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Abstract: Gleamer BoneView© is a commercially available AI algorithm for fracture detection in
radiographs. We aim to test if the algorithm can assist in better sensitivity and specificity for fracture
detection by residents with prospective integration into clinical workflow. Radiographs with inquiry
for fracture initially reviewed by two residents were randomly assigned and included. A preliminary
diagnosis of a possible fracture was made. Thereafter, the AI decision on presence and location of
possible fractures was shown and changes to diagnosis could be made. Final diagnosis of fracture
was made by a board-certified radiologist with over eight years of experience, or if available, cross-
sectional imaging. Sensitivity and specificity of the human report, AI diagnosis, and assisted report
were calculated in comparison to the final expert diagnosis. 1163 exams in 735 patients were included,
with a total of 367 fractures (31.56%). Pure human sensitivity was 84.74%, and AI sensitivity was
86.92%. Thirty-five changes were made after showing AI results, 33 of which resulted in the correct
diagnosis, resulting in 25 additionally found fractures. This resulted in a sensitivity of 91.28% for
the assisted report. Specificity was 97.11, 84.67, and 97.36%, respectively. AI assistance showed an
increase in sensitivity for both residents, without a loss of specificity.
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1. Introduction

In recent years, multiple artificial intelligence (AI) diagnostic tools to assist radiologists
have become available for purchase after regulatory approval [1,2]. Many of these products
apply for approval via retrospective evidence, showing the diagnostic performance on
a selected set of data [3]. With most training and testing of the algorithms happening
retrospectively, the applicability and use case in the real-life clinical setting often remains
vague and unproven. Many AI diagnostic tools only have regulatory approval to assist the
radiologist in detection and prioritization, not allowing for a stand-alone diagnosis [3].

One such AI tool for fracture detection in radiographs is Gleamer BoneView© (Gleamer,
Paris, France), which has shown promising evidence for fracture detection with an accuracy
of up to 0.97 area under the curve (AUC) of the AI alone [4,5]. Generally, sensitivity
and specificity in fracture detection can vary widely between anatomical regions and
experience. In a study of extremity fractures in an emergency department, Wei et al.
found 115 missed fractures in a total of 3081 fractures, only one-third of which were
radiographically imperceptible [6]. Other research has found up to 3.1% of missed fractures
at initial presentation to the emergency department, 86% of which resulted in changes in
treatment [7]. Additionally, radiologists can be prone to common diagnostic errors, such as
satisfaction of search, and may therefore miss multiple present fractures [8]. Novices miss
subtle fractures significantly more often than experts [9]. Missed diagnosis of fractures
represents the second most common cause of malpractice suits against radiologists in the
United States due to delays in treatment or even the absence thereof, as well as additional
radiation exposure with further imaging [10]. These aspects promise to be mitigated by AI
software assisting in detecting fractures.
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However, due to regulatory hurdles and performance limitations, standalone AI
solutions, in which the software, not a radiologist, makes the final diagnostic decision
are not currently available on the market [1,3]. While in the future, such solutions may
promise better diagnostic statistics than humans while simultaneously cutting costs and
the need for personnel resources, a risk of information loss with this approach remains.
Current AI solutions, such as Gleamer BoneView© specialize only in one task, such as
fracture detection in the given case. If the software is implemented in a standalone setting
and radiographs are not reviewed by a human reader, ancillary information may get lost.
Currently, the software only proposes a diagnosis of fracture or no fracture, leaving out
vital information regularly included in reports, such as level of displacement, fracture
shape, and joint involvement. Other critical secondary findings, such as underlying bone
disease or even an incidental finding of a chest lesion in a rib radiograph, would also not be
conveyed. Until solutions exist that combine the high diagnostic accuracy with secondary
findings and a pertinent report for the attending physician, a combination of AI and human
diagnosis may be useful for increasing diagnostic accuracy in fracture detection.

AI algorithms are trained on large sets of data, usually previously labeled by experts.
Gleamer BoneView© was developed using a set of 60,170 trauma radiographs acquired from
22 institutions. The deep learning algorithm is based on the “Detectron 2” framework [4].

