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Abstract: In this narrative review, we present the evidence on nucleotide-binding and oligomerization
(NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome
activation for its putative roles in the elusive pathomechanism of aging-related cerebral small vessel
disease (CSVD). Although NLRP3 inflammasome-interleukin (IL)-1β has been implicated in the
pathophysiology of coronary artery disease, its roles in cerebral arteriothrombotic micro-circulation
disease such as CSVD remains unexplored. Here, we elaborate on the current manifestations of CSVD
and its’ complex pathogenesis and relate the array of activators and aberrant activation involving
NLRP3 inflammasome with this condition. These neuroinflammatory insights would expand on
our current understanding of CSVD clinical (and subclinical) heterogenous manifestations whilst
highlighting plausible NLRP3-linked therapeutic targets.
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1. Introduction

A recent report from the Center for Disease Control and Prevention has indicated
that 1 in 6 mortalities from non-communicable cardio-cerebrovascular disease is due to
stroke [1]. The ischemic stroke (i.e., blockage of cerebral blood flow) represents 87% of
all stroke cases [2]. Ischemic stroke is more prevalent with aging and is a leading cause
of consequential long-term disability and reduced mobility [2]. Of note, cerebral small
vessel disease (CSVD) accounts for about one-fifth (20%) of all strokes, 65% of ischemic
stroke subtypes, and is the most common source of age-related cognitive decline and
dementia and/or vascular dementia [3,4]. However, to date, there is limited knowledge of
preventive measures to arrest its onset and progression despite several reported trials and
interventions to modify the course of CSVD [5].

The research pertaining to CSVD has gained much interest worldwide given that
CSVD may lead to various vascular-related brain injuries through multiple mechanisms
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that could be synergistic and/or cumulative. In the presence of cardio-cerebrovascular dis-
ease risk factors such as aging, hypertension, type-2 diabetes mellitus (T2DM), and cerebral
amyloid angiopathy (CAA) mediated by vascular deposition of β-amyloid, the common
underlying pathophysiological mechanisms of CSVD are primarily linked to thrombo-
inflammation and arteriolosclerosis of penetrating cerebral micro-vessels (50–400 µm in
diameter) [6]. Moreover, due to the largely elusive and likely overlapping pathomecha-
nisms of CSVD, there is limited data available for its therapeutic strategy. Nevertheless,
various anti-inflammatory agents have been investigated to explore the prospective treat-
ment for inflamed cerebral ischemic tissue [7]. Corticosteroids have also been proposed as
a distinct pluripotent immuno-suppressive agent that can be beneficial for ischemic stroke
therapy [8]. However, the chronic administration of glucocorticoids to stroke patients leads
to an increased prevalence of non-communicable to communicable diseases such as pneu-
monia [9]. Therefore, exploring new potential therapies targeting specific but prominent
pro-inflammatory signals in ischemic stroke and CSVD is a timely translational effort.

Inflammasomes are protein complexes that activate caspase-1 and control the matu-
ration of interleukin-1 (IL-1), a potent pro-inflammatory cytokine, which is triggered by
a variety of endogenous and exogenous signals [10]. Over the past decades, extensive
research has been done to study the inflammasome complex and its interrelationships
with cardio-cerebrovascular diseases. The nucleotide-binding and oligomerization (NOD)
domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflamma-
some is one of the most comprehensively investigated inflammasomes. Multiple studies
have reported that the activation and expression of NLRP3 inflammasome fosters the
progression of athero-, arterio-, and/or arteriolosclerosis lesions, hence increasing the risk
for ischemic stroke [11–13]. Moreover, the activation of the NLRP3 inflammasome causes
exacerbation of ischemic stroke and full-blown stroke, whilst the inhibition of NLRP3 in-
flammasome may ameliorate the clinical symptoms and diagnosis. Therefore, the objective
of this narrative review is to highlight the current neuroimaging manifestations of CSVD
and its complex pathogenesis, as well as to connect the array of activators and aberrant
activation that may implicate the NLRP3 inflammasome in this condition. This would ex-
pand our current knowledge of the NLRP3 inflammasome as well as potential therapeutic
strategies for CSVD as arguably the most prevalent age-related cerebrovascular disease.

