and
class weight adjustment, can be applied for data balancing [34]. For this study, a data
augmentation technique was used to balance the dataset. Increasing the amount of a train-
ing dataset artificially using modified versions of existing data samples is known as data
augmentation. It is a frequent approach in machine learning and deep learning [33]. The
procedure entails altering the original data in various ways while keeping the information
that makes up those data intact. Images can be randomly cropped, flipped, rotated, scaled,
sheared, and given noise or blur using data augmentation techniques. These modifications
can produce new variants of the original photos, such as various orientations, viewpoints,
or lighting conditions. Figure 4 shows the data-augmented image samples. In Table 1,
it can be seen that the classes had significantly fewer images. So with the help of data
augmentation, the number of images were increased in those classes. Table 2 describes the
numbers of increased images in the classes.

3.3. Fine-Tuned TL Models for the Detection and Classification of Bone Marrow

The need for more data is among the major issues facing the area of medical research.
However, transfer learning may be used to solve this issue. By transferring the information
from a pre-trained model to a new model, the transfer learning (TL) approach reduces
the requirement for a big dataset [35]. Here, five transfer learning models were applied
to the BM cells images to classify them into seven classes. The TL models used here were
EfficientNetB5, MobilenetV2, DenseNet121, ResNet50, and Xception.
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Table 2. Numbers of images in classes before and after data augmentation.

Class Before Augmentation After Augmentation

ABE 8 950

BAS 441 1055

FGC 47 1000

HAC 409 1030

LYI 65 990

KSC 42 995

OTH 294 1045

3.3.1. Fine-Tuned EfficientNetB5

A class of convolutional neural networks called EfficientNet was created to deliver
cutting-edge performance with effective resource management. One particular version of
the EfficientNet model is EfficientNetB5. The basic architecture’s scaling factor is denoted
by the “B5” in EfficientNetB5. The scaling factor governs the network’s depth, breadth,
and resolution. It has proven effective in utilizing EfficientNetB5 for various computer
vision applications, such as picture segmentation, object identification, and categorization
of images [36]. The EfficientNetB5 is fine-tuned by adding a batch normalization layer
with a size of 2048, one dense and dropout layer with a size of 256, and one dense output
layer for seven classes. Figure 5 represents the total parameters, including the trainable
and non-trainable parameters used here in the fine-tuned EfficientNetB5 to classify the
BM dataset.
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3.3.2. Fine-Tuned MobilenetV2

The basic concept of MobileNetV2 is to lower the computation complexity while
preserving performance by combining depth-wise separable convolutions with linear bot-
tlenecks. Convolution is divided into two independent layers by MobileNetV2. Each
channel is individually subjected to a depth-wise convolution in the first layer, known as
the depth-wise convolution [37]. The outputs of the depth-wise convolution are combined
in the second layer, referred to as the point-wise convolution, using a 1 × 1 convolution.
By factorizing the convolution procedure, this division minimizes the number of calcula-
tions. [20]. The MobileNetV2 pre-trained model is further fine-tuned by adding a batch
normalization layer, a dense layer with a size of 256, along with a dropout layer, and a last
dense layer with a size of 7. Figure 6 represents the total parameters, including the trainable
and non-trainable parameters used here in the fine-tuned MobileNetV2 for classifying the
BM dataset into seven classes.
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3.3.3. Fine-Tuned DenseNet121

DenseNet refers to a “Densely Connected Convolutional Network”, which is renowned
for its superior performance in image classification tasks. By creating dense connections be-
tween layers, DenseNet aims to solve the issue of vanishing gradients and promote feature
reuse [38]. Each layer in a DenseNet is feed-forward directly linked to every other layer,
creating dense connections (also known as skip connections) [30]. DenseNet-121 outper-
formed other well-known designs while keeping a manageably low number of parameters
in various image classification evaluations. This DenseNet121 model was fine-tuned by
adding a batch-normalization layer, a dense layer with a size of 256, a dropout layer, and
last dense layer with a size of 7. Figure 7 represents the total parameters, including the
trainable and non-trainable parameters used here in the fine-tuned DenseNet121.