In this prospective study, we propose to test the prospective integration of Gleamer
BoneView© into the standard clinical workflow of resident radiologists in a level 3 trauma
center to prove if the assistance of AI can lead to better initial reports for radiographs with
an inquiry for trauma.

2. Materials and Methods
2.1. Integration into Clinical Workflow

Regular clinical workflow precludes the patient examination by a clinician in either
an outpatient (emergency department (ED) or outpatient clinic) or inpatient setting. If
a traumatic or nontraumatic fracture is suspected after the attainment of a patient his-
tory and clinical exam, the clinician may order a conventional radiographic exam of any
anatomic regions implicated, purveying crucial clinical information to the radiographers
and radiologists. These exams are performed by set standards by the radiography staff.
Afterwards, the images can directly be viewed in the clinic’s PACS System (Phönix PACS
MERLIN Diagnostic Workcenter Version 7.0, Phönix-PACS GmbH, Freiburg, Germany). A
resident radiologist immediately issues a preliminary written report (marked as such). All
radiographs are finally supervised and reported on within 24 h. These preliminary reports
are reviewed and either signed off unchanged or corrected accordingly by an experienced
board-certified radiologist. Any pertinent clinical changes from the preliminary to the final
report are submitted to the providing clinician where possible.

The AI-integrated clinical workflow changes the radiologic reporting slightly to po-
tentially change the fracture diagnosis in the preliminary reports. After making an initial
diagnosis on only the images and noting this down, all images of the radiographic exam
were transmitted to an onsite interface running the AI fracture detection software (Gleamer
BoneView© Version 1.2.0, steady-state version). This software returned a diagnosis of
“Positive,” “Doubt,” or “Negative” (Figure 1a–c) for the diagnosis of fractures for the
entire exam within 3 min, marking a bounding box with a through line where a fracture is
diagnosed and a bounding box with a dashed line where a fracture is possible (“Doubt”)
for all possible fractures detected in each image. The AI sets the threshold of “Doubt” at
50–89% confidence and “fracture” at greater than or equal to 90% [4]. Additionally, the
AI marks regions of interest where it diagnoses a joint effusion or dislocation. With this
AI diagnosis, the resident was able to reconsider their initial diagnosis and then write the
preliminary report, after which workflow remained unchanged. For purposes of this study,
the resident evaluated the presence or absence of a fracture for all images of the entire
acquired exam in a “present”/”absent” manner, regardless of if possibly multiple fractures
were visible in one exam. The full result of the AI software, as presented in a separate PACS
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image was noted, as well as this resulting in any change of the initial diagnosis. For the
calculation of AI-only diagnostic measures, “Positive” and “Doubt” were both counted
as fracture-positive. This combined result was then noted as “fracture”/”no fracture,”
corresponding to the written preliminary report. Finally, once a final report was available,
results were compared to the final diagnosis by the board-certified radiologist. Figure 2
shows the clinical workflow with and without AI assistance.

Life 2023, 13, x FOR PEER REVIEW 3 of 13 
 

 

With this AI diagnosis, the resident was able to reconsider their initial diagnosis and then 
write the preliminary report, after which workflow remained unchanged. For purposes of 
this study, the resident evaluated the presence or absence of a fracture for all images of 
the entire acquired exam in a “present”/”absent” manner, regardless of if possibly multi-
ple fractures were visible in one exam. The full result of the AI software, as presented in 
a separate PACS image was noted, as well as this resulting in any change of the initial 
diagnosis. For the calculation of AI-only diagnostic measures, “Positive” and “Doubt” 
were both counted as fracture-positive. This combined result was then noted as “frac-
ture”/”no fracture,” corresponding to the written preliminary report. Finally, once a final 
report was available, results were compared to the final diagnosis by the board-certified 
radiologist. Figure 2 shows the clinical workflow with and without AI assistance. 

