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Abstract: We present here COOBoostR, a computational method designed for the putative predic-
tion of the tissue- or cell-of-origin of various cancer types. COOBoostR leverages regional somatic
mutation density information and chromatin mark features to be applied to an extreme gradient
boosting-based machine-learning algorithm. COOBoostR ranks chromatin marks from various tissue
and cell types, which best explain the somatic mutation density landscape of any sample of interest.
A specific tissue or cell type matching the chromatin mark feature with highest explanatory power
is designated as a potential tissue- or cell-of-origin. Through integrating either ChIP-seq based
chromatin data, along with regional somatic mutation density data derived from normal cells/tissue,
precancerous lesions, and cancer types, we show that COOBoostR outperforms existing random
forest-based methods in prediction speed, with comparable or better tissue or cell-of-origin predic-
tion performance (prediction accuracy—normal cells/tissue: 76.99%, precancerous lesions: 95.65%,
cancer cells: 89.39%). In addition, our results suggest a dynamic somatic mutation accumulation
at the normal tissue or cell stage which could be intertwined with the changes in open chromatin
marks and enhancer sites. These results further represent chromatin marks shaping the somatic
mutation landscape at the early stage of mutation accumulation, possibly even before the initiation of
precancerous lesions or neoplasia.

Keywords: biocomputational method; bioinformatics-based prediction of cell-of-origin; genomics;
epigenomics; machine learning

1. Introduction

Recent advances in DNA sequencing technologies have led to the development of reli-
able and cost-effective whole-genome sequencing methods and relevant analysis pipelines,
which have been applied to numerous cancer types [1–9], precancerous lesions [4], nor-
mal tissues, cells, and stem cells [10,11]. The somatic mutation landscape from these
data revealed various genotypic alterations, ranging from driver and passenger somatic
mutations for cancer initiation and progression [12–15], mutation signatures [16], clonal
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and subclonal evolutions [17], to the findings on novel structural variations including
kategis [18,19], chromothripsis [20], and whole-genome doubling [21,22]. Although mech-
anisms on how these aberrations arise have not been fully defined, a number of statistical
and machine-learning approaches have shown that the somatic point mutation landscapes
of multiple cancer types and precancerous lesions correlated with the chromatin mark
landscape [23,24]. Tissue-of-origin (TOO) or cell-of-origin (COO) predictions for different
cancer types are possible by leveraging such information and beyond [25–30].

To this day, tools used for these predictions mainly utilize random forest algorithm,
an ensemble learning method which uses the averaged result derived from a predefined
number of decision trees for the prediction. Random forest-based TOO/COO prediction
algorithms, however, still face limitations such as low prediction accuracy for some cancer
types; this might be due to the sparse mutation density and the requirement of a strong
server-level computing power for reasonable speed. Extreme gradient boosting (XGBoost),
on the other hand, employs gradient weighing based on the prior prediction running
and similarity score-based tree pruning, which in the end is expected to be resistant
to the unbalanced or sparse data, with improved running speed. Here we describe a
novel XGBoost machine learning-based tool called COOBoostR, which displays a notable
improvement in the prediction accuracy when there is low mutation density. It also offers
the advantage of higher analysis speed, in addition to a minimal requirement of computing
power. To assess the validity and accuracy of the algorithm, on the aspect of tissue or
cell-of-origin predictions, we applied COOBoostR to the somatic point mutation landscape
data from 636 tumors, 23 precancerous lesions, 35 normal stem cells, and 14 normal tissue
clones/samples.

2. Results

COOBoostR receives mutation and chromatin data as the input after quality control
(Figure 1a) (Online Methods). We then equally divide the genomic regions into 1-megabase
and calculate the values of these data in each region, as has been reported previously [23].
Among the ensemble models, COOBoostR applies the XGBoost methodology to predict the
TOO and/or COO. While the random forest-based TOO and COO prediction algorithms
use a bagging model which performs parallel training, the boosting model of COOBoostR
evaluates feature weights from sequential training. This training process improves the
accuracy of the COO algorithm by strengthening models with difficult prediction. The
output of COOBoostR is a ranked list of chromatin marks, where the higher rank represents
higher similarity with regional somatic mutation density. Eventually, the tissue or cell type
corresponding to these chromatin marks is assigned as potential TOO or COO.

To estimate the accuracy of COOBoostR algorithm, we conducted TOO prediction
for melanoma, multiple myeloma, and glioblastoma samples (Figure 1b) [2,5,6]. For these
samples, aggregate-sample level and individual sample level predictions using random
forest-based algorithm were previously reported (prediction accuracy: 69.56% to 100%) [23].
Our analyses revealed that for melanoma samples, COOBoostR algorithm resulted in
64% accuracy for assigning correct TOO. In the case of multiple myeloma and glioblastoma
samples, COOBoostR predicted correct TOOs with relatively higher accuracy (86.96% and
95.12%, respectively). To further assess speed and accuracy of COOBoostR, we compared
the results from COOBoostR with a previously established random forest regression-based
method [23,24] for the prediction of tissue-of-origin for colorectal cancer, esophageal ade-
nocarcinoma (EAC), and liver cancer. These three cancer types were previously known
to display higher variance explained score, compared to the other cancer types subjected
to the random forest-based algorithm [23]. We were, at first, interested in evaluating the
accuracy and reproducibility of the results after the repetitive running of COOBoostR. Our
results displayed 100% reproducibility in 92.71% of tested samples (samples showing either
0% or 100% accuracy after 100 rounds of repetitions) (Supplementary Figure S1a). We
also estimated trends in TOO accuracy according to the sample mutation density per each
cancer type. Among the three cancer types, five out of six colorectal cancer samples showed



