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Abstract: The white shark, Carcharodon carcharias, is the main top predator of the present-day Mediter-
ranean Sea. The deep past of C. carcharias in the Mediterranean is witnessed by a rather conspicuous,
mostly Pliocene fossil record. Here, we provide a synthesis of the palaeobiology and palaeoecology
of the Mediterranean white sharks. Phenetically modern white shark teeth first appeared around the
Miocene–Pliocene transition in the Pacific, and soon after in the Mediterranean. Molecular phyloge-
netic analyses support an origin of the Mediterranean white shark population from the dispersal of
Australian/Pacific palaeopopulations, which may have occurred through the Central American Sea-
way. Tooth dimensions suggest that the Mediterranean white sharks could have grown up to about
7 m total length during the Pliocene. A richer-than-today marine mammal fauna was likely pivotal in
supporting the Mediterranean white sharks through the Pliocene and most of the Quaternary. White
sharks have seemingly become more common as other macropredators declined and disappeared,
notwithstanding the concurrent demise of many potential prey items in the context of the latest
Pliocene and Quaternary climatic and environmental perturbations of the Mediterranean region. The
overall generalist trophic habits of C. carcharias were likely crucial for securing ecological success in
the highly variable Mediterranean scenario by allowing the transition to a mostly piscivorous diet as
the regional marine mammal fauna shrank.

Keywords: conservation palaeobiology; Elasmobranchii; fossil record; Lamnidae; palaeoichthyology;
Pleistocene; Pliocene; Quaternary; vertebrate palaeontology; white pointer

1. Introduction and Rationale

The white shark, Carcharodon carcharias (Elasmobranchii: Lamnidae), is widespread
in the warm to cool temperate quarters of the global ocean, including the Mediterranean
Sea [1–5]. In spite of a long history of sightings, however, the Mediterranean white shark
population is still rather poorly known in terms of provenance [6] and ecology [7]. That said,
C. carcharias is generally considered to be the unrivalled elasmobranch apex predator of the
Mediterranean Sea [8], as it is worldwide [9]. More specifically, recent research suggests
that the Mediterranean white sharks are tertiary piscivores that feed at a significantly higher
trophic level than other co-occurring macropredatory elasmobranchs such as Hexanchus
griseus and Isurus oxyrinchus [10], but episodes of predation and scavenging on marine
mammals have also been observed and/or inferred from stomach content analyses [11–13].
Carcharodon carcharias is rare in the present-day Mediterranean Basin [14], being relatively
more common in the Adriatic Sea, Sicilian Channel and Tyrrhenian Sea [7,15]. Some marine
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areas along the Tunisian and Sicilian coasts [16–18], as well as in the Aegean Sea [19,20],
have been proposed to serve as nursery grounds for the Mediterranean white sharks.

Nowadays, the Mediterranean white sharks—which the IUCN Red List classifies as
critically endangered [21]—appear to be declining regionally as a possible consequence
of the progressive anthropization of the Mediterranean ecosystems [5,7]. In this context,
understanding how the Mediterranean population of C. carcharias looked like well before
any human impact may prove important [22]. Luckily, the deep past of C. carcharias in
the Mediterranean Basin is witnessed by a rather abundant record of fossil teeth, with
many finds being Pliocene (ca. 5.3–2.6 Ma) in age (Figure 1), though a growing number
of geologically younger finds also exist (Figure 2). Most of these finds come from several
localities of Italy, where abundant coastal and shelfal sediments were deposited at the foot
of the Apennines and subsequently uplifted to outcrop (Figure 3).
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cenza (Emilia-Romagna, northern Italy), stored in the MSNUP. Specimen codes are as follows: 
“Tavoletta n. 18 quarto” (A); MSNUP I12972 (B); GAMPS-00875 (C); MSNUP I12979 (D); MSNUP 
I12735 (panel E). All specimens are depicted in lingual view. 