In cases where cross-sectional imaging (CT, MRI, PET) was performed within one 
week after the initial radiographic exam, and no new trauma or symptoms were indicated, 
this diagnosis of this imaging was used as the gold-standard reference, noting where the 
final report diagnosis was overruled. 

   
(a) (b) (c) 

Figure 1. Result frames shown by the AI software delineating a case of exams without a fracture 
((a), left), a possible fracture at 50–89% certainty threshold ((b), center) and a fracture at ≥90% cer-
tainty ((c), right). The number X-ray images analyzed in the exam is also shown. 

 
Figure 2. Clinical workflow for fracture diagnosis without (white boxes) and with (gray boxes) AI 
assistance. 

2.2. Inclusion and Exclusion 
All radiographic exams with inquiry for fracture, which were primarily reported on 

by either of two radiology residents (J.O., S.L.) in a total period of five months (February–

Figure 1. Result frames shown by the AI software delineating a case of exams without a fracture ((a),
left), a possible fracture at 50–89% certainty threshold ((b), center) and a fracture at ≥90% certainty
((c), right). The number X-ray images analyzed in the exam is also shown.
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Figure 2. Clinical workflow for fracture diagnosis without (white boxes) and with (gray boxes)
AI assistance.

In cases where cross-sectional imaging (CT, MRI, PET) was performed within one
week after the initial radiographic exam, and no new trauma or symptoms were indicated,
this diagnosis of this imaging was used as the gold-standard reference, noting where the
final report diagnosis was overruled.

2.2. Inclusion and Exclusion

All radiographic exams with inquiry for fracture, which were primarily reported on by
either of two radiology residents (J.O., S.L.) in a total period of five months (February–June
2022) were included in this study. An exam was defined as a single or set of images of the
same anatomic region for a single patient, where a fracture was suspected. Each exam is
saved as a separate entry in our clinic’s RIS-System (GE Centricity RIS-I 7.0; GE Healthcare,
Chicago, IL, USA). Dependent on the type of trauma, multiple exams may be processed for
the same patient.
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Inclusion Criteria:

• Full radiographic exam of one anatomic region with one or multiple images;
• Inquiry for fracture;
• Primary review by either of two residents.
• Exclusion Criteria:
• Follow-up imaging for known fractures;
• Skeletal radiographs with other inquiry (i.e., inflammatory disease, post-surgical

radiographs, etc.);
• Non-processable radiographs: full chest radiographs, abdomen radiographs, cervical

spine radiographs, radiographs of the skull or face.

Patient gender and age were noted for each exam, as well as the number of acquired
images. The anatomical region was broadly classified into one of 8 regions (spine, ribs,
shoulder/clavicle, elbow/arm, hand/wrist, hip/pelvis, knee/leg, ankle/foot), as used
in a previous study on the AI software [4]. In spine radiographs, a further subdivision
into thoracic and lumbar spine was made. The imaged side was noted where applicable.
The type of trauma leading to the radiograph was also broadly classified into 5 groups:
(1) no direct trauma in the patient history, (2) falls, (3) blunt-force trauma (e.g., assault,
collision or crush injuries), (4) sharp force trauma (e.g., cuts and bites), (5) trauma due to
unnatural joint movement (e.g., supination trauma). In cases with a fracture, an additional
classification into obvious (multi-fragmented and/or displaced) and nonobvious (single
fracture line and/or nondisplaced) was made. Finally, it was noted if any foreign material
was previously present in the imaged bone, broadly classifying this into metal hardware,
cement, or a combination of both.

2.3. Statistical Analysis

Data entry and analysis was performed with Excel 365 Version 2208 (Microsoft Corpo-
ration, Redmon, WA, USA) and IBM SPSS Statistics 25 (IBM, Armonk, NY, USA). Sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV) were calcu-
lated for each resident’s cases for human diagnosis, AI-only diagnosis and combined report,
compared to the gold standard set by the board-certified radiologist or cross-sectional imag-
ing. A repeated measures ANOVA was used to test statistical significance in the difference
of the sensitivity between the three groups. Significance was defined at a p-value < 0.05.
Additionally, these statistics are reported for the full data set, without subdividing between
the residents. Further analysis was performed for each of the 8 defined body regions,
as well as comparing between cases with and without foreign materials and obvious to
nonobvious fractures and the results for patients under the age of 18. All results are shown
with 95% confidence intervals (95%-CI).