Life 2023, 13, 71 3 of 15

100% reproducibility when the mutation density per 1-megabase of the sample was greater
than 4.7, whereas the EAC and liver cancer samples exhibited 100% reproducibility of the
prediction results for 100% and 95.31% of the samples, regardless of the sample mutation
density (Supplementary Figure S1b). Subsequently, we conducted an accuracy comparison
between the COOBoostR and the random forest-based algorithm on these samples, with
mutation density per 1-megabase greater than 4.7. For this, we measured the proportion
of individual samples predicted as the correct tissue-of-origin with 100% reproducibility
(Figure 1c). In liver cancer, both algorithms performed similarly well and predicted the
correct tissue-of-origin with ~95% accuracy, whereas in colorectal and esophageal cancer,
the COOBoostR algorithm predicted the tissue-of-origin in 1.25 and 1.05 times more sam-
ples compared to the random forest algorithm, respectively. In addition, we measured
the algorithm running speed after applying COOBoostR or the random forest-based algo-
rithm to the three cancer types. We found that COOBoostR completed the tissue-of-origin
prediction process ~389.94 times faster than the random forest-based algorithm (Table 1).
Taken together, we show that COOBoostR has reproducible results with better speed and
comparable accuracy when compared to the existing random forest-based algorithm.

Table 1. Speed comparison between COOBoostR and random-forest algorithm.

Cancer Type n Inspection Type Average Time (s) Min Time (s) Max Time (s)

Colorectal cancer 9
Random forest 1R 316,777 303,240 335,601
COOBoostR 1R * 8 6 11
COOBoostR 100R 761 577 1130

Esophageal
adenocarcinoma

Ross-Innes. et al. [4]
23

Random forest 1R 447,082 409,602 475,357
COOBoostR 1R * 16 10 26
COOBoostR 100R 1588 1047 2615

Liver cancer 64
Random forest 1R 456,407 370,398 720,583
COOBoostR 1R * 7 4 15
COOBoostR 100R 707 383 1484

* COOBoostR 1R values were estimated from COOBoostR 100R investigation.

Next, we tested COOBoostR to evaluate whether the regional somatic mutation data
of normal tissues or cells can be best explained by the epigenome of matching normal
tissues or cell types. The first dataset we used for answering such a question was the
whole-genome somatic mutation data from a normal liver [11]. To examine the extent
of the TOO matching for a normal liver, COOBoostR was conducted in each individual
sample from the dataset. Our results showed that all 14 individual samples, with mutation
density ranging from 6.6 to 67.8, were accurately matched as liver TOO (Figure 2a). We
next performed COOBoostR on individual clone-level data to see if the matching pattern
could be replicated at the clonal level. Since the mutation density for the clone-level in
this dataset is very low (0.80 per megabase on average per each clone), this helped us to
test the performance of COOBoostR with sparse datasets, which was one of the intentions
for creating XGBoost-based methods [31]. For this, we matched the TOO of normal liver
samples at clone-level by selecting 86 clones harboring mutation density between 0.25 to 1.5
per 1-megabase, out of 491 clones extracted from 14 donors. Our results show a prediction
accuracy of 50% when the somatic mutation density for each clone was ~1 per 1-megabase,
and 80% if the mutation density was 1.25 or higher (Figure 2b). These results from normal
liver tissues indicate that the extent of TOO matching accuracy could depend on the
mutation density of the input data.
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Figure 1. TOO/COO Prediction with COOBoostR. (a) COOBoostR algorithm flow diagram. A
total of 708 WGS data and 673 chromatin data were subjected to the 1-megabase level preprocess-
ing followed by XGBoost-mediated prediction stage. (b) TOO prediction accuracy for melanoma,
multiple myeloma, and glioblastoma with COOBoostR. (c) TOO accuracy comparison between COO-
BoostR and random forest-based algorithm for colorectal cancer, esophageal adenocarcinoma [4], and
liver cancer.
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Figure 2. TOO prediction accuracy for normal stem cell organoids or tissue samples harboring low
mutation density (average mutation density for stem cell organoids: 0.73, liver tissue clones: 0.63).
(a) TOO prediction accuracy for normal liver at individual sample level. Samples are aligned in order
of mutation density magnitude per 1-megabase window after classifying the correctness of TOO
prediction. Dots were jittered to dissect out the blue and white dots. (b) TOO prediction accuracy for
normal liver at clone level. Histogram showing TOO prediction accuracy of liver clones with respect
to the mutation density groups. (c) TOO accuracy comparison for colon adult stem cells according
to age-based subgrouping between COOBoostR and Random forest-based algorithm. (d) TOO
accuracy comparison for small intestine adult stem cells according to age-based subgrouping between
COOBoostR and Random forest-based algorithm. (e,f) TOO prediction accuracy for colon and
intestine stem cell organoids at an individual sample level using COOBoostR (e) or Random forest-
based algorithm (f). Samples matching predicted TOO are marked with solid circles, and samples
that did not match are marked with empty circles. Dots were jittered to dissect out the blue and white
dots. Samples are aligned in order of mutation density magnitude per 1-megabase window.
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To further test the COOBoostR-based matching prediction efficiency and to corroborate
our results from the analysis using liver normal tissues and clones, we subsequently ran
COOBoostR on normal adult stem cell samples which contain lower amounts of mutations
(0.09~1.38 per 1-megabase window) compared to the tumor tissues [10]. Previously, it has
been reported that any cancer type with low mutation density displays relatively lower TOO
predictive accuracy when using the random forest-based algorithm [23,24]; we anticipated
that the robustness of the COOBoostR algorithm would at least partly compensate for
such weakness. In the case of colon adult stem cells, we divided the samples into two
age-based subgroups (young (age 9 to 15) and old (age 53 to 66)) to consider the predefined
age stratifications inside the cohort (Figure 2c). COOBoostR based TOO matching results
demonstrated an accuracy of 40% for the young age subgroup samples, and 75% prediction
accuracy was obtained for old age subgroup samples. In contrast, random forest-based
TOO predictions resulted in 0% accuracy for the young age subgroup and 62.5% for the
old age subgroup, demonstrating comparative advantage of COOBoostR over the random
forest-based algorithm. This trend was consistent in the case of small intestine adult stem
cells (Figure 2d). Again, age-based subgroups were assigned (young (age 3 to 8), mid
(age 44 to 45), and old (age 70 to 87)). For the old age subgroup, both algorithms predicted
correct TOO with ~80% accuracy. However, COOBoostR-based TOO predictions for young
and mid-age subgroups exhibited better performance compared to the random forest-based
algorithm. While COOBoostR predicted correct TOO for 33.33% of the young age subgroup,
and 100% of the mid-age subgroups, the random forest-based algorithm had an accuracy
rate of 0% in the young age subgroup and 33.33% in the mid-age subgroup. Beyond
an age-based subgrouping, we also checked whether there were any differences in TOO
accuracy with respect to the mutation density per sample. For this, we arranged colon
and small intestine adult stem cell samples according to the order of mutation density
and assessed whether there was a trend. In the case of COOBoostR TOO prediction,
accurate prediction was observed when the mutation density for colon adult stem cells was
greater than 0.36, and the mutation density for small intestine adult stem cells was greater
than 0.23 (Figure 2e). Conversely, in the case of random forest-based TOO prediction,
we observed that a relatively high mutation density is required for consistent accurate
prediction (colon adult stem cell mutation density greater than 0.85, small intestine adult
stem cell mutation density greater than 0.61) (Figure 2f). In the case of liver adult stem cells,
none of the samples were predicted as the expected TOO (liver tissue), which is in line with
the previous result based on the random forest-based algorithm [26].