2. The NLRP3 Inflammasome: Structure, Activation, and Role in
Cardio-Cerebrovascular Diseases

An inflammasome is a multiple protein complex, which comprised of sensor proteins
such as pattern recognition receptors (PRRs), an effector protein (i.e., caspase-1 in canonical
inflammasome, and caspase-4,5,11 in non-canonical inflammasome), and an adaptor protein
(i.e., apoptosis-associated speck-like protein, ASC—containing caspase activation and
recruitment domain, CARD). An inflammasome modulates the innate immune signaling
where PRRs respond to pathogen-associated molecular patterns (PAMPs) and/or damage-
associated molecular patterns (DAMPs), which results in the activation and accumulation
of caspase-1 that cleaves pro-interleukin (IL)-1β and 18 to their active forms. Activated
pro-inflammatory cytokines (i.e., IL-1β) modulate inflammation in a series of disorders,
including chronic inflammatory disease and neurodegenerative disease [14].

2.1. NLRP3 Inflammasome: Structure, Activation, and Role in Cardio-Cerebrovascular Diseases

As applied to PRRs, inflammasomes can be classified as interferon (IFN)-c inducible
protein 16 (IFI16), absent in melanoma 2 (AIM2), and numerous NLR subsets [15]. Further-
more, PRRs can be sub-categorized into two main groups based on their cellular localization:
(1) some toll-like receptors (TLRs) that are located in the plasma membrane which help to
recognize extracellular DAMPs and PAMPs, (2) AIM2-like receptors and NLRs that are
found inside the cell and are responsible for detecting intracellular DAMPs and PAMPs,
and (3) subcellular interferon gamma inducible protein 16 (IFI16) [16].
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Structurally, the NLRs are made up of three main components. The first component
is the middle nucleotide-binding and oligomerization domain (NACHT) that exists in all
NLRs, which contain adenosine 5’-triphosphatase (ATPase) activity 110, which is crucial
for NLRP3 oligomerization [17,18]. The second is C-terminal, which inhibits the func-
tion of the NLR protein when leucine-rich repeats (LRRs) are inactivated or in a resting
state and adjusts the conformation following the recognition of stimuli to eliminate the
inhibitory effect on the NLR protein [19]. The third component is the N-terminal effector
domain made up of either pyrin, CARD, or the baculoviral inhibitor of apoptosis pro-
tein repeat (BIR) domain before the NACHT domain [20]. Moreover, the NLRs can be
further sub-classified into two groups based on the N-terminal domain. Firstly, the NLR
sub-family C (NLRC) that involves CARD, and secondly, the NLRP containing pyrin [16].
These N-terminal domains instigate a cascade of specific downstream signaling via certain
homotypic protein interactions.

A well-established inflammasome complex that is encoded by the nlrp3 gene is the
NLRP3 inflammasome. This inflammasome is made up of three components: the innate
immune receptor, i.e., a NLRP3 scaffold that contains three domains including the NACHT
domain (which is made up of nucleotide-binding domain, NBD, helical domain, HD—
1 and 2, and winged-helix domain, WHD), C-terminal LRRs domain, and N-terminal
PYD effector domain [21]. The next component includes cysteine protease precursor
pro-caspase (made up of caspase domain and CARD) [10,16]. Finally, the ASC is made
up of PYCARD (i.e., N-terminal PYD and C-terminal CARD), which activates caspase-1
(Figure 1). Moreover, the NLRP3 inflammasome is primarily located in immune cells such
as antigen-presenting cells macrophages, neutrophils, monocytes, and dendritic cells [16].
Furthermore, in the brain, the activated NLRP3 inflammasome is primarily derived from
microglia cells whilst the activated ASC is derived from neuronal cells [22].

