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Abstract: Brain tumors are a widespread and serious neurological phenomenon that can be life-
threatening. The computing field has allowed for the development of artificial intelligence (AI),
which can mimic the neural network of the human brain. One use of this technology has been to help
researchers capture hidden, high-dimensional images of brain tumors. These images can provide
new insights into the nature of brain tumors and help to improve treatment options. Al and precision
medicine (PM) are converging to revolutionize healthcare. Al has the potential to improve cancer
imaging interpretation in several ways, including more accurate tumor genotyping, more precise
delineation of tumor volume, and better prediction of clinical outcomes. Al-assisted brain surgery
can be an effective and safe option for treating brain tumors. This review discusses various Al and
PM techniques that can be used in brain tumor treatment. These new techniques for the treatment
of brain tumors, i.e., genomic profiling, microRNA panels, quantitative imaging, and radiomics,
hold great promise for the future. However, there are challenges that must be overcome for these
technologies to reach their full potential and improve healthcare.

Keywords: precision medicine; brain tumors; artificial intelligence; imaging technology; gene targeting;
patient care

1. Introduction

Brain tumors are a common form of cancer that can affect critical brain regions, often
leading to cancer-related deaths (2.3%) [1]. According to the World Health Organization
(WHO), glioblastoma, a tumor (grade IV) of the central nervous system (CNS), accounts
for more than 60% of adult brain tumors [2]. Radiation therapy is a common treatment
for glioblastoma, but it can have negative side effects, such as weakening the blood-brain
barrier (BBB), making patients more susceptible to brain metastases [3]. For example, there
have been reports of secondary brain tumors following radiation therapy for glioblas-
toma [4]. The process of metastasis is complex, involving multiple biological hurdles
that tumor cells must overcome before they can establish themselves as metastatic lesions.
Furthermore, the development of cancer treatments becomes more challenging when faced
with intratumor heterogeneity, or the variation of genetic makeup within a tumor [5]. Use
of brain-inspired computing could help simplify cancer management by providing a way
to mimic the neural network of the human brain [6]. Al in healthcare can help to diagnose
brain tumors [7] through the use of brain scans. In one study, Al was able to correctly
identify 98% of brain tumors [8]. Machine learning algorithms applied to medical images
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can help to extract hidden features that human experts may not be able to discern. This can
improve the accuracy of cancer diagnosis, prognosis, and treatment plans [9]. For example,
in a study, deep learning technology was used on 1991 healthy samples and 12 cancer types
showing an accuracy of 94.70% in identifying cancer [10].

The National Academy of Medicine states that Al technology in healthcare may offer
benefits such as increased access to specialist healthcare and reduced human limitations [11].
A recent study found that Al-assisted surgery led to fewer complications and shorter hospi-
tal stays [12]. The use of Al in healthcare is growing rapidly. Global Al in the healthcare
market is expected to grow to $150 billion by 2026 [13]. This growth is being driven by
the increasing digitization of healthcare data [14], the improved ability of Al to analyze
these data, and the potential benefits of Al in healthcare, such as early detection of disease,
improved diagnosis, treatment recommendations, and personalized medicine [15]. Al is
playing an increasingly important role in small-molecule drug discovery and development.
Al is expected to play a major role in target selection, hit identification, and lead opti-
mization in the near future [16]. For example, when eToxPred (a machine learning-based
approach) was applied to estimate the toxicity and synthesis feasibility of small organic
molecules, it showed accuracy as high as 72% [17]. Studies have shown that image-based
diagnostic systems that use Al can often outperform clinicians. Al is able to more accu-
rately recognize patterns and structures, which leads to more accurate diagnoses [18]. Al
systems will improve with time based on real-life scenarios, feedback, and knowledge [19].
PM is an emerging medical model that uses a person’s genetic and molecular makeup to
guide decisions about which medical treatments will work best for them [20]. The model
has been used since the late 1990s to help select and customize treatments for individual
patients with cancer [21]. The term “precision” in medicine and public health is becoming
prevalent [22], and also involves medicines guided by molecules [23] or person-centred
medicine [24], and provides evidence-based precise medical services [25]. PM is used in
many fields, including clinical and preventive medicine [26,27]. PM identifies groups of
patients benefiting from different treatment approaches using multiple data types [28],
including data on a patient’s genes, environment, and lifestyle, enhancing patient health
outcomes [29]. The information received from this approach can support PM in practice by
helping to locate research related to a patient, and clinical trials [30].