In addition to examining COOBoostR accuracy on the three cancer types (colorectal,
EAC, and liver cancer) and normal tissue or stem cell types, we also wondered if the predic-
tion accuracy of COOBoostR harbors a comparative advantage to the random forest-based
method for hepatoblastoma [9], a pediatric neoplasm with the lowest somatic mutation
density. Samples including mature (n = 18) and immature (n = 15) hepatoblastoma types,
subjected to COOBoostR, had somatic mutation density of 0.133 per 1-megabase on average.
When we set the liver tissue as a matching TOO for hepatoblastoma, the TOO prediction
accuracy was 55.56% (5/9 samples) when the somatic mutation density was equal or higher
than 0.2 per 1-megabase; whereas, the accuracy was 22.22% (2/9 samples) for the same
mutation density window when utilizing a random forest-based algorithm (Supplementary
Figure S2). Collectively, COOBoostR displayed improved prediction accuracies for the
samples harboring lower mutation density compared to the random forest-based algorithm,
albeit still showing mutation density dependent differences in accuracy performance. Ad-
ditionally, our results are still in line with the previous finding that the TOO prediction
accuracy and the mutation density are interrelated, which might be still intrinsic to the
tree-based machine learning algorithm.

Recently, it has been suggested that the Barrett’s metaplasia (BM), a representative
precancerous lesion associated with tissue metaplasia, and the EACs primarily originate
from gastric cells at the level of mouse lineage tracing models [32], and primary human
samples [28,33]. To confirm whether COOBoostR prediction results align with the for-
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mer outcomes, we employed Fixed-Tissue Chromatin Immunoprecipitation Sequencing
(Fit-seq) data from four different tissues (BM, Squamous, Ileum, and Gastric antrum)
(Online Methods), which has been previously utilized for the random forest-based TOO
prediction [28]. As a first step, we tested the COOBoostR algorithm on BM samples and
individual matching, paired EACs (n = 23). As a result, 22 out of 23 BM and EAC samples
were predicted as gastric TOO, which is consistent with the gastric TOO predominancy
observed by the random forest-based algorithm (Figure 3a). Subsequently, we examined
whether the prediction would change when using 1-megabase region subsets containing
certain tissue-specific enhancers (Online Methods). COOBoostR predicted gastric TOO
for 12 out of 23 BM samples and 16 out of 23 EAC samples when using 1-megabase re-
gions containing gastric tissue-specific enhancers; whereas, the proportions were relatively
unchanged when using 1-megabase region subsets containing squamous tissue-specific
enhancers (22 out of 23 samples for BM, 23 out of 23 samples for EACs) (Figure 3a). To
examine whether these results are replicated in other sample sets, we assessed the TOO
prediction accuracy for the samples from two other EAC studies [3,8]. As predicted, a
total of 387 out of 409 EACs [3] and 9 out of 9 EACs [8] were predicted as gastric TOO
(Figure 3b). In addition, the samples predicted as gastric TOO were decreased (296 out of
409 samples [3], 4 out of 9 samples [8]) when using 1-megabase regions containing gastric
tissue-specific enhancers, whereas 390 out of 409 samples [3] and 9 out of 9 samples [8]
were predicted as gastric TOO when using 1-megabase regions containing squamous tissue-
specific enhancers. These results imply that the changes in chromatin marks, at or in the
vicinity of the tissue-specific enhancer regions, are likely to affect the somatic mutation
density profile at those regions.