2.2. Activation of the NLRP3 Inflammasome

Distinct from other PRRs (i.e., TLR, C-type lectin receptors [CLR], and RIG-I-like
receptors [RLR]), the primary amount of the NLRP3 inflammasome in immune cells is
limited [23]. The pyrin domain of ASC is the site where NLRP3 can adhere to in order to
recruit pro-caspase-1 by CARD–CARD interactions. The recruitment of pro-caspase-1 leads
to the liberation of active catalytic p10 and p20 caspase-1 fragments, enabling the cleaving
of inflammatory cytokine, i.e., pro-IL-1β and pro-IL-18 to their active states [19].

The activation of the NLRP3 inflammasome consists of a two-step process: priming
and inflammasome activation. Priming refers to the signaling of inflammasome activation
that is prompted by TLRs/nuclear factor kappa-light-chain enhancer of the activated B
cells (NF-κB) pathway [24]. The NF-κB pathway can be activated by either TLRs that sense
DAMPs and PAMPs, or cytokines (i.e., tumor necrosis factor α, TNF-α), or physiological
stress that can result in an overexpression of NLRP3, pro-IL-18, and pro-IL-1β [25]. Be-
sides that, the NLRP3 activation threshold is modulated by both post-transcriptional and
translational activation of the nlrp3 gene [17]. The activation of the NLRP3 inflammasome
(particularly in macrophages) is dependent on nlrp3 gene expression [26]. However, the
NLRP3 remains inactive following the priming, although it is more reactive to any danger
signals [27] (Figure 2).

The second step is the activation or trigger, whereby under certain signals or conditions
(i.e., oxidative stress, thrombo-inflammation, or infection), the NLR will be activated
and associated with ASC and pro-caspase-1 in a cascade response to form a complex
structure. Synonymously, this complex mediates the pro-caspase-1 self-cleavage into
caspase-1. Caspase-1 will then cleave pro-IL-1β, pro-IL-18, and the pore-forming molecule
gasdermin-D (GSDMD) into their active forms [28,29]. Moreover, several conditions trigger
or activate the NLRP3 inflammasome, and such conditions include the most crucial one,
i.e., potassium (K+) efflux, an increase of reactive oxygen species (ROS) induced by PAMPs
and DAMPs, and the release of cathepsin B by lysosomes [30]. Additionally, mitochondrial
dysfunction, calcium (Ca2+) influx, chloride (Cl-) efflux, and sodium (Na+) influx also play
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an important role in the second signals for the activation of NLRP3 inflammasome [18,19]
(Figure 2).
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Figure 1. Structure of nucleotide-binding and oligomerization (NOD) domain-like receptor
(NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome. NLRs comprised of
(a) C-terminal leucine-rich repeats (LRRs); (b) the central nucleotide-binding and oligomerization
domain (NACHT)—made up of nucleotide-binding domain, NBD, helical domain, HD–1 and 2, and
winged-helix domain, WHD; and (c) N-terminal pyrin domain (PYD). When the N-terminal part
with PYD and caspase activation and recruitment domain (CARD)—the structure is called NLRP, but
when the N-terminal consists of PYD and baculoviral inhibitor of apoptosis protein repeat (BIR)—the
structure is called NLRC. The NLRP3 inflammasome is made-up of three components (or domains),
which are the (1) LRRs-NACHT-PYD, (2) PYCARD (or PYD-CARD) or known as apoptosis-associated
speck-like protein (ASC), and (3) Pro-caspase-1 (CARD + Caspase). The three-component merged
through interaction of PYD-PYD and CARD-CARD, hence forming NLRP3 inflammasome complex.
Moreover, NIMA-related kinase 7 (NEK7) is another part of NLRP3 inflammasome that is related to
ROS-induced priming.