Based on an initial dataset with a null hypothesis for the human sensitivity of 78.7%
with a 30% prevalence of fractures, the sample size needed for a power greater than 0.8
at a 0.05 significance level in a 2-sided test for an alternative hypothesis of 85% for the
combined sensitivity was calculated in 1006 exams.

3. Results
3.1. Dataset

A total of 1163 exams (641 for reviewer 1, 522 for reviewer 2) in 735 patients (58%
female) were included in the study. Average patient age was 61.39 years (standard deviation
21.9 years, range: 2–100 years). The dataset included at total of 2256 conventional X-ray
images (average 1.94 per exam). Hip (225) and spine (219) exams were most common. A
total of 367 true positive fractures were defined (31.56%). Additional imaging was available
for confirmation of diagnosis in 149 cases (109 CT scans, 33 MRI, 4 CT and MRI, and
3 additional conventional scans). Additional imaging overruled the final report diagnosis
in nine cases (seven fractures identified, two fractures ruled out). This results in an expert
diagnosis sensitivity of 98.37% and specificity of 99.75%. One hundred and eighty-one
fractures were defined as obvious. The AI software rejected the images for analysis in
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11 cases (10 spine images, 1 rib images) as being of an unsupported anatomical region
(either as constituting a chest radiograph or an abdominal radiograph). These cases were
not excluded for further analysis. Only one fracture was present in these eleven cases.

Of the exams, 610 cases were classified as falls, 368 had no apparent trauma his-
tory, 105 were blunt force trauma, 32 were sharp force trauma and 48 were classified as
distortion injuries.

3.2. General Sensitivity and Specificity

Overall sensitivity for humans was 84.79%, for AI alone 86.69%, and combined 91.28%.
A repeated measures ANOVA showed statistical significance between the three groups
(p < 0.001). Specificity was 97.11%, 84.67%, and 97.36% respectively. Table 1 shows the
results for the entire dataset as well as each subset of the two reviewers. With the addition
of AI software, 35 changes to the initial diagnosis were made in the dataset (3.01%). This
resulted in 25 additional correct fracture diagnoses, 6 correct fracture exclusions, as well as
2 incorrect fracture diagnoses and exclusions each.

Table 1. Full results for the full dataset, as well as each reviewer (±95% confidence interval).

Sensitivity Specificity Positive Predictive Value Negative Predictive
Value

Full set Human 84.74% (±0.4) 97.11% (±0.01) 93.11% (±0.03) 93.24% (±0.02)
AI only 86.92% (±0.03) 84.67% (±0.03) 72.33% (±0.04) 93.35% (±0.02)

Combined 91.28% (±0.03) 97.36% (±0.01) 94.10% (±0.02) 96.03% (±0.01)

Reviewer 1 Human 85.85% (±0.05) 97.29% (±0.01) 93.41% (±0.03) 93.90% (±0.02)
AI only 84.34% (±0.05) 84.49% (±0.03) 76.61% (±0.06) 92.67% (±0.02)

Combined 90.91% (±0.04) 97.98% (±0.01) 95.24% (±0.03) 96.02 (±0.02)

Reviewer 2 Human 83.43% (±0.06) 96.88% (±0.02) 92.76% (±0.04) 92.43% (±0.03)
AI only 89.94% (±0.05) 79.89% (±0.04) 68.16% (±0.06) 93.31% (±0.03)

Combined 91.71% (±0.04) 96.60% (±0.02) 92.81% (±0.04) 96.06% (±0.02)

Figure 3 shows an example of a fracture noted by the AI, which was initially thought
to be an osteophyte by both the resident and in the final report. Additional CT imaging per-
formed confirmed the presence of a fracture. A rib fracture incidentally included on a shoul-
der radiograph was missed by the AI, but correctly diagnosed by the resident (Figure 4).