Figure 1. Pliocene fossils of Carcharodon carcharias from the Mediterranean Basin. (A) Two teeth from
the “Tuscan hills” (Tuscany, central Italy), stored in the Collezione di Geologia “Museo Giovanni
Capellini” (=MGGC, Bologna), with their original supporting tablet and historical label. (B) Tooth
from Peccioli (Tuscany), stored in the Museo di Storia Naturale dell’Università di Pisa (=MSNUP,
Calci). (C) Tooth from Orciano Pisano (Tuscany), stored in the Museo Geopaleontologico Scienze
della Terra del “Gruppo AVIS Mineralogia e Paleontologia Scandicci” (=GAMPS, Badia a Settimo,
Scandicci). (D) Tooth from Peccioli, stored in the MSNUP. (E) Tooth from the surroundings of Piacenza
(Emilia-Romagna, northern Italy), stored in the MSNUP. Specimen codes are as follows: “Tavoletta n.
18 quarto” (A); MSNUP I12972 (B); GAMPS-00875 (C); MSNUP I12979 (D); MSNUP I12735 (panel E).
All specimens are depicted in lingual view.
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Figure 2. Quaternary fossils of Carcharodon carcharias from the Mediterranean Basin. (A) Excerpt of
Armstrong’s [23] plate IV, depicting a white shark tooth from Menorca (Balearic Islands, Mediter-
ranean Spain). (B) Tooth from Fauglia (Tuscany, central Italy), stored in the Museo Geopaleontologico
Scienze della Terra del “Gruppo AVIS Mineralogia e Paleontologia Scandicci” (=GAMPS, Badia a
Settimo-Scandicci). (C) Tooth from the Meloria shoals (Tuscany, central Italy), stored in the GAMPS.
Although some issues exist about the stratigraphic provenance of the specimens depicted in (A,C),
they are likely Pleistocene in age [22,24]. Specimen codes are as follows: GAMPS-01073 (B); GAMPS-
01072 (C). Note that the scale bar only applies to (B,C). All specimens are depicted in lingual view.
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Figure 3. Chronostratigraphic and geographic distribution of fossil records of Carcharodon carcharias
from the peri-Mediterranean area (A), with a close-up of central and northern Italy, where most finds
concentrate (B). Data after the many works by Vicens and Gracia [25], Bianucci et al. [11], Bisconti [26],
Dominici et al. [27], Adnet et al. [28], Pawellek et al. [29], Danise and Dominici [30], Freschi [31],
Bendella et al. [32], Bernárdez and Rábano [24], Zazzera et al. [33] and Collareta et al. [22]. Note
that records that originate from outside the Mediterranean (palaeo)geographic domain (e.g., from
the Guadalquivir Basin of southern Spain; [34]) are not shown in the figure. The position of the
Pliocene–Pleistocene boundary follows Gibbard et al. [35].
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Here, we provide a synthesis of the palaeobiology and palaeoecology of C. carcharias
in the Mediterranean Basin from the earliest part of the Pliocene onwards. Such an effort
builds upon an extensive review of the relevant palaeoichthyological literature, most of
which has been summarised and referenced by Marsili [36], as well as on some selected
neontological papers. Rather than pursuing a methodical approach to the topic, the present
paper is organised as a commentary around four main questions, namely, what do the
fossil record and the molecular data disclose about the origin and early history of the
Mediterranean population of white sharks? What can palaeontology reveal about the
maximum body size of C. carcharias in the Mediterranean realm? What does it tell us about
the trophic ecology of the ancient Mediterranean white sharks? How did C. carcharias
become the main Mediterranean top predator?

Each of the following paragraphs will try and provide some palaeontologically
grounded answers to the above research questions.