Cancers are difficult to treat in patients due to a variety of reasons, including intra-
tumoral heterogeneity and plasticity. Heterogeneity can make it difficult for drugs to
target all of the cancer cells, and plasticity can allow cancer cells to become resistant to
drugs over time [31,32]. Additionally, the presence of different subpopulations of cells
within a tumor can cause the tumor to be dependent on these different cell groups for
continued growth [33], and is therefore the main reason for treatment failures in cancer [32].
Intratumoral heterogeneity can be due to microenvironmental, genetic, and epigenetic
factors [34]. Although we do not understand intratumoral heterogeneity very well [35], by
understanding cellular subtypes and their development, cells can be targeted with PM [36].
Individualizing PM treatment must account for the patient’s cancer cells, genetic profile,
and brain structure, especially when it comes to gliomas—a type of brain tumor that can be
difficult to diagnose and treat. A new Al model created by researchers has the potential to
be useful for diagnosing gliomas, as it can distinguish between urine samples from cancer
patients and non-cancer patients. This model could be helpful for physicians in diagnosing
and individualizing PM treatment for glioma patients [37,38]. Additionally, proteomics
can provide a way to examine gliomas using fluid-based biomarkers [39]. This can help in
understanding variations within this type of cancer, and potentially lead to better treatment
options [40,41]. However, PM faces challenges due to the involvement of patient data,
which includes data for disease, population diversity, and ethical reflections [42].

1.1. Molecular and Genomic Profiling of Brain Tumors and the Use of PM

Care of cancer patients can involve molecular profiling to choose the best treatment
option [43] by finding gene mutations that may contribute to the disease, and targeting
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drugs that work best for that patient’s individual genetic makeup [44]. However, this
method overlooks important molecular features that could have clinical significance [45],
namely, prediction of drug-target group [46], molecular fingerprint representation [47],
profile-to-cell line matchmaking [48], and drug-target interactions [49]. This method uses
tissue biopsies to identify potential predictors of sensitivity and resistance [50]. If Al could
correctly predict whether a tumor is benign or malignant, it could help doctors avoid
performing unnecessary and potentially risky biopsies on patients. Studies have shown
that Al can accurately predict whether a brain tumor is benign or malignant [51] with
95% accuracy [52], which would avoid the need for biopsy [53]. PM initiatives are a step
forward in cancer treatment, but they come with challenges. Tumor tissue is difficult to
work with, and other diagnostic and therapeutic methods are needed to overcome these
challenges [54].