Previous reports have revealed that the activation of purinergic ligand-gated ion chan-
nel 7 receptor (P2X7R) plays a key role in neurodegenerative disease. Increased activation
of P2X7R signaling influences the pro-inflammatory cytokines (i.e., IL-18, IL-1b, and TNF-α)
and ROS (i.e., hydrogen peroxide) [31], which induced NF-kB signaling, and hence activates
the NLRP3 inflammasome and subsequent cellular death [31]. The dying cells may increase
the production and release of ATP and degenerative cycle. Moreover, P2X7R can mediate
the over-production of intracellular ATP, hence increasing the upregulation of purinergic
signaling and inflammation [32]. Following that is the elevation of Ca2+

, Na+ influx, and
K+ efflux, which increases the production of ROS. The elevated production of ROS is also
due to mitochondria dysfunction mediated by oxidative stress [33].
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Figure 2. Mechanism of nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR)
family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome activation. Upon certain cel-
lular stress and/or elevated thrombo-inflammation, the increase in oxidative stress induced the
over-activation of adenosine triphosphate (ATP), activates the purinergic ligand-gated ion channel
7 receptor (P2X7R), hence elevating calcium ion (Ca2+) and sodium ions (Na+) influx, and potassium
ions (K+) efflux. Following that is the increased production of reactive oxygen species (ROS). The
elevated production of ROS is also due to mitochondria dysfunction mediated by oxidative stress.
Besides, following physiological stress, an increased stimulation of toll-like receptors (TLRs) by
lipopolysaccharide (LPS) and interleukin (IL)–1 receptor (IL-1R) by extracellular IL-1β induced the
activation of nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) that subsequently
elevated the gene expression of NLRP3, pro-IL-18, and pro-IL-1β. The activated NLRP3 inflamma-
some mediates the pro-caspase self-cleavage into caspase 1. Caspase-1 lyses pro-IL-1β, pro-IL-18, and
gasdermin-D-mediated cell death (GSDMD) into their active form, leading to pyroptosis or cell-death.

2.3. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases

An increased expression of pro-inflammatory cytokines such as IL-1β has been widely
studied and linked to cerebral infarction with the NLRP3 inflammasome and its inflamma-
tory pathways (including caspase-1 and IL-1β) [34–36]. Moreover, IL-1β is mainly activated
by the IL-1β converting enzyme called caspase-1 [37], which causes the elevation of cere-
bral infarct size by instigating the infiltration of neutrophil, and adherence at the infarct
locus [34]. However, the infarct size and volume, as well as the neurological deficits caused
by middle cerebral artery occlusion, were reported to be ameliorated after caspase-1 and
IL-1β were knocked out or inhibited [38,39]. Furthermore, previous studies have linked
the increased IL-1β expression to early brain aneurysm in pre-clinical mice models, and
that IL-1β gene knockout diminishes the occurrence of cerebral vascular ballooning [40].

Previous reports also indicated that the activation of the NLRP3 inflammasome and
its pathway elevate the blood–brain barrier (BBB) permeability, microglial aggregation, and
neuronal cell death [41]. This may indicate that the NLRP3 inflammasome could interrupt
the integrity of the neuro-glio-vascular unit system dynamics [42], thereby influencing
cerebral interstitial fluidopathy (i.e., aberrant glymphatic clearance) [43,44] and age-related
low-grade inflammation (i.e., inflammaging) [45]. Interestingly, recent studies have high-
lighted the inhibition of the NLRP3 inflammasome and its pathway mitigates the cerebral
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and cerebellar infarction in terms of size and volume, secondary brain injury and/or in-
flammation following cerebral hemorrhage, preserving the integrity and permeability of
the BBB, and helping against neurological function loss and deficits [46–48].

The interrelation of the NLRP3 inflammasome and other cerebrovascular and/or
neurodegenerative diseases such as Alzheimer’s disease (AD) has also been investigated.
Neuroinflammation has been reported to cause the progression of AD, and elevated acti-
vation of pro-inflammatory cytokines such as IL-1β was detected in serum, cerebrospinal
fluid (CSF), and brain parenchyma of patients with AD, whereby IL-1β caused a neurotoxic
reaction against the neuro-glio-vascular unit [49–51]. Furthermore, IL-1β has also been
found in patients with Parkinson’s disease (PD) [52,53]. The accumulation of α-synuclein
(or Lewy bodies) that impedes the release of neurotransmitters has been identified as a
general indicator of PD. Lewy bodies may activate the NLRP3 inflammasome via both
mitochondrial dysfunction and TLRs [54]. The inhibition of IL-1β and the NLRP3 inflam-
masome has emerged as a new target of interest for the prevention and treatment of AD
and PD.