3.3. Sensitivity and Specificity by Anatomical Region

Highest sensitivity for the human reader was for hip/pelvis exams (93.33%), lowest
for ribcage images (64.29%). Specificity was above 90% for all regions. AI sensitivity
was highest in shoulder/clavicle images (91.11%) and only fell below 80% in ribcage
exams. Specificity varied widely between 62.20% in spine radiographs and 93.98% for
knee/leg exams. Combined sensitivity was above 80% in all regions except ribcage (78.57%).
Specificity was above 90% for all regions and 100% for spine radiographs. Full results for
sensitivity and specificity are shown in Table 2.

3.4. Foreign Material

A total of 147 cases included foreign material in the images, 94 cases with metal
osteosynthesis material, 13 with cement, 35 with cement and metal, 6 cases had casts on,
and 1 case had a cast and metal material. Human-only sensitivity in cases with foreign
material was above the overall sensitivity with 93.55% (±0.06), specificity was 98.82%
(±0.02). AI performance was slightly below the overall results at 82.25% sensitivity (±0.10)
and specificity fell to 69.41% (±0.10). Combined results were in line with the overall data
set at 93.55% (±0.06) sensitivity and 97.65% (±0.02) specificity.
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Table 2. Sensitivity and specificity by anatomic region for human only readers, AI-only performance
and combined results.

Human Only AI Only Combined

Region Sensitivity Specificity Sensitivity Sensitivity Sensitivity Sensitivity

Spine 92.39% 98.43% 89.13% 62.20% 94.57% 100.00%

Ribs 64.29% 91.89% 78.57% 72.97% 78.57% 91.89%

Shoulder/clavicle 88.89% 96.88% 91.11% 84.38% 93.33% 96.88%

Elbow/arm 76.00% 96.55% 80.00% 89.66% 88.00% 96.55%

Wrist/hand 78.26% 96.06% 86.96% 89.76% 95.65% 95.28%

Hip/pelvis 93.22% 99.79% 88.13% 89.76% 93.22% 98.79%

Knee/leg 86.96% 97.74% 86.96% 93.98% 91.30% 98.50%

Ankle/foot 82.86% 95.58% 88.57% 88.50% 88.57% 95.58%

3.5. Obvious and Nonobvious Fracture

Of 181 obvious fractures, three fractures classified as obvious were missed by the
human reader, five were missed by the AI. Of these, only one obviously dislocated fracture
of the proximal clavicle in a shoulder radiograph was missed by both human and AI,
shown in Figure 5. This resulted in a sensitivity of 98.34% for the human reader, 97.23%
for AI and 99.44% for the combined diagnosis. One hundred and eighty-six fractures were
classified as nonobvious. Sensitivity for the human reader was 71.50%, for AI 76.88% and
combined 83.33%.
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Figure 5. Standing ap radiograph of the right shoulder. The AI software correctly sets a bounding
box around the acromioclavicular joint injury (marked as “Dislocation”); however, both the AI and
the resident missed the displaced proximal clavicle fracture (white arrow).

3.6. Fractures in Children

Thirty-one exams were of patients under the age of 18 years, with an average age of
10.8 years. Six of these exams were positive for fractures. Sensitivity for the human reader
was 100%, for AI 83.33%, and combined 100%. Specificity was 92.00%, 84.00%, and 92.00%,
respectively.

3.7. Effusion and Dislocation

Gleamer BoneView© also marks joint effusion and dislocation as possible patholo-
gies in the report. In our dataset, 61 joint dislocations were marked, of which the soft-
ware correctly marked 32 (52.46%). Forty-six cases were incorrectly marked as dislocated.
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Twenty-nine cases were reported as having a joint effusion (only noted in elbow, wrist, knee,
and ankle radiographs), 21 of which were identified by the software. Thirty cases were
incorrectly marked as having an effusion by the AI. This included one shoulder/clavicle ra-
diograph and one hip/pelvis exam, anatomical regions not usually associated with effusion
aiding in (indirect) fracture diagnosis.