To assess any potential bias in TOO prediction results due to the differences in the num-
ber of 1-megabase regions, we conducted COOBoostR using 673 chromatin marks on seven
different cancer types, and BM at aggregate sample mutation level after randomly selecting
different numbers of 1-megabase region subsets (ranging from 500 to 1000, Online Methods).
Cancer type-dependent differences in TOO accuracies were observed only at 500 region
subsets, but the prediction accuracy uniformly exceeded 97% when using 700 region sub-
sets or more (Figure 3c). Additionally, the prediction accuracies of EACs [8] were the most
consistent, reaching 100% regardless of the number of region subsets. To assess if the TOO
accuracy levels are still reproduced when using a different chromatin dataset, we moved
onto measuring COOBoostR prediction accuracies for EACs [8] with different region sub-
sets utilizing the Fit-seq data. For this, we applied different region subsets according to
the proportion of different enhancer containing regions (ranging from 0% to 100%, Online
Methods). Results from this analysis demonstrated that the TOO prediction accuracy,
using 500 or 1000 region subsets, was over 92% regardless of the enhancer containing re-
gion proportions, and the enhancer originating tissue types (Supplementary Figure S3a,b).
However, the gastric TOO prediction accuracies using 100 region subsets mostly decreased,
as the proportion of the gastric enhancer containing regions become higher; whereas, the
prediction accuracy using 100 region subsets with different squamous enhancer containing
region proportions was consistently high (over 88%) (Figure 3d). These results provide
evidence of minimal bias towards the number of 1-megabase regions on COOBoostR pre-
diction, and reinforce the role of tissue specific chromatin mark profiles on the somatic
mutation accumulation during the course of precancerous lesions and cancer development.
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Figure 3. Region selection based TOO accuracy measurement for COOBoostR. (a,b) TOO prediction
accuracy for BM and EAC derived from different study sources. In each case, TOO prediction
accuracy was again measured by utilizing 1-megabase regions containing gastric specific enhancers or
squamous specific enhancers. BM: Barrett’s metaplasia; EAC: Esophageal adenocarcinoma. (c) Region
selection based COOBoostR accuracy measurement ranging from 500 to 1000 regions for 8 sample
types (7 cancer types, 1 precancerous lesion) at aggregated sample level. (d) Region selection analysis
with respect to the portion of gastric/squamous specific enhancer containing regions for EACs
at individual sample level. Enhancer inclusion ratio was varying from 0 to 100%, making up to
100 regions [2–4,6–8].
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3. Discussion

COOBoostR is based on the extreme gradient boosting method (XGBoost) [31], which
was originally designed to cope with the issues raised by tree-based learning approaches
(relatively low throughput with high consumption of computing power, poor prediction
accuracies when using sparse data matrix, etc.). Based on the gradient weighing and tree
pruning process embedded in the algorithm, we utilized the XGBoost methodology to select
and rank tissue or cell-level chromatin mark features with respect to the relationship with
somatic point mutation density of normal tissue/pre-cancerous lesions/tumor samples
with improved speed and computing power compared to the existing random-forest based
algorithm. Leveraging this machine learning based feature ranking, TOO/COO predictions
on samples harboring diverse mutation densities were performed by incorporating different
chromatin mark input datasets.

Although there are several publications which describe strong correlative measure-
ments between TOO/COO chromatin marks and the somatic mutation landscape of tumors
or precancerous lesions [23,24,26,29,34], no pre-existing reports tackled the question on
whether the regional somatic mutation density profiles of normal tissues or cells indeed
best explained by the matching TOO or COO mark profiles. We postulated that the accurate
matching of TOO/COO for normal tissues or cell types, through utilizing our algorithm
with somatic mutation inputs, would not only confirm that COOBoostR is working as de-
signed, but also support the argument on the role of chromatin marks shaping the somatic
mutation landscape; thus, such a concept could be utilized for predicting TOO/COO for
various cancer types. Albeit revealing limitations, possibly due to the very low mutation
density for some of the samples, COOBoostR showed that the regional somatic mutation
data of normal tissues or cells can be best explained by the epigenome of matching normal
tissues or cell types, which is more apparent when compared to the random forest-based
algorithm for the samples harboring lower mutation density. In line with this, a similar
phenomenon was observed for the hepatoblastoma samples, which showed the lowest
mutational density among human cancers [9]. It would be worth investigating to see if this
pattern applies to other normal tissues, cell types, and pediatric tumors.