Hence, there are sufficient plausible leads to posit that the NLRP3 inflammasome plays
an important role in the pathophysiology of cerebrovascular disease, and the modulation
(i.e., activation or blocking) of the NLRP3 inflammasome or caspase-1 may influence IL-1β
synthesis and offer therapeutic avenues for cerebrovascular diseases, notably CSVD.

2.4. The Mutation of nlrp3 Gene against NLRP3 Inflammasome Pathway

As described previously, the activation of the NLRP3 inflammasome is dependent on
nlrp3 gene expression [26]. Where the priming step of NLRP3 inflammasome activation is
proportionate to the increment of nlrp3 gene expression [55]. Furthermore, an increased
pathogenic stimulus may influence the activation of the NLRP3 inflammasome following
nlrp3 gene expression upregulation. A recent study has shown that nlrp3 gene expression
was upregulated through the NF-κB pathways following the interaction of TLR with its
various agonists, such as Poly (I:C) and Pam3CysK4 [26].

Pre-clinical studies have shown that the ablation (i.e., genetic deletion) or mutation of
the nlrp3 gene potentially mitigates various age-related degenerative changes (i.e., bone loss,
cardiac aging, ovarian aging, and insulin sensitivity with glycemic control) by interfering in
the NLRP3 inflammasome activation pathways [56–59]. Moreover, Osario and colleagues,
in their animal study, have shown that genetic modification and/or deletion of NF-κB
signaling may help in the prevention of age-associated disorders [60]. Besides that, the
deletion of the nlrp3 gene has been shown to inhibit IGF-1 signaling and PI3K/AKT/mTOR
(i.e., the intracellular energy sensor—associated with increase cellular autophagy), and
other stressors (i.e., hypercaloric diet), hence improved various organism lifespan and
aging [57,61,62].

3. Cerebral Small Vessel Disease (CSVD) and NLRP3 Inflammasome
3.1. CSVD: Pathophysiological Mechanisms

The pathophysiological basis of CSVD involves changes in the structure and function
of cerebral microvasculature that penetrates in deep subcortical regions [63], such as arteries
(chiefly the middle cerebral artery tributaries) and/or arterioles as well as lipohyalinosis,
microthrombosis, necrosis, and fibrinolysis [64]. CSVD is common with aging and is
frequently discovered as an incidental finding after neuroimaging. It is often overlooked by
physicians due to its covert nature (i.e., asymptomatic). The neuroimaging manifestation
of CSVD includes white matter hyperintensities (WMHs) of presumed vascular origins,
enlarged perivascular spaces (ePVS), lacunar infarcts, cerebral microbleed (CMBs), and
cortical microinfarcts. Alarmingly, these manifestations account for approximately 25% of
the total global cases of ischemic stroke, and over 70% of vascular dementias [3].

Common cardio-cerebrovascular risk factors such as aging, hypertension, T2DM, smok-
ing, and dyslipidemia increase the chances of developing a pathological change in the arteries
and/or arteriole leading to vessel occlusion, hence arterio- and/or arteriolosclerosis [64]. This
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is also accompanied by the proliferation of connective tissue and ePVS, which in turn leads
to the loss of vascular contractility that results in vascular sclerosis [65]. Endothelial dys-
function caused by a disrupted BBB permeability, CAA, and the recently reported formation
and accumulation of cellular-derived microparticles are also factors in the etiopathogenesis
of CSVD [66]. These changes lead to cerebral blood flow (cBF) disorder or hypoperfusion,
which is correlated with atypical self-regulation and disrupts vascular wall permeability
that causes multi-focal ischemia [67].

An increase in systemic inflammatory agents such as IL-1β, IL-6, and C-reactive
protein (CRP) plays the most important roles in the genesis of neuroinflammation in CSVD
and ischemic stroke [67]. The heightened pro-inflammatory agents alongside endothelial
dysfunction (i.e., due to the formation and accumulation of cell-derived microparticles and
disrupted purinergic signaling) may further aggravate endothelial injury. For example,
microthrombi and/or microparticles may aggregate on the endothelial surface, worsening
BBB permeability and leading to microvascular bleeding [68]. Furthermore, inflammation
may disrupt cell–cell interactions, exacerbating the cellular injury that results in luminal
narrowing, reduced cBF, hypoxia, neuronal cell death, and parenchyma damage [68].