2. Origin of Carcharodon carcharias and Its Early History in the Mediterranean Sea

As outlined by Gubili et al. [6], the provenance of the Mediterranean population of C.
carcharias is both a scientific conundrum and a conservation issue—one that is inextricably
linked to the very origin of C. carcharias itself. Fiercely debated until the early XXI century,
the evolutionary relationships of C. carcharias appear to be sufficiently clear at present, as are
also the mode and tempo of its appearance in the fossil record. Indeed, evidence now exists
of a progressive transition between unserrated teeth belonging to the extinct Cosmopolitodus
stock of “broad-toothed makos” and typical white shark teeth through variably serrated
teeth that occur in Late Miocene deposits of the Pacific Ocean (mostly Chile, Peru, California
and Japan) [37–43]. The recent description of Carcharodon hubbelli from the Messinian of
Peru provides us with a glimpse of the early evolutionary history of Carcharodon; its type
specimen includes an articulated dentition, consisting of 222 teeth, which exhibits a mosaic
of archaic and modern traits, such as weakly serrated cutting edges and a distally inclined
third upper anterior (A3, intermediate) tooth [42,43]. Specimens from the upper portion of
the Paraná Formation of Argentina indicate that archaic representatives of Carcharodon had
reached the south-eastern Atlantic Ocean before the end of the Miocene [44]. The first teeth
that fully conform to the living species C. carcharias (e.g., by displaying fully developed
serrations) date back to about the Miocene–Pliocene boundary [41,45].

Molecular phylogenetic analyses support an origin of the Mediterranean white shark
lineage from the eastward dispersal of Australian/Pacific palaeopopulations [46]. Further-
more, Leone et al.’s [46] fossil-calibrated molecular clock suggests that the Mediterranean
white shark population separated from other ancestral populations around 3.23 Ma, during
the early Piacenzian, after the formation the Isthmus of Panama and the consequent closure
of the Central American Seaway (but, see [47] for a later dating of the Panamanian uplift).
Commenting on these figures, Leone et al. [46] hypothesised that C. carcharias colonised
the Mediterranean Sea to occupy the ecological niches left empty by the demise of other
marine apex predators, e.g., the giant megatooth shark Carcharocles megalodon (also known
as Otodus megalodon), whose chronostratigraphic range embraces most of the Miocene and
Pliocene until ca. 3.5 Ma ([45]; but see also [48] for an alternative extinction age of about
2.6 Ma).

Actually, teeth of C. carcharias and C. megalodon co-occur within a deposit that locally
marks the base of the Pliocene succession of the Sabratah Basin of northwestern Libya [29].
Furthermore, evidence for the occurrence of C. carcharias in the early Pliocene Mediterranean
Sea comes from southeastern Spain ([28]; records dated at ~5.3–4.19 Ma according to [49])
and, possibly, central Italy ([30]; record dated at 4.62–4.55 Ma according to [50]). These
data do not only indicate that C. carcharias reached the Euro-Mediterranean region soon
after its origin in the Pacific Ocean; they also suggest that white sharks may have colonised
the Mediterranean Basin before settling along the Northwestern Atlantic coast, where the
appearance of C. carcharias appears to have been somewhat delayed [45]. That said, whether
C. carcharias entered the Mediterranean Basin in occurrence of or slightly subsequent to
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the widespread restoration of fully marine conditions at the end of the “Messinian Salinity
Crisis” ([51], and the many references therein) cannot be said for certain.

3. On the Maximum Body Size of the White Shark: Hints from the
Mediterranean Fossils

The maximum body size attained by C. carcharias represents a vexata quaestio in
ichthyological research. Exaggerated claims of extant white sharks as long as 12 m or
more have long been debunked [52], and the same can be said for an allegedly 6.4-m-long
specimen of C. carcharias that was taken around 1943 in Cuba [53,54]. Thus, the largest
individuals of C. carcharias to have ever been reliably measured account for total length
values of 594 cm (a female from Ledge Point, Australia; [53]) and 589 cm (a female from the
Gulf of Lion, Mediterranean France; [55]). A reappraisal of the photographic evidence of the
largest white sharks captured in the Mediterranean Sea led De Maddalena et al. [56] to infer
that “C. carcharias can, in rare and exceptional cases, exceed 6 m in length, reaching at least
640–660 cm [. . .] and very probably even more”. Few scientists have, however, embraced
these estimates; thus, the recent review by Castro [54] concluded that “[i]f white sharks
measuring 6.1 m exist today, they must be specimens at the maximum of their allotted life
spans. The chances of such shark surviving in coastal waters or oceans for decades, without
encountering the ubiquitous gillnets or longlines, must be very low. We still await some
reliable observer who can attest that he or she measured a white shark at 6 m or larger and
provide sufficient proof of the measurement”. Similarly, Compagno et al. [2] reported the
maximum size of C. carcharias as approaching 600 cm in total length.