Molecular profiling of tumors can provide information on the specific genetic alter-
ations present in the tumor, which can be used to guide treatment decisions. This has led to
the development of targeted cancer therapies and the restructuring of clinical trials. Cancer
is being treated at the molecular level by understanding the genetic profiles of tumors. The
information can be used by clinicians to diagnose and treat cancer patients [55]. Cancer
patients with brain tumors and metastases have not responded well to immunotherapy in
the past [56]. A study found that immunotherapy and targeted therapy based on PM can
treat brain metastases [57]. Genomic and molecular profiling of tumors reveals the function
of tumor-derived genetic markers [58,59]. A study relating tumor biology with circulating
tumor DNA (tDNA) levels was conducted and showed that patients with solid tumors
had genomic alterations detected by plasma tDNA assay. The study supports the use of a
genomic tumor profiling assay to detect genomic alterations in plasma tDNA from patients
with active tumors [60]. Gene expression arrays (used in melanoma classifications) [61],
and next-generation sequencing (NGS) are helping physicians determine how patients will
respond to a particular therapy. These arrays and NGS will advance gene profiling tech-
nology to develop patient-specific treatments [62,63]. PM is very effective in treating some
types of brain tumors, such as glioblastoma [64], using photodynamic therapy (PDT) [65].
Several approaches to overcome the challenges of implementing PM in glioblastoma have
been reported, and integrated sequencing strategies have provided new insights into the
molecular classifications and genomic landscape of several types of cancer [66]. The person-
alized PM service will use the microbiome, advanced clinical phenotyping (measurement
of physical characteristics), diagnostics, advanced genomic imaging, and personalized
genomics to enable PM [67-69]. Cancer immunotherapies targeting immune checkpoints
are effective in enhancing immunity [70]. Immunotherapies for cancer patients can be
improved by recognizing neoantigens and targeting them. Neoantigens are antigens that
originate from somatic mutations. These mutated proteins located in tumor cells trigger
a T-cell immune response [71]. PM can identify the type of brain tumor and the most
effective treatment [72]. This may benefit patients with rare cancers that do, or cancers that
do not, respond well to conventional treatments [73]. A study published in Nature reported
that PM targets mutations in the IDH1 gene, which improves survival rates for patients
with brain tumors [74]. Furthermore, PM targets genes for brain-specific [75] marker of
metastasis [76] to provide an effective means to target cancer cells. Targeting reduces the
risk of harming healthy brain tissue. With PM, patients will receive the best possible care
and potential problems will be prevented [22].

Project management is a key part of developing new drugs and promoting the use
of PMs in healthcare settings to improve patient care. PMs play a crucial role in many
different settings, but their impact is especially significant when it comes to developing new
treatments for specific types of cancer [77]. Deep learning is a new medical technology that
is helping doctors save lives and improve patient outcomes. However, it is also creating new
ethical dilemmas and raising questions about access to this information [78]. Deep learning
is a branch of machine learning that employs algorithms to figure out high-level concepts
from data. Machine learning, on the other hand, works on developing computer programs
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that have the ability to access data and interpret them. The biggest distinction between
deep learning and machine learning is the level of abstraction it uses. Machine learning
algorithms focus on low-level patterns present in data, while deep learning algorithms
focus on high-level abstractions. There are several advantages of deep learning compared
to traditional machine learning technologies. For example, deep learning typically results
in fewer false positives per individual compared to traditional machine learning, indicating
greater accuracy [79]. Researching human genetics has allowed for more precise cancer
treatments through the usage of targeted drugs. For example, Zhao et al., describes an
integrative analysis that indicates 13% of patients benefit from current targeted therapy
based on gene mutation, and the proportion increases to 31% when drug repositioning
is considered [80]. By identifying the gene responsible for cancer, researchers are able to
target it with available drugs. However, a challenge that often arises is gene mutation,
which can happen over the lifetime of a tumor. This makes it more difficult to predict which
treatments would be the most effective. Another obstacle is that the gene mutation may be
unique to an individual, making it difficult to create generalized detection tools [81].

It is challenging to recruit patients for PM studies due to the heterogeneity of the
population. Informed consent is also an issue, as parents and patients may not fully
understand the implications of participating in such a study [82]. Figure 1 [78] represents
the attrition of patients during the process of genomic profiling to drug matching [83].
As can be seen, a large number of patients (30%) are lost between the initial stages of
recruitment and the final stage of drug matching [17].

) D ey
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Recruiting patients ~ Sample collection Analysis Interpretation Clinical utility

Figure 1. Attrition of patients during the process of recruiting the patient to trial matching. Adapted
from reference [78], under creative common license.