Moreover, reduced cBF leads to excitotoxicity and energy failure, hence causing the
increment of intracellular Na+ and Ca2+. Increased Ca2+ will then lead to mitochondrial
dysfunction, which increases free radicals and ROS that further elevate the production
and expression of inflammatory cytokines such as IL-1, IL-1β, and IL-6 [11]. This cas-
cade increases microglial activation and leukocyte infiltration, resulting in widespread
neuroinflammation and cell death. Furthermore, an increase in intracellular Na+ causes
peri-infarct depolarization and increases K+ efflux. Consequently, these lead to cerebral
ischemia, including CSVD manifestation [69].

3.2. The Hypothetical Link between NLRP3 Inflammasome and Manifestations of CSVD

Following parenchyma injury, sequences of pathological changes that ensue could
eventually elicit the activation of the NLRP3 inflammasome. The activated NLRP3 inflam-
masome may further worsen the parenchyma injury through a cascade of inflammatory
signaling. As aforementioned, the NLRP3 inflammasome is crucial in the genesis of
athero-, arterio-, and arteriolosclerosis and increases the likelihood of CSVD and ischemic
stroke. Thus, here we hypothesize plausible pathophysiological mechanisms that underlie
the NLRP3 inflammasome-linked CSVD through the NLRP3-mediated neuro-thrombo-
inflammation, its influence on disease progression and potential therapeutic target(s) (see
Figure 3).

3.3. Neuro-Thrombo-Inflammation: The Involvement of NLRP3 Inflammasome

Neuro-thrombo-inflammation is currently gaining attention in CSVD research. It is a
complex innate immune-inflammatory cascade in the brain modulated by pro-inflammatory
cytokine and pro-oxidative ROS (see Figure 3). These modulators mainly originate from
the neuro-glio-vascular unit including neurons, microglia, astrocytes, oligodendrocytes,
peripheral immune cells, and microvascular endothelial cells [70,71].

Following systemic stress and cellular insults, microglia are among the first to be acti-
vated and emigrate to the location of insult to mediate the innate immune response, which
results in the release of inflammatory factors, promoting pathogen invasion and neuronal
cell death [70]. The inflammatory factors (or mediators) in turn mediate the proliferation
of astrocytes and magnify the inflammatory cascade by producing more inflammatory
factors such as cytokines [70,71]. Furthermore, following cellular stress and insult, the
production of cellular debris (referred to as microparticles or ectosomes) also occurs. The
consequence of cellular inflammation is an increase in the proteolytic breakdown of the
cytoskeleton, which will eventually cause a direct plasma membrane deformation and
membrane phospholipid bilayer blebs, resulting in the formation of microparticles (0.1 to
1 µm in diameter) that are released from the cell surface [72]. The systemic accumulation of
cellular-derived microparticles may cause the formation of microthrombus, hence leading
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to CSVD [55]. Taken together, neuro-thrombo-inflammation may cause the aggregation of
immune cells, tissue or parenchyma damage, and/or cell death (apoptosis) [73].
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Figure 3. Hypothetical pathophysiological mechanisms to implicate NLRP3 inflammasome in CSVD.
Blood–brain barrier (BBB) breakdown caused by elevated thrombo-inflammation, neuronal injury, and
activation of neuro-glial cells mediates the mitochondrial dysfunction leading to increased production
of reactive oxygen species (ROS). ROS activated the NLRP3 inflammasome leading to pyroptosis
and secondary neuronal injury that may lead to the development and progression of cerebral small
vessel disease (CSVD). Besides, cellular oxidative stress also causes hypoxia-mediated nuclear factor
kappa-light-chain enhancer of activated B cells (NF-κB) pathway activation that subsequently led to
NLRP3 inflammasome activation.
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As previously stated, the pivotal role of the NLRP3 inflammasome is the production
of pro-inflammatory agents such as IL-1β that are involved in neuroinflammation. IL-1β is
mainly produced by microglia and manifested in multiple conditions, including AD [74],
PD [75], stroke [76], post-operative cognitive disorder [77], and depression [78]. In this case,
the NLRP3 inflammasome influences the proliferation of astrocytes and the accumulation
of microglia [79]. Moreover, previous studies have also reported that, following CSVD or
cerebral ischemia, the NLRP3 inflammasome could possibly be activated in microglia cells
through the activation of a purinergic signaling cascade by P2X7R and TLRs that recognize
PAMPs and DAMPs [70,80].