3.3.4. Fine-Tuned ResNet50

The inclusion of residual connections, also known as skip connections, is the main
innovation of ResNet-50 and the ResNet family. These linkages make bypassing some
layers and immediately propagating input from one layer to a deeper layer possible. As
a result, the network is better equipped to deal with the vanishing gradient issue and
lessen the degradation problem that frequently occurs with deeper networks. The residual
block, which has two or three convolutional layers and identity shortcut connections, is
the fundamental component of ResNet-50 [39]. ResNet50 is fine-tuned by adding a batch-
normalization layer, a dense layer with a size of 256, a dropout layer, and a last dense
layer with a size of 7. Figure 8 represents the total parameters, including the trainable and
non-trainable parameters used here in the fine-tuned ResNet50 to classify the BM dataset
into seven classes.
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3.3.5. Fine-Tuned Xception

François Chollet, the Keras deep learning package developer, proposed the CNN
architecture known as Xception. To attain a high degree of performance and efficiency, the
central concept underlying Xception is to make use of depth-wise separable convolution,
which was initially presented in the MobileNet architecture [39]. The spatial and channel-
wise convolutions are separated by depth-wise separable convolutions, which reduce
computing complexity while maintaining crucial data. It provides a strong balance between
accuracy and computing efficiency, making it appropriate for deployment on devices with
limited resources or in situations where real-time processing is required. The Xception
model is fine-tuned by adding a batch-normalization layer, a dense layer with a size of
256, a dropout layer, and a last dense layer with a size of 7. Figure 9 represents the
total parameters, including the trainable and non-trainable parameters of the fine-tuned
Xception model.

3.4. Selection of Best Fine-Tuned TL Model

The performances of all five fine-tuned TL models were analyzed in terms of accuracy
and loss curves, from which it was concluded that the DenseNet121 model outperformed
the other TL models in terms of both accuracy and loss. A graphical analysis of all TL
models is given in Section 4.1.
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3.5. Different Optimizers Employed for Best Fine-Tuned TL Model

The parameters of the best DenseNet121 model are modified during the training pro-
cess using an optimization technique. By modifying the model’s parameters based on the
gradients of the loss function concerning those parameters, an optimizer seeks to minimize
a defined loss or error function [12]. Here, different optimizers were used to optimize the
performance of the best TL model. In this investigation, the five different optimizers used
were Adamax, AdaGrad, SGD, RMSprop, and AdaDelta. A comprehensive examination of
model performance with different optimizers was then achieved through comparison.

The Adamax optimizer is a variation of the Adam optimizer, which excels at solving
problems with huge parameter spaces and sparse gradients [36]. An optimization approach
called Adaptive Gradient (AdaGrad) adjusts the learning rate of each parameter based on
previous gradients [37]. The fundamental idea underlying AdaGrad is to provide each
parameter with a unique learning rate dependent on the size of its previous gradient. SGD
is a well-known optimization approach that modifies the model’s parameters in tiny incre-
ments proportionate to the loss function’s negative gradient [38]. It is a straightforward and
often employed optimizer, although it can converge slowly and is sensitive to the learning
rate. The optimization approach Root Mean Square Propagation (RMSprop) overcomes
AdaGrad’s drawbacks of aggressive and monotonically declining learning rates [37]. It
is intended to enhance optimization processes’ convergence and stability, particularly for
deep learning models. AdaDelta is a deep learning model training optimization technique.
It is an AdaGrad algorithm extension that tackles some of its shortcomings. AdaGrad
adjusts the learning rate depending on the sum of squared gradients for each parameter,
which can result in a declining learning rate and unstable convergence [39].