Informatics systems could simplify the recruitment process for clinical trials in PM
by integrating genomic data and eligibility for clinical trials. This would allow for more
accurate and efficient recruitment, as well as reducing the overall time and cost associated
with clinical trials [84-86]. It is difficult to develop and study biomarkers due to the
complexity of tumor heterogeneity. Another potential issue that can affect the precision of
biomarkers is sampling bias [87]. Furthermore, due to the diversity of brain tumors, tissue
banks are difficult to use for PM with respect to proper representation of the removed
diseased area [88]. Thus, due to clonal development in brain tumors, it is important
to look at many portions of the tumor [89]. The challenge of PM is predicting which
tumors will respond to standard therapy and which will not. This may require the use
of an angiogenesis inhibitor for tumors that do not respond to standard therapy [90,91].
Targeted drugs cannot change how a tumor forms, but they might be able to improve a
person’s quality of life, according to some studies. However, there is disagreement among
researchers as to whether targeted drugs are effective in cancer treatment, posing another
obstacle to developing these drugs [92,93].

1.2. MicroRNA (miRNA) Panels as Markers in Brain Tumors

Brain tumors are often characterized by their expression of miRNAs [94]. The expres-
sion of miRNAs may provide information on tumor biology and the effect of therapeutic
interventions [95]. MiRNAs can be tumor suppressors or promoters due to dysregulation in
different types of cancer [96]. Additionally, miRNA can serve as a marker for non-invasive
early detection of brain tumors [97]. A study carried out in 2170 patients with glioma and
1456 participants (healthy) in China supported earlier findings of the use of miRNAs as
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a marker for the detection of glioma [98]. A study, conducted in 31 people aged 61.1 to
62.9 years, analyzed miRNA expression levels in serum exosomes from cancer patients. The
study found that hsa-miR-576-3p (small non-coding RNAs of 20-22 nucleotides) is a useful
biomarker for predicting brain metastases in patients with breast cancer [99]. Some of
these miRNAs may indicate a poor prognosis, while others may be associated with a better
outcome [100]. MiRNAs may be useful markers for cancer diagnosis and monitoring. A
prognostic [101] and diagnostic marker [102] can be found in up-regulation of miR-21. Var-
ious miRNA panels are potential markers for diagnosis, tumor grade, and prognosis [103].
Detection of diffuse glioma can be simplified by the use of miRNA. Furthermore, miRNA
can differentiate primary CNS lymphoma from glioblastoma [104].

MiRNAs could be key targets for treating brain tumors, and may also help make
tumors more sensitive to radiation therapy [105]. However, the role of miRNAs in biological
processes (such as cell cycle, proliferation, apoptosis, and differentiation) needs to be
carefully evaluated before using them as therapeutic targets [106]. Research is progressing
on miRNA-based therapies for treating inflammatory diseases [107]. The safety of miRNA-
based therapies can be ensured by developing nanocarrier-based platforms, which can
also deliver miRNA-based therapies in a controlled and cell-specific manner [108]. Table 1
represents some relevant studies on the role of miRNAs in the oncogenesis of glioblastoma.

Table 1. Relevant studies in relation to the role of miRNAs in the oncogenesis of malignant primary
brain tumors.

Tumor Type miRNA Gene-Target Biological Function Signalling Pathway References
Glioblastoma miR-128-3p platelet-derived growth factor promotes glioblastoma Down receptor tyrosine kinase ~ [109]
alpha receptor
Glioblastoma miR-218 hypoxia-inducible factor 2 alpha  promotes glioblastoma  Down receptor tyrosine kinase  [110]
Hepatocyte Growth Factor and improved clinical Signal transducer and
Glioblastoma miR-95 Mitogen-Activated Protein outcome in the neural Down activator of [111]
Kinase Kinase 3 subtype transcription 3
improved clinical Signal Transducer and
Glioblastoma miR-21 Integrin b8 [112] outcome in the neural Up Activator of [111]
subtype Transcription [113]
Glioblastoma miR-381 lymphoid enhancer- Inhibits metastases Down Wnt [114]