In this study, we examined whether COOBoostR prediction results per individual
sample would change when utilizing 1-megabase region subsets containing tissue-specific
enhancers. This analysis was based on the hypothesis that the chromatin marks at or
proximal to the TOO-specific enhancer regions would change during the progression to BM,
mainly by the loss of such enhancers, and somatic mutation accumulation patterns inside
those regions would change dynamically during the progression to BM. Thus, they would
correlate less with the original TOO chromatin marks, and ultimately affect COOBoostR
accuracy. In line with our hypothesis, the marked decreases in gastric TOO-predicted
samples for BM and EAC were observed when using 1-megabase regions containing gastric
tissue-specific enhancers, whereas the proportions of gastric TOO-predicted samples were
conserved when using 1-megabase region subsets containing squamous tissue-specific
enhancers. This phenomenon was recapitulated for the samples from two other studies, by
demonstrating reduced TOO prediction accuracy when using 1-megabase regions contain-
ing gastric tissue-specific enhancers. This phenomenon was more evident when the number
of region subsets became lower. Although the window size of the enhancer regions is far
less than 1-megabase, our results do emphasize the changes in tissue specific chromatin
marks during precancerous lesions/malignant tumor progression, at least in the case of
BM and EAC, are sufficient to be captured as COOBoostR prediction accuracy changes.

One of the areas which our current study did not tackle was running COOBoostR
after stratifying mutation context patterns or mutation signatures. Since there is possibility
of specific mutation context or signatures differing in somatic mutation accumulation
patterns, and their relationship with the chromatin mark features, prediction accuracy
of the TOO/COO algorithm can also be affected. Additionally, the prediction accuracy
differences among cancer types shown in our work, and this might be intertwined with the
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cancer type specific mutation contexts and the prominence of mutation signatures, which
would require future research to examine such effects.

In conclusion, COOBoostR showed at least comparable or better TOO/COO prediction
speed and accuracy, compared to the random forest-based algorithm, when utilizing
somatic mutation data from diverse types of samples ranging from tumors to precancerous
lesions, and normal tissues. Additionally, our results provide several lines of evidence for
dynamic somatic mutation accumulation at the normal tissue or cell stage, which could
be intertwined with the changes in open chromatin marks and enhancer sites. Recent
publications [35,36] start to shed light on the possible role of cancer cell-of-origin and tumor
origin giving rise to different cancer types, and providing potential diagnosis methods
for the cancer of unknown primary (CUP). In line with this, COOBoostR would facilitate
cancer COO investigations and predictions in humans, which would be critical to early
cancer diagnosis and selection of treatment options.

4. Online Methods
4.1. Somatic Mutation Data Derived from Whole-Genome Sequencing

We calculated regional somatic mutation density for 708 individual cancer genomes
derived from several cancer types, precancerous lesions, normal stem cells, and normal
tissues and cells. The International Cancer Genome Consortium (ICGC), which include Pan-
Cancer Analysis of Whole genomes (PCAWG), Accelerating Research in Genomic Oncology
(ARGO), and European Genome-Phenome Archive (EGA), have granted permission to
use 64 liver cancer genomes (LIV) [1], 41 glioblastoma genomes (GBM) [2], 413 esophageal
adenocarcinoma genomes (EAC, Frankell. et al.) [3], and 23 pairs of Barrett’s metaplasia
(BM) matching with esophageal adenocarcinoma genomes (EAC, Ross-Innes. et al.) [4].
In our study, Barrett’s metaplasia genomes were employed as a representative case of
precancerous lesions. In the case of 413 EACs deposited in ICGC ARGO, four samples
(DO234285, DO234363, DO234413, DO234462) with hypermutations were excluded from
TOO/COO predictions and the genomic coordinates of the variants for each sample were
converted from Genome Reference Consortium Human Build 38 (GRCh38) to Genome
Reference Consortium Human Build 37 (GRCh37) using CrossMap [37]. From The database
of Genotypes and Phenotypes (dbGaP), we have been granted authority for data use of
25 melanoma genomes (MEL) [5], 23 multiple myeloma genomes (MM) [6], 9 colorectal can-
cer genomes (CRC) [7], and 9 esophageal adenocarcinoma genomes (EAC, Dulak. et al.) [8].
We have been also granted access to published 33 hepatoblastoma genomes from Hiroshima
University and RIKEN [9]. For normal stem cells, we gathered tissue-specific somatic muta-
tion accumulation in adult stem cells from publicly available datasets [10], which included
21 colon stem cell genomes and 14 intestine stem cell genomes. As a representative case of
normal tissue, we not only extracted 14 normal liver genomes, but also 491 normal liver
clone genomes within samples from the published data source [11]. Since the mutation
rate of normal liver clone genomes per 1-megabase window were distributed from 0.25
to 1.5, we divided each interval into 0.25 mutation rate units, and randomly selected a
total of 86 clonal samples from each interval. In order to measure the regional mutation
density for each sample, autosomes were split into 1-megabase regions excluding areas
related to centromeres, telomeres, and low quality unique mappable base pairs. After
that, we aggregated the frequency of variations in each 1-megabase region and established
somatic mutation profile for individual samples. This mutation counting process was
carried out using BEDOPS [38], and based on the Genome Reference Consortium Human
Build 37 (GRCh37).