Various equations have been proposed in the literature which attempt to estimate the
body length of C. carcharias based on the dimensions of some selected tooth positions, and
most notably the Tooth Enameloid Height (hereinafter, TEH) of the largest teeth in the den-
tition, i.e., the first and second upper anteriors [28,57,58]. This allows for reconstructing the
body size of some conspicuous specimens of C. carcharias from the Mediterranean Pliocene.
Specifically, by applying Shimada’s [58] linear equation for the first and second upper
anteriors, a large tooth from the Lower Pliocene of southeastern Spain (TEH = 56 mm; [28]:
Figure 2.1) would correspond to a total length of 662 cm, whereas an even larger specimen
from the Italian Pliocene (TEH = 59 mm; [59]: pp. 22, 24) would indicate a white shark indi-
vidual as long as at least 693 cm. Similarly, slightly shorter teeth such as the Italian Pliocene
specimen figured by De Stefano ([60]: pl. 2, Figure 5; TEH = 52 mm) would still correspond
to a total length of at least 615 cm, that is, larger than the largest verified extant specimen of
C. carcharias worldwide. Other teeth in the same size range as the aforementioned (TEH
between 52 and 59 mm) or even larger are present in palaeontological collections that
preserve Mediterranean Pliocene fossils ([61]: Figure 48) (Figure 1D), thus evoking total
length values longer than 6 m.

It has been noted, however, that tooth morphology is fairly variable among extant
white sharks, with some individuals having long, narrow teeth, whereas others have
shorter, wider teeth, such that precise total length calculations based on tooth dimensions
have sometimes been met with scepticism [54]. That said, the maximum values of TEH
shown by extant white shark teeth seem to fall short of the largest Mediterranean Pliocene
examples, which in turn is strongly suggestive of the past occurrence of white shark
individuals of unparalleled body size. Indeed, the largest extant white shark tooth we
are aware of was reported by Cappo [62], who mentioned a maximum TEH value of
51.6 mm for a very large—but not measured—C. carcharias individual whose head had
been collected in 1987 off Kangaroo Island, Australia. As for the largest individual of C.
carcharias to have ever been reliably measured, i.e., the 594 cm long female from Ledge
Point, it displays a maximum TEH value of 51 mm [58]. Of the 132 modern white shark
specimens that comprise the database behind Adnet et al.’s ([27]: Figure 3) analysis, which
gathers measurements from several earlier works, none seem to reach TEH values greater
than De Stefano’s [60] largest fossil specimen.
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To summarise, the various Mediterranean Pliocene teeth that display TEH > 52 mm
appear to have no modern counterparts. As such, they are strongly reminiscent of the
past occurrence of white shark individuals larger than the maximum total length values
that are commonly cited in recent literature for extant C. carcharias worldwide (around
6.0 m). As already highlighted elsewhere [28], the largest among these fossils are suggestive
of outstanding body size values, about 7 m in total length. That said, such an apparent
decrease in body size since the Pliocene should be approached with caution [28]. Indeed, the
mean total length of the Mediterranean white sharks is suspected to have been decreasing
since the early XX century, possibly as a consequence of unsustainable fishing pressure [5],
such that C. carcharias may have grown larger than today before the Mediterranean Basin
became strongly anthropized.

4. Trophic Ecology of the Long-Gone Mediterranean White Sharks

Abundant taphonomic evidence exists of the trophic ecology of the Mediterranean
white sharks in Pliocene times ([11] and the many references therein; [31,63]), whereas data
about the Pleistocene are essentially limited to a single case study [33]. Consisting of marine
vertebrate skeletons with associated teeth of C. carcharias (Figures 4 and 5) as well as of
marine vertebrate bones that display characteristically serrated bite marks (Figure 5), such
evidence indicates that cetaceans used to feature prominently in the trophic spectrum of the
Pliocene Mediterranean white sharks. In particular, odontocetes such as Hemisyntrachelus
(Figure 4A) and other indeterminate delphinids, as well as mysticetes such as Balaena and
other balaenid right whales (Figure 5A,B), the eschrichtiine grey whale Eschrichtioides and
several rorqual-like balaenopteroids (Figure 4B,C) were part of the diet of C. carcharias
in the Pliocene Mediterranean Sea [11]. Evidence for active predation on the relatively
common Hemisyntrachelus is particularly compelling [59], and this delphinid genus may
have represented an important food source for the Mediterranean Pliocene representatives
of C. carcharias; in turn, size-based considerations suggest that mysticetes were generally
consumed as carcasses [11].