2. Al in Brain Tumor Imaging

The rapid growth of the Al industry, with substantial investment from technology
firms, has outpaced expectations. Investing in Al projects [115,116], especially those
related to medicine, is becoming increasingly popular [117]. The brain tumor diagnostics
market is expected to grow rapidly in the coming years. The market was valued at
$844.63 million in 2021 and is expected to reach $2476.14 million by 2028, growing at
a compound annual growth rate (CAGR) of 16.6% from 2021 to 2028 [118]. Al helps
doctors make better decisions by using complex computation and reasoning to help make
decisions [11]. In medicine, Al is used for automated diagnostic procedures and treatments
for patients [119]. An Al-based approach to cancer imaging can help improve tumor
detection and characterization, as well as monitor the tumor’s response to treatment and
check for early signs of cancer in other parts of the body [120].

Radiologists can find brain tumors quickly and effectively by using computer-aided
diagnosis systems. These systems make use of supervised or unsupervised machine
learning, transfer learning, or deep neural models (Xception model), all of which have been
successful in the medical field thus far. Al and deep learning are expected to continue
having breakthroughs in the future [121]. Molecular imaging provides the framework
for new developments in the diagnosis of brain tumors. This technology allows for the
visualization of molecular processes in the brain, which can provide critical information for
diagnosis and treatment [122]. Al-based imaging algorithms (CXR-vision model, LIDC-
IDRI model, LUNA16 model, and the CT-based volumetric analysis) have proven to be
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effective in diagnosing various cancers such as lung cancer [123], breast cancer (Mirai), and
brain tumors [124]. Brain tumors have unique biological features which can be exploited by
certain MRI sequences. T1-weighted images taken after gadolinium administration show
enhanced areas where the blood-brain barrier has been breached, allowing gadolinium
to enter the tumor from the intravascular space [125]. Orthogonal wavelet transforms
and deep learning techniques are being used for the detection and classification of brain
tumors [126]. A deep wavelet autoencoder (DWAE) model is being used to predict the
location of a brain tumor based on the analysis of multimodal data such as MRI images,
perfusion MRI images and PET scans. Furthermore, the combination of a DWAE model
with a support vector machine helps the model learn the distribution of tumor volumes
within the brain, and predict the classification of a tumor based on its volume [127].

Medical image segmentation is the process of partitioning a digital image into multiple
segments (sets of pixels). The goal of segmentation is to simplify and/or change the repre-
sentation of an image into something that is more meaningful and easier to analyze [128].
One important task in medical image processing is segmenting brain tumors from MRI
scans. This helps doctors better understand the size and location of the tumor, as well
as how it has changed over time. Deep learning-based segmentation of brain tumors is
a popular method because it is automated and provides cutting-edge results [129]. For
example, the deep capsule network (CapsNet) and latent-dynamic condition random field
(LDCREF) can be used to segment brain tumors automatically. In contrast, a study of deep
learning-based methods for detecting small tumors found that these methods were often
inaccurate, resulting in misclassifications [130]. To better understand the human brain,
doctors and researchers look for abnormalities. A study suggests that through finding these
abnormalities and targeting them specifically, customized treatments for metastatic brain
tumors (MBT) could be possible. This is in addition to the ability of MBT to provide a per-
sonalized diagnosis through its molecular expression profile. Furthermore, approximately
20-40% of MBT cases showed loss of DNA (MGMT) expression, highlighting the usefulness
of this method. Another strength of MBT is that it expresses a variety of receptor and signal
transduction molecules. This could potentially allow for individualized treatment using
molecule-targeted drugs [131].