3.6. Integration of DenseNet121 Feature Map with Attention Mechanism

This section describes the integration of the fine-tuned DenseNet121 model with an
attention mechanism. The concept of self-attention involves the application of attention
mechanisms to a singular context, as opposed to multiple contexts [32]. This approach
facilitates the establishment of direct interdependencies over great distances. Attention
mechanisms are frequently employed in computer vision to supplement the CNN model.
The analysis centers on a certain characteristic that holds significance in the process of
classification. In the self-attention mechanism, the input feature map is divided into three
parts: Query (Q), Key (K), and Value (V), which have the same dimensions of batch size,
query length, and model dimension. Initially, the attention score is obtained by convolution
of the Query and Key. The result of the attention process is the attention score, which is
further convoluted with the Value, as shown in Equation (1).

attention(Q, K, V) = ∑i similarity(Q, Ki) ∗ V (1)
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where Ki is the key value for the ith iteration. The attention mechanism measures the
similarity between the Query Q and each Key value Ki. This similarity returns a weight for
each Key value. Finally, it produces an output that is the weighted combination of all the
values in our database. Here, the DenseNet121 feature map was divided into three parts,
Query, Key, and Value, to perform an attention mechanism to improve its performance.

4. Results and Discussion

The BM cell classification dataset was used to train and simulate five pre-trained and
fine-tuned models. These models were Xception, ResNet50, DenseNet121, MobileNetv2,
and EfficientNetB5.

4.1. Graphical Representation of Fine-Tuned Transfer Learning Models Performance

Figure 4 illustrates the graphical results of all five fine-tuned pre-trained models. At
first, by utilizing the Adamax optimizer, these TL models were trained for 25 iterations
with a Batch size of 40. Loss vs. Epoch (training and testing) and Accuracy vs. Epoch
(training and testing) graphs are shown. In the graphs, a blue dot displayed the best epoch
for which the model’s performance was optimum. Here, the green color represents the
testing values, and the red color signifies the training values.

Figure 10a,c,e,g,h displays the graphs of the training and testing loss of the fine-tuned
EfficientNetB5, MobileNetV2, DenseNet121, ResNet50, and Xception pre-trained models,
respectively. It can be seen in the graph that the training loss and testing loss consequently
decreased for all pre-trained models. At the same time, Figure 10b,d,f,h,i shows a graph of
the training and testing accuracy of the models. Figure 10b shows that the training and
testing accuracy of the EfficientNet model consistently rose. The model had its highest value
on the 23rd epoch. Figure 10d shows that the testing accuracy of the MobileNetV2 model
stayed the same at 59%. Figure 10f shows that the DenseNet121 model’s training accuracy
reached nearly 99%, and its testing accuracy reached 95.45%. The best performance epoch
was 20 for this model. ResNet50 model’s accuracy can be seen in Figure 10h, from which
it can be seen that the testing performance of this model reached a value of 90%. At
last, Figure 10j represents the Xception TL model’ accuracy, which consistently rose and
reached 93.18%.

From the graphs, it can be seen that the performance of the DenseNet121 model was
the best among the other TL models in terms of loss and accuracy.

4.2. Graphical Performance Representation of Diverse Optimizers with Best Transfer
Learning Model

Figure 11 depicts the graphical depiction of the DenseNet121 Model with five optimiz-
ers: AdaDelta, SGD, RMSprop, AdaGrad, and Adamax.

The blue dots in the graphs reflect the best epoch count for which the model’s per-
formance was optimal. The green color reflects the testing loss and accuracy, whereas the
red color indicates the training loss and accuracy. Figure 11a,b gives the loss and accuracy
performance graph with the use of an AdaDelta optimizer; from this Figure, it can be
concluded that both the training and testing losses steadily decreased, while the training
accuracy improved smoothly, and the testing accuracy increased but with tiny ups and
downs. The performance of the SGD optimizer can be seen in Figure 11c,d, where the
testing loss decreased until the ninth epoch, and then it increased. In contrast, the value of
the training loss decreased with every passing epoch. The accuracy graph may be more
satisfactory since the training and testing accuracy numbers vary significantly. Because
of this lack of development, the model training was discontinued after the 15th epoch.
Figure 11e,f clearly shows that the model performed well in categorizing the BM cells
into seven classes using the RMSprop optimizer. The losses diminished one by one, the
training accuracy grew to a final value of 99.97, and the testing accuracy results reached
93.93. The AdaGrad optimizer graph shown in Figure 11g,h indicates that the testing and
training loss values steadily reduce. However, significant variations in training and testing
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accuracy were observed. The training was terminated at the 24th epoch since there was no
improvement in the values. Figure 11i,j shows that with the implication of the Adamax
optimizer, DenseNet121 performed exceptionally well, with a testing accuracy of 95.45%
and a training accuracy of nearly 99%.
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So, from Figure 11, it is concluded that the fine-tuned DenseNet121 performed very
effectively with the Adamax optimizer.