Furthermore, previous pre-clinical studies have suggested that following ischemia, the
increased expression of IL-1β after NLRP3 inflammasome activation may influence the per-
meability of cerebral microvasculature (including endothelial cells) and thus downregulate
the expression of specific structures in the BBB (i.e., occluding tight junction proteins and
zona occludens-1) [81–83]. Recent studies have also supported the activation of the NLRP3
inflammasome and NLRP3 inflammasome-mediated pyroptosis following ischemia, which
modulate the polarity and distribution of aquaporin-4 in the infarct area [84], leading to
an increased BBB permeability [85]. However, further studies on the exact mechanism are
warranted [86]. Additionally, the recruited neutrophils in advanced or age-related CSVD
may contribute to these BBB damages and could inflict a global cerebral ischemia and/or
bleeding [87].

Therefore, it appears that neuro-thrombo-inflammation and the NLRP3 inflammasome
are jointly implicated in the pathophysiological mechanism of CSVD and ischemic stroke or
cerebrovascular disease in general. At the outset of cerebral ischemia, the neuro-thrombo-
inflammation may disrupt the integrity of the BBB, thus promoting neuronal degeneration,
axonal loss, neuronal cell death, and parenchymal damage. Pre-clinical animal models
have also shown that elevated pro-inflammatory cytokines are released following NLRP3
inflammasome activation and may further exasperate the inflammation [88].

3.4. The Progression of CSVD Heterogeneity Following Activation of NLRP3 Inflammasome

The magnitude of which the progression of certain CSVD manifestations (i.e., WMH,
ePVs, etc.) may differ due to their exclusive etiopathogenesis (i.e., anatomical dependent)
and socio-demographic factors has rarely been studied [89,90]. For example, deep sub-
cortical WMHs may be due to axonal loss and/or arterio- or arteriolosclerosis, whereas
periventricular WMHs mainly result from demyelination [90]. Moreover, ePVs in the basal
ganglia may signify hypertensive arteriopathy, however lobar ePVS may signify CAA [89].
Hence, identification of the shared etiopathogenesis of CSVD manifestation is crucial when
studying the progression of CSVD heterogeneity.

Recent studies have reported that some CSVD manifestations share exclusively similar
pathogenesis, for example, CAA may cause the accumulation of amyloid (i.e., amyloid
plaques) in the cerebral vasculature that supplies cortical and subcortical white matter.
Blockage at the cortical vasculature may cause impairment in the cortical interstitial fluid
drainage pathway or failure of waste clearance (i.e., fluidopathy or glymphatic system
aberration), hence resulting in ePVS where an increased plaque in the subcortical region
may result in WMHs [91,92]. Moreover, increased BBB permeability (due to endothelial dys-
function, results in plasma fluid components leakage) has been reported to be interlinked
with CSVD manifestations such as WMHs with lacunes [93]. Taken together, cerebral
microvascular lesions of ischemic origins (i.e., WMH, PVS, and lacunes) may promote
neurodegenerative progression.