4.2. Chromatin Data Derived from Chromatin Immunoprecipitation Sequencing (ChIP-Seq)

A total of 673 ChIP-seq data, which include human primary tissues and cell lines, were
extracted from ENCODE [39], IHEC [40], and the NIH Roadmap Epigenomics Consortium
(release 9) [41]. In our study, these ChIP-seq features were classified as a total of 132 tissue
or cell types according to the original source [29]. Moreover, the ChIP-seq data utilized in
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this study contain two kinds of repressive histone modifications (H3K27me3 and H3K9me3)
and five kinds of active histone modifications (H3K27ac, H3K36me3, H3K4me1, H3K4me3,
and H3K9ac). Consistent with the mutation profile counting, we calculated ChIP-seq reads
count in each 1-megabase region based on the human genome version GRCh37 (hg19).

4.3. COOBoostR: XGBoost-Based Feature Selection Algorithm for TOO/COO Prediction

Identification of putative TOO/COO for cancer types can be crucial for decoding the
responsible tissue or cell types that should be subjected to monitoring-based cancer pre-
vention, and understanding the somatic mutation accumulation mechanisms intertwined
with the cancer development. Pre-existing methods for TOO/COO identifications include
lineage-tracing mouse models and organoids, which are either heavily depending on par-
ticular genetically engineered mouse models or are time-consuming with extremely low
throughput. Bioinformatics and a machine learning based approach to predict TOO/COO
for human tumor samples are unique in a sense that they are the sole practical method for
estimating the TOO/COO directly for human samples with a reasonable throughput.

XGBoost is an extendible and state-of-the-art algorithm of gradient boosting machines
which has proven to push the limits of computing power for boosted trees algorithms [31].
It was developed for the sole purpose of model performance and computational speed.
Boosting is an ensemble technique in which new models are added to adjust for existing
model errors. Model is recursively added until the error is no longer small and is adjusted
according to the hyperparameter. Furthermore, gradient boosting is an algorithm that
combines the previous model with the new model that predicts the residuals of the pre-
vious model to make the final prediction, which then updates the weights of the model.
To minimize the loss when adding new models, gradient descent algorithm is utilized.
Additionally, the performance was significantly improved by using multiple cores of a CPU
and reducing the lookup times of individual trees created in the XGBoost.

COOBoostR was created to achieve higher accuracy and speed compared to the
current state-of-the-art random forest-based algorithm, by taking advantage of the XGBoost
algorithm. The input of COOBoostR is a matrix containing regional somatic mutation
density for each 1-megabase window (2128 rows) of the human genome, whereas the output
provides top 20-ranked chromatin marks derived from responsible tissue or cell types which
show high correlations to the regional somatic mutation densities. For this algorithm to
work accordingly, we applied backward elimination manners to seek a minimal set of
predictors for each genome. Additionally, we trained the COOBoostR model with 10-fold
cross-validation on the complete set of variables, and determined the importance of all
the variables in the model. We then ranked the predictors according to their importance
and determined the top 20 variables. The most important variable (top 1) is obtained
through the training 20 models and the backward elimination method. The last predictor
variable represents the most similar landscape regarding the 1-megabase level regional
mutation density.

Tuning COOBoostR can involve many hyperparameters including “n estimators”,
which determine the epoch of the model, “learning rate”, gamma”, “max depth”, etc. To
customize the model, hyperparameter tuning is possible. For example, several learning
rate variable options (0.05, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0) are available, of which 0.5 was
selected as a default value. In addition, a default value of 20 was set for the n estimators
variable, and a gamma of 0 (0, 0.5, 1, and 2 can be options) was set as a default. Finally, max
depth of 6 was used as the default value among 1, 3, 6, and 8.

4.4. Random Forest-Based TOO/COO Prediction

Our TOO/COO predictive analysis based on random forest regression was performed
by reflecting and modifying previous research [23,24,26]. Once the training sets of each
tree were constructed, the mean squared errors were then measured from out-of-bag data
to determine the importance of each variable. In each tree, the values of these variables
were randomly permutated and estimated. The raw importance value of variable m was
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calculated by subtracting the mean squared error between the untouched out-of-bag data
and the variable-m-permuted data. Consequently, the importance ranking of each variable
was estimated from the average score of the variable m in the entire tree. To predict
regional mutation density for each sample, we generated 1000 random forest trees based on
673 epigenetic features. In addition, the TOO/COO for each sample was predicted from the
tissue/cell type of top 1 epigenetics marker, identified by employing the greedy backward
elimination method. The random forest models at each stage were repeatedly tested
1000 times. We employed these random forest-based TOO/COO prediction algorithms to
compare the speed and accuracy with the COOBoostR algorithm. For the speed comparison
between the two algorithms, the genomes of liver cancer, esophageal adenocarcinoma
(Ross-Innes. et al.), and colorectal cancer were employed. In comparing the prediction
accuracy of the two algorithms, not only these cancer type samples, but also normal adult
stem cell genomes were employed.

4.5. COOBoostR and Region Subset-Based Analysis

Aggregated regional somatic mutation density for 5 cancer types: esophageal adeno-
carcinoma from Ross-Innes. et al. (EAC), esophageal adenocarcinoma from Dulak. et al.
(EAC), colorectal cancer (CRC), multiple myeloma (MM), and Glioblastoma (GBM)) and
1 pre-cancerous lesions (Barrett’s Esophagus (BE)) were subjected to the analyses. For
generation of aggregated regional somatic mutation density matrix, the number of somatic
mutations per 1-megabase region was added up for all of the samples corresponding to
each cancer type. Additionally, individual sample-level regional somatic mutation density
for EAC (5 samples) cancer type was utilized for the analyses. These individual samples
were selected based on their COOBoostR prediction results using entire regions matching
to the TOO/COO prediction performed by using aggregated regional somatic mutation
density of the corresponding cancer type.