4.3. Graphical Performance Representation of Diverse Batch Size with Best Fine-Tuned Transfer
Learning Model

It can be deduced from Figure 11 that the DenseNet121 TL model outperformed the
others when the Adamax optimizer was used. The Dense-Net121 TL model was retrained
using the Adamax optimizer and various batch sizes of 16, 32, 64, and 128 to provide
more precise results. The graphical depiction of DenseNet121’s performance is shown
in Figure 12.

The performance graph of DenseNet121 with the Adamax optimizer and a batch size
of 16 is shown in Figure 12a,b. The training and testing losses both steadily decreased, and
the training accuracy became better with each passing epoch, while the testing accuracy
value increased, with some ups and downs. The loss and accuracy graph of batch size 32 is
shown in Figure 12c,d. From this, it can be seen that both losses continuously reduced,
while the testing accuracy significantly fluctuated. The ideal epoch was 13, where the
testing accuracy was at its greatest before slightly declining in value. The loss and accuracy
graph for the 64 batch size is shown in Figure 12e,f. With little variations in the value, it
can be observed that test accuracy rose. The ideal period when the testing accuracy was
the most remarkable, was 25. The outcomes shown in Figure 12g,h are for a batch size
of 128. From this graph, it can be seen that the losses steadily declined, while the testing
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accuracy value steadily rose. Here, when the testing accuracy was at its maximum, the
optimal epoch count was 21.
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4.4. Results of DenseNet121 Model Integrated with Attention Mechanism

This section showcases the results of the fine-tuned DenseNet121 integrated with an
attention mechanism optimized with a batch size of 32, optimizer Adamax, and 25 epochs.
Figure 13a displays the loss of the training and testing, and Figure 13b displays the training
and testing accuracy. In Figure 13a, it can be noticed that the training and testing loss
value diminished. The testing loss reached a minimum value of 0.09. In Figure 13b, it
can be seen that the model performance increased to 97.01%, and the training accuracy
reached 99.80% after the implementation of the attention mechanism. From Figure 13, it
can be concluded that the optimized and fine-tuned DenseNet121 model integrated with
the attention mechanism gave a better performance than the standard DenseNet121 model.
From these new results, it can be concluded that by adding an attention mechanism to the
fine-tuned DenseNet121 model, the model’s performance increased from 95.45% to 97.01%.

4.5. Visualization of Classification and Misclassification Results

In this section, the results of the classification and misclassification of the BM cells re
shown. For the classification of BM cells, a CNN model based on the DenseNet121 transfer
learning model was proposed to categorize the BM cells into seven classes. Figure 14
displays the result of the classification and misclassification of images of multiple classes.
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4.4. Results of DenseNet121 Model Integrated with Attention Mechanism 

This section showcases the results of the fine-tuned DenseNet121 integrated with an 

attention mechanism optimized with a batch size of 32, optimizer Adamax, and 25 epochs. 

Figure 13a displays the loss of the training and testing, and Figure 13b displays the 

training and testing accuracy. In Figure 13a, it can be noticed that the training and testing 

loss value diminished. The testing loss reached a minimum value of 0.09. In Figure 13b, it 

can be seen that the model performance increased to 97.01%, and the training accuracy 

reached 99.80% after the implementation of the attention mechanism. From Figure 13, it 

can be concluded that the optimized and fine-tuned DenseNet121 model integrated with 

the attention mechanism gave a better performance than the standard DenseNet121 

model. From these new results, it can be concluded that by adding an attention 

mechanism to the fine-tuned DenseNet121 model, the model’s performance increased 

from 95.45% to 97.01%. 