4. Discussion

With the assistance of AI software, resident radiologists were able to significantly
improve their sensitivity for fracture detection in radiographs in a prospective setting
with integration into clinical workflow. Our results show an increase in sensitivity of
6.54% and are in line with a previous retrospective study that used Gleamer BoneView©,
in which Guermazi et al. found an increase of 7.6% in sensitivity although also 2.8% in
specificity (0.25% in our study) [4]. A retrospective study from Duron et al. also found an
increase of 8.7% and 4.1%, respectively [5]. The prospective setting may lead to a slight
decrease in the effectiveness of AI assistance, as the gold standard was set by regular clinical
practice (expert diagnosis, cross-sectional imaging where necessary) and not by a 3-person
consensus decision as in the retrospective studies, but our research more accurately reflects
clinical practice. Standalone AI performance was noted at 88% by Guermazi et al., directly
in line with our results. A separate study on pediatric patients (2–21 years of age) found
a per patient sensitivity of 91.3% with a specificity of 90%, with a low sensitivity of the
AI for avulsion fractures [11]. Nguyen et al. were able to find an increase in sensitivity
in a retrospective dataset of pediatric patients for fracture detection (73.3% without AI,
82.8% with assistance), with an increase of 10.3% for junior radiologists and 8.2% for senior
radiologists [12]. In our study a small subset of pediatric patients is included, representing
the patients that presented to our institution’s emergency department.

Various other AI algorithms exist for fracture detection in research as well as commer-
cial settings. In a recent meta-analysis by Kuo et al. 37 studies with AI tools for fracture
detection in radiographs were analyzed, reaching a pooled sensitivity of up to 92% and a
sensitivity of 91%. However, many of these algorithms were only for one specific anatomic
region [13]. For distal radial fractures, sensitivities of 86% and 94% were reached [14,15]
while AI was able to detect hip fractures with up to 100% sensitivity and 99% specificity [16].

The residents using the AI tool noted that in general they felt an increase of confidence
in their diagnosis if AI was concordant with their diagnosis. In the cases where the diag-
noses diverged, the AI diagnosis helped in a small number “obvious” misses, highlighting
the role as a second viewer when satisfaction of search, tiredness or distraction can cause
the radiologist to make a false call. However, in some edge cases, both residents reported
feeling somewhat unsure of their diagnosis, in particular if they decided on a fracture and
the AI result was negative.

The AI software offered a handful of instances with results that could best be described
as “obvious mistakes”. In a few cases of lateral spine radiographs, intervertebral spaces
were marked as a fracture (see Figure 6), possibly due to degenerative changes mimicking
a fracture line. In other instances, rib overlay in radiographs was marked as a fracture (see
Figure 7). These mistakes call into question the applicability of using an AI in a standalone
setting, as they may result in an overcalling of fractures.

There are several possible limitations to our study. A limited number of residents
participated within regular working hours in our research. Results may vary with a larger
group of individuals depending on internal and external factors, such as prior experience.
Results during night and weekend shifts may change reader performance. Gold standard
in this study was set by the final report of the board-certified radiologist, which also
represents a real-life approach. Here a limited number of wrong diagnoses may be present
in the dataset. As the AI results are directly shown in our clinicals PACS system, the
board-certified radiologist was able to see the AI results while correcting the initial report,
an influence through this cannot be excluded. The influence on patient outcome of an
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increased accuracy in the preliminary report was not studied; further research is needed to
determine if this leads to a reduction in additional imaging and/or better therapy.
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5. Conclusions

AI assistance in fracture detection was able to significantly increase the sensitivity for
fractures by almost 7% (84.7 vs. 91.3%) in radiographs for resident radiologists without a
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loss of specificity (97.1% vs. 97.4%). Standalone AI performance was only slightly above
human performance in terms of sensitivity at 86.9%, with a much lower specificity (84.7%),
highlighting the advantages of a combined approach. The higher accuracy may reduce
workload for board-certified radiologists in correcting preliminary reports and may lead to
improvements in patient care through better initial diagnosis.
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