For aggregated regional somatic mutation density data, COOBoostR was performed
on 6 different region subset cases (500, 600, 700, 800, 900, and 1000 regions), and the
accuracy (defined by predicted TOO/COO when using all of the 2128 regions) calculated
by 100 random sampling iterations was derived for each case. For individual sample-level
regional somatic mutation density data, subset cases consisted of a total of 21 different
number of regions (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000,
1200, 1400, 1600, 1800, and 2000 regions), and the accuracy measurements were derived by
20 times of random region subsampling.

4.6. Tissue Specific Enhancer Containing Region Subset Based TOO Predictions

For the region selecting-based TOO prediction of BM and EACs containing tissue spe-
cific enhancers, Fixed-Tissue Chromatin Immunoprecipitation Sequencing (Fit-seq) data de-
rived from four different tissues (Gastric, Barrett’s, Squamous, Ileum) were employed [28].
We first selected the regions containing tissue specific enhancer regions (gastric or squa-
mous) from a total of 2128 regions. Then, among the four types of Fit-seq markers, samples
predicted as a gastric tissue mark were considered as the accurate TOO predicted samples
for both BM and EACs. In Figure 3a,b, we measured the accuracy of TOO prediction for
BM and EACs at the individual sample level. In Figure 3d and Figure S3, TOO accuracy
was measured after subsetting regions based on the proportion of tissue specific enhancer
containing regions (0, 25, 50, 75 to 100% for 5 EACs (covering the lowest to the highest
somatic mutation density within the sample set). Specifically, a random selection of the
enhancer containing regions is first performed, with respect to the predefined proportion
of the enhancer containing regions, then the random selection of the other regions is con-
ducted to fill the total number of the intended subset regions if there is any room left. A
total of 100 rounds were executed per each sample and the fixed region number, and then
the TOO prediction accuracy was calculated.
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4.7. Code Availability

Source code for COOBoostR is available at https://github.com/SWJ9385/COOBoostR
(accessed on 19 December 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13010071/s1, Figure S1: TOO accuracy comparisons between
COOBoostR and Random forest-based algorithm; Figure S2: TOO prediction accuracy for hepatoblas-
toma at an individual sample level; Figure S3: Region selection analysis with respect to the portion of
gastric / squamous specific enhancer containing regions for EACs at individual sample level.

Author Contributions: H.L., K.H. and H.-G.K. contributed to conceiving and designing the analysis
and the experiments. M.F., P.P., E.H. and H.N. contributed reagents, materials, analysis tools for the
data. S.Y., K.H., H.L. and W.S. analyzed and interpreted the data. H.L., K.H., S.Y. and W.S. wrote the
paper. K.K. provided scientific insight, contributed to the interpretation of the data, and edited the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A4A1019423).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Ramesh A Shivdasani and Harshabad Singh for providing Fixed-
Tissue Chromatin Immunoprecipitation Sequencing data with helpful comments. K.K. is supported
by the Private Excellence Initiative Johanna Quandt of the Stiftung Charité at BIH.

Conflicts of Interest: H.L., K.-G.H. and W.S. are currently working at UPPThera, Inc., but conducted
the current research without any conflicts of financial interest. The company had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Fujimoto, A.; Furuta, M.; Totoki, Y.; Tsunoda, T.; Kato, M.; Shiraishi, Y.; Tanaka, H.; Taniguchi, H.; Kawakami, Y.; Ueno, M.; et al.

Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet.
2016, 48, 500–509. [CrossRef] [PubMed]

2. Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.;
Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155, 462–477. [CrossRef]

3. Frankell, A.M.; Jammula, S.; Li, X.; Contino, G.; Killcoyne, S.; Abbas, S.; Perner, J.; Bower, L.; Devonshire, G.; Ococks, E.; et al.
The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat. Genet. 2019, 51,
506–516. [CrossRef]

4. Ross-Innes, C.S.; Becq, J.; Warren, A.; Cheetham, R.K.; Northen, H.; O’Donovan, M.; Malhotra, S.; di Pietro, M.; Ivakhno, S.;
He, M.; et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal
adenocarcinoma. Nat. Genet. 2015, 47, 1038–1046. [CrossRef] [PubMed]

5. Berger, M.F.; Hodis, E.; Heffernan, T.P.; Deribe, Y.L.; Lawrence, M.S.; Protopopov, A.; Ivanova, E.; Watson, I.R.; Nickerson, E.;
Ghosh, P.; et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012, 485, 502–506. [CrossRef]
[PubMed]

6. Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.P.; Ahmann, G.J.;
Adli, M.; et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011, 471, 467–472. [CrossRef] [PubMed]

7. Bass, A.J.; Lawrence, M.S.; Brace, L.E.; Ramos, A.H.; Drier, Y.; Cibulskis, K.; Sougnez, C.; Voet, D.; Saksena, G.; Sivachenko, A.; et al.
Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat. Genet. 2011, 43, 964–968.
[CrossRef]

8. Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; et al.
Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complex-
ity. Nat. Genet. 2013, 45, 478–486. [CrossRef]

9. Nagae, G.; Yamamoto, S.; Fujita, M.; Fujita, T.; Nonaka, A.; Umeda, T.; Fukuda, S.; Tatsuno, K.; Maejima, K.; Hayashi, A.; et al.
Genetic and epigenetic basis of hepatoblastoma diversity. Nat. Commun. 2021, 12, 5423. [CrossRef]