Figure 12. Graphical representation of training and testing loss of DenseNet121 model with different
batch sizes: (a) batch size 16; (c) batch size 32; (e) batch size 64; (g) batch size 128. Training and
testing accuracy of different batch sizes: (b) batch size 16; (d) batch size 32; (f) batch size 64; (h) batch
size 128.
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4.6. State of Art Comparison

In this section, the performance of the proposed model is contrasted with the findings
of some other investigators in categorizing BM cells. The integrated fine-tuned DenseNet121
model achieved the highest accuracy of 97.01%, surpassing all other models, including
ResNet50, VGG16 with InceptionV2, Siamese Network for Few Shot, and ResNeXt. The
accuracy of the DenseNet121 model (97.01%) was notably higher than that of the other
techniques, showcasing its effectiveness in accurately classifying images. The closest
competitor to the DenseNet121 model’s accuracy is the DC-GAN and ResNet technique,
with an accuracy of 91.68%. However, the DenseNet121 model still outperformed it by a
significant margin.

The Siamese Network achieved an accuracy of 89.66%, which is slightly lower than
the DenseNet121 model’s accuracy. The ResNeXt model achieved an accuracy of 94.8%,
which is lower than the DenseNet121 model’s accuracy.

In summary, the proposed integrated fine-tuned DenseNet121 model demonstrated
superior performance in terms of accuracy when compared to the other techniques listed
in the table. It achieved the highest accuracy among the reported models, making it a
promising choice for image classification tasks. The Proposed DenseNet121 model achieved
an accuracy of 97.01% for the BM Dataset. These results highlight the effectiveness of the
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integrated fine-tuned DenseNet121 model in the medical industry for classifying BM into
seven classes. The accuracy achieved demonstrates the potential of this model for accurate
and reliable diagnosis based on medical images. Table 3. Represents the comparison of the
proposed study with State of Art.
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Table 3. SOTA on bone marrow cell classification.

Ref/Year Technique Dataset/Number of Images Number of Classes Accuracy

[12]/2021 ResNet50 Microscopic Lab Images/25,396 3 90%

[13]/2020 DC-GAN and ResNet BCCD/12,447 4 91.68%

[14]/2021 VGG16 with InceptionV2 Microscopic Lab Images/20,670 2 90.00%

[26]/2021 Siamese Network for Few Shot Hospital Dataset/- 2 89.66%

[28]/2021 ResNeXt BM Dataset/170,000 21 94.8%

Proposed Model
Integrated fine-tuned
DenseNet121 model

withattention mechanism
BM Dataset/7065 7 97.01%

5. Conclusions

This study presents a novel and practical framework, referred to as a classification
diagnostic strategy, for classifying BM cells. The proposed method utilizes multiple TL mod-
els to detect and classify BM cells into seven categories: abnormal eosinophils, basophils,
faggot cells, hairy cells, immature lymphocytes, smudge cells, and other cells. The primary
objective of this approach is to assist medical professionals in accurately diagnosing various
diseases associated with BM cells, such as leukemia. To complete this assignment, an analy-
sis was conducted on five pre-trained models: EfficientNetB5, MobileNetV2, DenseNet121,
ResNet50, and Xception. For this, all five pre-trained models were fine-tuned by adding
a batch-normalization layer, a dropout layer and two dense layers. Among the five fine-
tuned models, DenseNet121 demonstrated superior performance in terms of accuracy and
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loss. Then, this high-performance fine-tuned DenseNet121 model was optimized with
four distinct optimizers and four different batch sizes for 25 epochs, with a learning rate
of 0.0001. Further, the fine-tuned and optimized DenseNet121 model was integrated with
an attention mechanism to improve its performance by allowing the model to focus on
the most relevant features or regions of the image, which can be particularly beneficial in
medical imaging where certain regions might have critical diagnostic information. The
integrated DenseNet121 model with an attention mechanism demonstrated an accuracy
rate of 97.01%. The acquisition of these measurements will allow analysts to create insights
for advancing more effective models utilizing transfer learning models for categorizing BM.
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