Several neontological studies have shown that recent white sharks start preying upon
marine mammals such as cetaceans and pinnipeds while entering adulthood, that is, when
they reach a body length of 300–400 cm [11,64,65]. That said, as already noted above,
the size of some fossil teeth suggests that white sharks about or above 7 m total length
wandered the Pliocene Mediterranean Sea. Whether this figure hints at different feeding
habits compared to those of extant white sharks is uncertain. One may be led to think that
7-m-long white sharks would have been able to predate large prey items up to about 3–4 m
total length. However, isotope investigations on recent and fossil teeth of C. carcharias from
several sites worldwide (including the aforementioned Libyan locality described by [29])
have suggested that Pliocene white sharks foraged at either the same or a slightly lower
trophic level than their extant conspecifics [66–68].

As a matter of fact, for most of the Pliocene, the marine mammal stock of the Mediter-
ranean Sea was significantly more diverse than today, including, e.g., representatives of
the currently extra Mediterranean cetacean families Balaenidae, Eschrichtiidae (which
nowadays are often regarded as a subfamily of Balaenopteridae; [69]), Kogiidae, Mon-
odontidae and Phocoenidae, as well as dugongid sirenians [70,71] (Figure 6). Some of
the above groups were represented by morphotypes that have subsequently gone extinct,
including small-sized mysticetes (i.e., baleen whales) like Balaenula [11,69]; others, such
as the sirenians and some cetacean lineages (e.g., the monodontids), have been extirpated
from the Mediterranean Sea but survive elsewhere [71,72]. In addition, large-sized billfishes
(Istiophoridae) were also part of the Pliocene Mediterranean fauna [73], and a conspicuous
fossil record suggests that soft-shelled turtles (i.e., the trionychids, which often occur in
marine waters; [74]) were also relatively common along the Mediterranean coasts [75].
Based on neontological observations [5,11–13,64,76–80], it is reasonable to hypothesise that
all these forms would have represented valuable prey/scavenging items for the Mediter-
ranean Pliocene white sharks, and the same could be said for other co-occurring marine
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macropredators, including the otodontids [81] and the largest carcharhinids [82]. Not least,
early juvenile mysticetes were likely more common than today in the Pliocene Mediter-
ranean Sea, which may have contained balaenid and balaenopterid calving grounds [83–86],
thus providing the Mediterranean white sharks with vulnerable, energetically valuable
potential prey (see e.g., Taylor et al. [87]). If, as convincingly argued by Bianucci et al. [11],
the importance of mysticetes and other low trophic-level vertebrates (e.g., sirenians) as
food items for Mediterranean white sharks was greater in Pliocene times than it is today,
that may provide some hints to explain the slight discrepancy in trophic level that has
sometimes been observed on geochemical grounds between recent and fossil specimens of
C. carcharias [68].
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dontidae and Phocoenidae, as well as dugongid sirenians [70,71] (Figure 6). Some of the 
above groups were represented by morphotypes that have subsequently gone extinct, in-
cluding small-sized mysticetes (i.e., baleen whales) like Balaenula [11,69]; others, such as 
the sirenians and some cetacean lineages (e.g., the monodontids), have been extirpated 
from the Mediterranean Sea but survive elsewhere [71,72]. In addition, large-sized bill-
fishes (Istiophoridae) were also part of the Pliocene Mediterranean fauna [73], and a con-
spicuous fossil record suggests that soft-shelled turtles (i.e., the trionychids, which often 
occur in marine waters; [74]) were also relatively common along the Mediterranean coasts 
[75]. Based on neontological observations [5,11–13,64,76–80], it is reasonable to hypothe-
sise that all these forms would have represented valuable prey/scavenging items for the 
Mediterranean Pliocene white sharks, and the same could be said for other co-occurring 
marine macropredators, including the otodontids [81] and the largest carcharhinids [82]. 