2.1. Quantitative Imaging of Brain Tumors

Magnetic resonance tomography (MRT), computed tomography (CT), and positron
emission tomography (PET) are imaging techniques that are used to determine the location
and size of a brain tumor. CT, MRT, and PET scans require contrast agents to produce clear
images of the tumor [132]. The transcapillary transport of water-soluble compounds can be
measured by PET methods in vivo. The PET method helps to understand brain tumors and
their response to therapy. PET scans are also useful for determining the size and location of
a tumor, which can aid in surgical planning [133]. PET scans are a valuable tool for studying
the biology of brain tumors and could improve our understanding of brain tumors [134]
by identifying areas of high metabolism that may be linked to tumor growth [135]. 18F-
Fluorodeoxyglucose PET can be used to predict the prognosis of a patient and to distinguish
nonmalignant from malignant lesions. 18F-Fluoroethyltyrosine, 11C-methionine, and 18F-
L-3,4-dihydroxyphenylalanine are all high sensitivity markers that can be used to detect
recurrent or residual cancer [136]. 3D-U-Net convolutional neural networks (CNNs) have
been used to segment gliomas from 18-fluoroethyl-tyrosine PET scans. The CNNs showed
high accuracy, with 78% positive prediction, 99% negative prediction, 88% sensitivity,
and 99% specificity [137]. AMT-PET scanning identifies primary and metastatic brain
tumors with 90% accuracy. This could advance the diagnosis and treatment of patients
with metastatic brain tumors. Machine learning trained on MRIs predicts brain tumor
outcomes better than established methods [138]. Brain MRI characterizes and visualizes
the structure of interest in medical imaging. An Al-based automated method has been
proposed that uses a classifier to identify and segment pathological tissue, such as tumors
and atrophy, on brain MRI [139]. Aptamers are often used in PET research due to their
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high binding affinity and specificity. Aptamers can be easily labelled with radioisotopes,
which allows researchers to study how molecules interact with each other [140]. Reduced
fluorescence emission from brain tumors can be up to 50% lower than surrounding normal
brain tissue, making tissue autofluorescence ideal for distinguishing between normal and
tumor-affected brains. This technique is beneficial because it is noninvasive and can provide
accurate results. Autofluorescence imaging has been used to successfully detect and map
brain tumors in human patients [141].

Cancer is caused by uncontrolled cell division. Pathology is the key to understanding
and diagnosing cancer [142,143]. Therefore, it is essential to obtain an accurate diagnosis to
determine the best treatment plan [144]. That is why ultrasounds need image classification
and object recognition algorithms that use deep learning to obtain precise results. These
Al technologies include convolutional neural networks and recurrent neural networks.
These algorithms have helped to examine medical images of various malignant neoplasms,
such as brain tumors [145,146]. The rapid and noninvasive diagnosis of brain tumors is
becoming increasingly popular [147]. This is in part due to the difficulty in diagnosing
gliomas using MRI alone, and the possibility of irreversible errors. Al algorithms can help
streamline this process and make it more accurate [148].