10. Blokzijl, F.; de Ligt, J.; Jager, M.; Sasselli, V.; Roerink, S.; Sasaki, N.; Huch, M.; Boymans, S.; Kuijk, E.; Prins, P.; et al. Tissue-specific
mutation accumulation in human adult stem cells during life. Nature 2016, 538, 260–264. [CrossRef]

https://github.com/SWJ9385/COOBoostR
https://www.mdpi.com/article/10.3390/life13010071/s1
https://www.mdpi.com/article/10.3390/life13010071/s1
http://doi.org/10.1038/ng.3547
http://www.ncbi.nlm.nih.gov/pubmed/27064257
http://doi.org/10.1016/j.cell.2013.09.034
http://doi.org/10.1038/s41588-018-0331-5
http://doi.org/10.1038/ng.3357
http://www.ncbi.nlm.nih.gov/pubmed/26192915
http://doi.org/10.1038/nature11071
http://www.ncbi.nlm.nih.gov/pubmed/22622578
http://doi.org/10.1038/nature09837
http://www.ncbi.nlm.nih.gov/pubmed/21430775
http://doi.org/10.1038/ng.936
http://doi.org/10.1038/ng.2591
http://doi.org/10.1038/s41467-021-25430-9
http://doi.org/10.1038/nature19768


Life 2023, 13, 71 14 of 15

11. Brunner, S.F.; Roberts, N.D.; Wylie, L.A.; Moore, L.; Aitken, S.J.; Davies, S.E.; Sanders, M.A.; Ellis, P.; Alder, C.; Hooks, Y.; et al.
Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 2019, 574, 538–542. [CrossRef] [PubMed]

12. Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al.
Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [CrossRef] [PubMed]

13. Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.;
Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218.
[CrossRef] [PubMed]

14. Martincorena, I.; Campbell, P.J. Somatic mutation in cancer and normal cells. Science 2015, 349, 1483–1489. [CrossRef] [PubMed]
15. Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes. Science 2013,

339, 1546–1558. [CrossRef] [PubMed]
16. Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.;

Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [CrossRef]
17. Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al.

Mutational landscape and significance across 12 major cancer types. Nature 2013, 502, 333–339. [CrossRef]
18. Consortium, I.T.P.-C.A.o.W.G. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [CrossRef]
19. Li, Y.; Roberts, N.D.; Wala, J.A.; Shapira, O.; Schumacher, S.E.; Kumar, K.; Khurana, E.; Waszak, S.; Korbel, J.O.; Haber, J.E.; et al.

Patterns of somatic structural variation in human cancer genomes. Nature 2020, 578, 112–121. [CrossRef]
20. Cortes-Ciriano, I.; Lee, J.J.; Xi, R.; Jain, D.; Jung, Y.L.; Yang, L.; Gordenin, D.; Klimczak, L.J.; Zhang, C.Z.; Pellman, D.S.; et al.

Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 2020, 52,
331–341. [CrossRef]

21. Quinton, R.J.; DiDomizio, A.; Vittoria, M.A.; Kotynkova, K.; Ticas, C.J.; Patel, S.; Koga, Y.; Vakhshoorzadeh, J.; Hermance, N.;
Kuroda, T.S.; et al. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 2021, 590, 492–497.
[CrossRef] [PubMed]

22. Lopez, S.; Lim, E.L.; Horswell, S.; Haase, K.; Huebner, A.; Dietzen, M.; Mourikis, T.P.; Watkins, T.B.K.; Rowan, A.;
Dewhurst, S.M.; et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer
evolution. Nat. Genet. 2020, 52, 283–293. [CrossRef] [PubMed]

23. Polak, P.; Karlic, R.; Koren, A.; Thurman, R.; Sandstrom, R.; Lawrence, M.; Reynolds, A.; Rynes, E.; Vlahovicek, K.;
Stamatoyannopoulos, J.A.; et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 2015,
518, 360–364. [CrossRef] [PubMed]

24. Ha, K.; Kim, H.G.; Lee, H. Chromatin marks shape mutation landscape at early stage of cancer progression. NPJ Genom. Med.
2017, 2, 9. [CrossRef]

25. Wardell, C.P.; Fujita, M.; Yamada, T.; Simbolo, M.; Fassan, M.; Karlic, R.; Polak, P.; Kim, J.; Hatanaka, Y.; Maejima, K.; et al.
Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 2018, 68, 959–969.
[CrossRef]

26. Ha, K.; Fujita, M.; Karlic, R.; Yang, S.; Xue, R.; Zhang, C.; Bai, F.; Zhang, N.; Hoshida, Y.; Polak, P.; et al. Somatic mutation
landscape reveals differential variability of cell-of-origin for primary liver cancer. Heliyon 2020, 6, e03350. [CrossRef]

27. Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.;
Takahashi, S.; et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020, 183,
1420–1435.e21. [CrossRef]

28. Singh, H.; Ha, K.; Hornick, J.L.; Madha, S.; Cejas, P.; Jajoo, K.; Singh, P.; Polak, P.; Lee, H.; Shivdasani, R.A. Hybrid Stomach-
Intestinal Chromatin States Underlie Human Barrett’s Metaplasia. Gastroenterology 2021, 161, 924–939.e11. [CrossRef]
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