Figure 4. Taphonomic evidence for the trophic ecology of the Mediterranean white sharks in
Pliocene times, consisting of marine vertebrate skeletons with associated teeth of Carcharodon car-
charias. (A) Schematic line drawing of a skeleton of Hemisyntrachelus cortesii from the Pliocene
deposits of Salsomaggiore Terme (Emilia-Romagna, northern Italy). (B) Schematic line drawing
of a skeleton of Balaenopteridae indet. from the Pliocene deposits of Orciano Pisano (Tuscany,
central Italy). (C) Schematic line drawing of a skeleton of Balaenoptera sp. from the Pleistocene
deposits of Lama Lamasinata (Apulia, southern Italy). White shark teeth are displayed in red colour.
Anatomical abbreviations are as follows: cr, cranium; hu, humerus; md, mandible; ra, radius; sc,
scapula; ul, ulna. (A–C) redrawn and modified after Bianucci et al. [11], Dominici et al. [27] and
Zazzera et al. [33], respectively.
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Figure 5. Additional taphonomic evidence for the trophic ecology of the Mediterranean white
sharks in Pliocene times. (A,B) Skeleton of Balaena sp. from the Pliocene deposits of Poggio Tagliato
(Tuscany, central Italy); close-ups of the disarticulated right forelimb (A), and detail thereof showing
an associated white shark tooth (indicated by a white arrow) (B). (C,D) Fragmentary cetacean rib from
the Pliocene deposits of Buca della Balena (Emilia-Romagna, northern Italy) displaying bite marks
attributed to Carcharodon carcharias, including characteristically serrated grooves (C) and scrapes (D).
(C,D) modified after Freschi and Cau ([63]: Figures 5 and 6).

As a final caveat, we note that although fishes were probably also prominent in the
diet of the Pliocene Mediterranean white sharks like they are today [10], there is no way
to probe this inference through taphonomy. Indeed, few fishes possess skeletal elements
that are as large and robust to likely record recognisable tooth marks like those referred
to above. Fish bones and scales may exceptionally get preserved as stomach contents
along with shark skeletons [88–92]; however, no such cases have ever been reported for C.
carcharias—at least, relative to the knowledge of the writers.
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brates in the Pliocene (A) and present-day (B) Mediterranean Sea. Silhouette codes are as follows: a,
fishes; b, turtles; c, birds; d, seals; e, sirenians; f, delphinoids (including, in Pliocene times, phocoenids
and monodontids besides delphinids); g, kogiids; h, ziphiids; i, small-sized plicogulans (sensu [69]);
j, small-sized balaenids; k, large-sized plicogulans; l, large-sized balaenids; m, physeterids. Solid
arrows indicate trophic interactions that are supported by taphonomic evidence, stomach content
analyses and/or direct observations of feeding actions. Dashed arrows indicate hypothetical trophic
interactions for which evidence is currently wanting. See the main text for the palaeontological data
source; neontological data after Boldrocchi et al. [5]. Both panels modified after Bianucci et al. [11].