2.2. Radiomics in Brain Tumor Diagnosis

A precise diagnosis is essential for cancer treatment planning and predicting patient
outcomes. Tumor classification and post-treatment response assessment are both improved
when a precise diagnosis is made. In 2016, the WHO released an updated classification of
brain tumors that integrated information on genetics [149]. Qualitative markers, such as
tumor density and enhancement pattern, are used in conventional radiographic evaluation
of tumors. In a study, it was shown that radiomics allowed for radiographic images to
be digitally decoded to quantitative properties, which could then be used to distinguish
between low-grade and high-grade gliomas [150]. Images fed into big data analytical
tools provide information on tumor biology and therapeutic response [151]. Radiomics is
the study of how medical images can be used to extract quantitative features that can be
used to predict clinical outcomes [152]. Currently, there are no standard assessments of
scientific integrity and clinical relevance [153]. Radiomics provides valuable information on
tumor responses to therapy by incorporating Al into the glioblastoma multiforme (GBM)
assessment of tumors using data from images. Radiomics uses sophisticated image analysis
methods, such as diffusion and perfusion imaging, to provide accurate diagnosis and treat-
ment of GBM [154]. Deep radiomic characteristics demonstrated markedly better precision
(p < 0.05), with an AUC of 89.15%, compared to 78.07% for standard radiomic character-
istics, for short and long-term survival prediction in patients with recurrent GBM [155].
Radiomics based on deep learning needs larger datasets to achieve better results due to the
strong correlation between the extracted features and the input data. However, the limited
availability of the dataset prevents radiomic implementation in many research areas. On
the contrary, one technique that avoids this constraint is transfer learning. Transfer learning
uses pre-trained neural networks for training interrelated purposes. For example, a neural
network trained on imaging data to segment gliomas can be used for segmentation of
brain metastases [149]. In one study, the researchers identified a signature of 11 radio-
graphic characteristics to predict both survival and stratification in patients with newly
diagnosed glioblastoma. The radiomic signature demonstrated improved performance
over established radiological and clinical risk models [156]. Radiomics continues to inte-
grate oncology, radiology, and machine learning, and is growing rapidly. In the future,
radiomics will play an important role in precision diagnostics and oncology due to the
ever-increasing clinical data and advances in machine learning methods. To improve the
acceptability of radiomics, reproducibility and interpretability should be the focus. As per
a study, radiomics can improve the accuracy of cancer diagnosis by up to 20% [157].

Radiogenomics (‘imaging genomics’) is a rapidly growing field that studies the re-
lationship of genomic features of a disease to imaging biomarkers. In an earlier study,
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unsupervised learning algorithms and a knowledge based unsupervised fuzzy clustering
approach, which is a type of algorithm, were discussed [125]. This new field is enabled
by a three-way combination of textural, functional, and morphological signatures that are
derived from high-throughput quantitative metrics extraction of MR images at the voxel
level. The clinical application of radiogenomics is limited by the heterogeneity of brain
tumors. Spatial and temporal heterogeneity can result in adverse clinical outcomes. Current
cancer treatments work uniformly in tumors regardless of spatial or temporal variation
in cancer cell behavior and survival. Performing whole tumor analysis by radiogenomics
can address this limitation [158]. In response to modern chemotherapy/immunotherapy
and radiation therapy, radiomics and radiogenomics show promise in providing accurate
diagnosis, prediction of prognosis, and evaluation of tumor response.

2.3. Convolutional Neural Networks for Clinical Diagnostics

Different CNN architectures can be trained more quickly and accurately by using
a combination of CNNs and stochastic gradient optimization algorithms. Emerging Al
approaches, such as neural networks, deep learning, and CNN, help to retrieve important
clinical data. These clinical data can be used for treatment planning and post-treatment
monitoring [159]. By developing a fast and stable convergence method, it is possible to
reduce the amount of time and resources needed to tune the momentum hyperparameters
in popular CNN optimizers. This could improve the classification of images used in medical
diagnostics [160]. CNNs can solve the problem of computer-aided diagnosis [161]. Ker etal.,
used a CNN to classify brain histological samples into high or low-grade glioma with 98%
and 100% accuracy, respectively [162]. A demonstration by Havaei et al., showed that a
CNN was 30 times faster and more precise than cutting-edge segmenting platforms [79].
Deep CNNSs can extract significant features with high accuracy from GBM histopathology
images [163]. With continuous improvements in the prediction of the accuracy of the
system, deep CNNs can be a powerful clinical tool for the early detection and management
of GBM. Raman spectroscopy probes have recently been used to find brain tumors in
real time during surgery. This technology can detect diseased tissues up to a millimeter
deep because it collects high-quality signals rapidly [164]. This ability is beneficial in
neurosurgical procedures [165]. It can detect tumor margins and give surgeons immediate
feedback on whether tumor cells are still present [166]. Clinical data shows that tumor
classification based on a combination of 3D CNN characteristics is highly accurate and can
improve clinical outcomes by facilitating the selection of the most appropriate treatment
regimen for patients [167].

3. Future of Al in Brain Tumor

Although Al technologies have changed diagnostic radiology a lot, there are many
areas that still need improvement. These areas include Al applied to detect, segment, and
classify brain tumors, which would make patient care better [168]. The recent integration
of an Al system into the clinical workflow indicates that Al can be used to improve clinical
care [169]. Al can be used for early diagnosis of gliomas in the absence of visual contrast;
however, there is currently a lack of high-quality image data which limits its potential. A
future step in Al development and imaging technologies is to recognize pre-metastatic
niches. The early detection of these niches provides an accurate assessment of a patient’s
probability to develop metastatic or micrometastatic disease. Al applications can be divided
into two categories: (1) upstream Al applications that concern operational analytics, and
(2) downstream Al applications that are focused on the imaging data themselves [170].
Improvement in the accuracy and efficiency of Al applications is possible by combining
different types of annotations. A distinction like this can be limiting because it prevents
different annotation types from being combined. This will increase the interest in and
supervision of medical image analysis [171]. Al in neurology has a promising future
because it has the potential to predict seizures [172] and grade brain tumors [173]. The
model was significantly improved when it was used to segment brain tumors on MR
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images. This was done by multitasking with global labels and local annotations [174]. The
researchers showed that Al algorithms can accurately segment intracranial hemorrhages
on brain CT images and measure hemorrhage volumes. The device could be used to detect
and measure head and neck vascular tumors or malformations [175]. Al has the potential
to provide significant advances in the accurate interpretation of cancer imaging, including
extrapolation of the tumor genotype, volumetric delineation over time, and prediction of
clinical outcome based on the phenotype of its radiographic appearance [151].

4. Challenges for Using Al with Brain Tumors

Brain gliomas are one of the most difficult cancers to detect and classify [176]. Gliomas
are often small and difficult to see on imaging tests, and their symptoms can be vague and
mimic other conditions. Deep learning and machine learning have the potential to change
the diagnosis of glioma in the future [147]. Al is becoming increasingly popular in smart
healthcare [177,178]. A significant barrier healthcare providers face is the lack of resources
and investment in information technology. Another is the lack of training on how to use big
data. Big data can be analyzed using sophisticated methods that are designed to handle the
volume, variety, and velocity of big data. An intelligent tutoring system or process-oriented
e-learning system can help train personnel in big data. Additionally, there are concerns
about data security and privacy [179], for example access control models and privacy-
preserving protocols. Centralized Al is being used by healthcare providers to overcome
the issue of not having enough data to train machine learning models. However, it may
be difficult to transfer sensitive patient information from hospitals to these processing
centers, as this requires a lot of time and resources. This could then limit inter-center
research cooperation [179]. Instead, healthcare institutions could use federated learning
to collaborate with each other. Federated learning is a machine learning technique that
trains an algorithm across multiple decentralized edge devices or servers holding local
data. This offers a way to unlock information without anyone seeing or touching the data.
Federated learning would allow different healthcare providers to keep their sensitive data
private while still being able to train machine learning models on shared data. Despite
some progress, brain tumor research still has many limitations. A challenge has been
grading tumors by human interpretation of images. This process involves some subjectivity
in the classification of tumor grade based on morphology and the person interpreting the
images. Therefore, a more accurate diagnosis can be sought through an automated image
analytic process, which will assist in a quantitatively objective classification process for
brain tumors [180]. Emerging Al methods have shown great promise for medical imaging
in radiology [149].

5. Conclusions

The use of Al as a support tool in cancer intervention and prevention strategies has
shown promising results. Al-assisted brain tumor surgery can result in safer and more
effective treatment. By integrating clinical, radiological, and molecular markers, Al has
the potential to significantly improve patient care. Recent developments in PM have
emphasized targeted therapies and customized treatment techniques. Although the large-
scale implementation of Al and PM in brain tumor treatment is facing challenges, the
tremendous pace at which they are getting developed holds a great promise to remarkable
progress in the outcomes.
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