5. Tracing the Rise of White Sharks as the Main Mediterranean Top Predators

As already noted above, C. carcharias is just one of many high trophic-level predators
of the Mediterranean Pliocene, which include sharks (both Carcharhiniformes, such as
Carcharhinus leucas, Carcharhinus longimanus and Galeocerdo cuvier, and other Lamniformes,
such as C. megalodon, Cosmopolitodus plicatilis and Parotodus benedenii) and physeteroid
cetaceans (macroraptorial sperm whales) ([82,93], and the many references therein). None of
the aforementioned taxa occurs in the present-day Mediterranean Sea on a regular basis, and
some (i.e., C. megalodon, C. plicatilis, P. benedenii and the macroraptorial sperm whales) are
extinct worldwide. Abundant taphonomic evidence exists that the Mediterranean Pliocene
representatives of C. leucas, G. cuvier and C. plicatilis used to consume cetaceans both as
prey and as scavenging items [36,94–98], whereas foraging on cetacean carrion has recently
been proposed for the enigmatic, large-sized (up to more than 7 m total length; [99]) ‘false
mako’ shark, P. benedenii [81], which most authors interpret as a formidable carnivore [100].
Thus, one may be led to think that competitive exclusion resulted in C. carcharias persisting
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in the Mediterranean Sea until the present day at the expenses of a broad array of marine
macropredators. However, this is not the most parsimonious interpretation of the fossil
record, which in turn indicates that many of the above taxa co-existed in the Mediterranean
Basin for most of the Pliocene at least; exceptions are essentially limited to C. megalodon and
the macroraptorial sperm whales, which are known from a handful of Zanclean finds and
a single record of general Pliocene age, respectively [36,101,102]. Competitive exclusion
typically includes coexistence for an ecologically brief time, a lengthy coexistence of two
or more species followed by the disappearance of one being in turn suggestive of causes
beyond the presence of the remaining species [103]); therefore, in the case studied here,
ecological dynamics other than competitive exclusion are likely to have been at play.

In our opinion, the conspicuous climatic and environmental perturbations that affected
the Mediterranean region during the last three million years or so likely played a crucial role
in leading C. carcharias to become the main apex predator of the present-day Mediterranean
waters. In particular, subsequent pulses of climate cooling that occurred from the late
Piacenzian throughout the Quaternary likely led to the basin-wide extirpation of strongly
thermophilic forms, both between the elasmobranch high trophic-level predators (e.g.,
C. leucas) and their potential prey (e.g., the dugongid sirenians; [72]). Variations in the
productivity and temporal/spatial distribution of nutrients within the basin [82,96], as well
as in the availability of shelfal environments [104], may also have resulted in periods of
low prey availability and heightened extirpation risk among the marine apex predators of
the Mediterranean Sea. Other disappearance events (e.g., those involving C. hastalis and
P. benedenii) had a worldwide dimension, and as such, they may be better understood in
a global rather than regional framework [105]. Although these extinctions/extirpations
started in Pliocene times [106], they continued well into the Quaternary, with potential
shark prey and scavenging items such as the right and grey whales persisting in the
Mediterranean Sea until antiquity [107], and monk seal populations being brought to the
brink of extinction not earlier than the last few centuries [108]. Eventually, this sequence
of regional as well as global disappearances led C. carcharias to become the unrivalled
elasmobranch apex predator of the present-day Mediterranean Sea. At the same time, it
possibly favoured the radiation of another temperate, mammalophagous though essentially
generalist marine predator: the killer whale, Orcinus orca. Indeed, the latter emerged as a
macroraptorial feeder from mainly piscivorous ancestors in the subfamily Orcininae, all of
which are known from the Mediterranean Pliocene [93].

All things considered, the fossil record highlights the ecological plasticity of the
Mediterranean white sharks, which persisted through the fairly massive climatic and
environmental perturbations that characterised the latter part of the Pliocene and the
Quaternary without enjoying immigration by their North Atlantic conspecifics [22]. While
the overall generalist trophic habits of white sharks [109] were likely crucial for securing
ecological success in the highly variable Mediterranean scenario by allowing the transition
to a more strongly piscivorous diet as the regional marine mammal fauna shrank, the
role of C. carcharias’ endothermy [110–112] is unclear, as endothermic traits appear to
be widespread in Lamniformes, including the extinct megatooth sharks in the family
Otodontidae [113] as well as the sluggish, microphagous basking sharks in the family
Cetorhinidae [114].

6. Concluding Remarks
6.1. Conclusions

We provided an updated synthesis of the palaeobiology and palaeoecology of the
white shark, C. carcharias, in the Mediterranean Sea. The deep past of the Mediterranean
population of this iconic elasmobranch species is witnessed by a rather conspicuous,
mostly Pliocene fossil record. Phenetically modern white shark teeth first appeared in
the Mediterranean Basin soon after the very origin of C. carcharias, which appears to have
emerged in the Pacific Ocean around the Miocene–Pliocene transition. Colonization of the
Mediterranean Sea was likely due to the dispersal of Australian/Pacific palaeopopulations



Life 2023, 13, 2085 11 of 16

through the Central American Seaway. Gigantic teeth assigned to C. carcharias exist in the
Mediterranean Pliocene, evoking white shark individuals as large as 7 m total length. The
diverse and abundant Pliocene marine mammal fauna of the Mediterranean Basin likely
played a major role in sustaining the co-occurring population of C. carcharias through the
Pliocene and most of the Quaternary. Notwithstanding the simultaneous disappearance
of many potential prey items in the context of the latest Pliocene and Quaternary climatic
and environmental perturbations, white sharks appear to have become increasingly more
common in the Mediterranean Sea starting from the earliest. On the other hand, other
macropredators have followed the opposite path, and most of them have disappeared since.
The generalist feeding preferences of C. carcharias were probably instrumental to ensuring
ecological success in the ever-changing Mediterranean setting, allowing for the transition
to a more strongly piscivorous diet as the co-occurring marine mammal fauna declined.

6.2. Perspectives

For at least two millennia, the Pliocene and Quaternary marine deposits of the Mediter-
ranean Basin have yielded fossil teeth of C. carcharias. That said, as the modern palaeon-
tological standards privilege the study of materials whose geographic and stratigraphic
whereabouts are ascertained, the scientific relevance of many of these and other finds has
suffered a setback over the past few decades [49,115,116]. Hopefully, the prospection of
new fossiliferous localities and the collection of white shark specimens in a stratigraphi-
cally controlled way will result in refining our understanding of the palaeobiology and
palaeoecology of the Mediterranean white sharks across the last few million years.

As already noted above, the Mediterranean fossil record of C. carcharias is mostly
Pliocene, and by and large Italian. We are not aware of any published find of C. carcharias
from the Eastern Mediterranean Basin (Figure 3), where white sharks are known to occur at
present [7]. That said, previous finds of marine vertebrates from this broad region suggest a
good palaeontological potential [117], and photographs of fossil white shark teeth that have
allegedly been found in Greece and Cyprus are present in some social media. Even if some
of such records may have been published in local magazines, white shark fossils from along
the Aegean and Levantine coasts are by and large unknown to the international scientific
community. Future research efforts may be directed to fill this gap in the geographic
distribution of the Mediterranean fossil occurrences of C. carcharias.

As the Mediterranean population of C. carcharias appears to have been essentially
isolated since its foundation [6], intra-Mediterranean nursery areas did likely play a crucial
role in recruitment from the Early Pliocene onwards. This is relevant to the present paper as,
in some cases, the fossil record has the potential to disclose ancient elasmobranch nursery
grounds. With respect to C. carcharias, a palaeo-nursery has recently been proposed to have
existed near Coquimbo (Chile), based on the local occurrence of mostly juvenile white
shark teeth of Pliocene age [118]. Similarly, the possible occurrence of a white shark nursery
ground in the Ligurian or upper Tyrrhenian seas during the Holocene Climate Optimum
was evoked by Collareta et al. [22] to explain the overall small size of C. carcharias teeth
from the Northgrippian of Torre del Lago, in Tuscany [119]. Thus, we invite our fellow
vertebrate palaeontologists to comb the Mediterranean fossil record in search of the ancient
nurseries of C. carcharias.

As already noted elsewhere [7,21,120], a combination of slow life history, genetic
isolation, negative reputation and consequent persecution, and widespread degradation of
coastal habitats implies that the future of the Mediterranean white sharks is at best uncertain.
Here, we would like to highlight that the fossil record has the potential to illustrate how
the Mediterranean white sharks managed to survive through fairly conspicuous climatic
and environmental perturbations without obvious connections with their adjacent Atlantic
conspecifics. Palaeontology matters for conservation [121], and a better knowledge of the
palaeobiology and palaeoecology of the Mediterranean population of C. carcharias may
prove relevant in the current context of widespread biodiversity loss.
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