Furthermore, recent reports revealed that the NLRP3 inflammasome-mediated epithe-
lial pyroptosis (i.e., mode of programmed cell death which is distinguished by the formation
of plasma membrane pores mediated by inflammatory cytokines and caspase-1 release and
plasma fluid components leakage) may accelerate the development of athero-, arterio-, and
arteriolosclerotic plaques and increase plaque size [94,95], potentially influencing CSVD
progression (see Figure 3). However, reports have also shown that the inhibition of NLRP3
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inflammasome-mediated pyroptosis may possess neuroprotective benefits following cere-
bral ischemia [86,96] and potentially halting the progression of CSVD. Mechanistically,
NLRP3 inflammasome-mediated pyroptosis is activated when caspase-1 cleaves GSDMD
into C-terminal and N-terminal fragments. The N-terminal of GSDMD mediates cell lysis
and the NLRP3 inflammasome activation [97]. Studies have shown that the N-terminal
of the GSDMD lodges into the phospholipid bilayer by interacting with inner membrane
glycerophospholipids such as phosphatidylserine, phosphatidylinositol phosphates, and
phosphatidic acid, which in turn mediate the formation of pores (~20 nm) that lead to
cellular blebbing and finally bursting, which releases inflammatory cytokines (i.e., IL-18
and IL-1β) [97,98] and circulating microparticles [99]. Circulating microparticles will then
in turn heighten microvascular thrombosis [100].

Therefore, the NLRP3 inflammasome may promote cellular and neuronal injury or
death arguably through pyroptosis and the formation of pro-thrombotic circulating mi-
croparticles. Furthermore, NLRP3 inflammasome-mediated pyroptosis is linked to NF-κB,
with NF-κB possibly promoting nlrp3 gene expression [17] and acting as a mediator for
NLRP3 inflammasome-mediated pyroptosis to amplify the underlying heterogeneous
manifestations of CVSD, including that of covert lesions.

3.5. The NLRP3 Inflammasome Inhibition as Neuroprotective Potential for CSVD

Multiple signaling pathways have been reported with regards to the onset and pro-
gression of cardio-cerebrovascular disease. However, limited studies address the signaling
pathway for CSVD. Moreover, various drug studies have reported that the aggravation of
the upstream NLRP3 inflammasome signaling pathway and IL-1β may serve as a neuropro-
tective potential for cerebral ischemia and CSVD. Several clinically available treatments for
NLRP3 inflammasome-mediated diseases have been proposed, including drugs that target
IL-1β (such as canakinumab—the neutralizing IL-1β antibody, anakinra—recombinant IL-
1β receptor antagonist, and lilonapil—soluble decoy IL-1β receptor) [101,102]. Nonetheless,
drugs that suppress the expression of the NLRP3 inflammasome are thought to be more
economically efficient. Table 1 summarizes the current evidence on the available NLRP3
inflammasome inhibitors that can act as potential neuroprotection for CSVD.

Table 1. Evidence on NLRP3 inflammasome inhibitors as potential neuroprotection for CSVD.

Target Findings Refs.

Ethanol extract of Canna x generalis rhizome

• Inhibits the expression of nlrp3 gene and ASC mRNA
• Cleaved caspase-1 proteins, hence, inhibit the activation of

NLRP3 inflammasomes
• Helps up-regulate occluding and claudin-1 expression

following cerebral ischemia

[82,103]

ER2.4 and ER2.7 from Hibiscus noldeae
• Inhibits the expression of IL-1β and IL-6
• Inhibits pro-caspase-1 expression hence aggravating NLRP3

inflammasome activation
[104]

Water extract of Artemisia scoparia

• Inhibits NF-κB
• Inhibits extracellular signal-regulated kinase-mediated

NLRP3 and IL-1β gene expression
• Inhibits caspase-1 and IL-1β cleavage

[105]

Baicalin
• Reduces caspase-1 mRNA and nlrp3 gene expression
• Impedes the progression of atherosclerosis in mouse

atherosclerotic model
[106]

6-shogaol, 8-shogaol, and 10-gingerol from
ginger plant

• Inhibits ATP-mediated caspase-1 activation
• Inhibits lipopolysaccharide-mediated pro-IL-1β and NLRP3

expression
[107]
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Table 1. Cont.

Target Findings Refs.

MCC950 (or CP-456773 or CRID3)

• Targets NEK7 and NLRP3
• Hampers the interaction between NEK7 and NLRP3
• Inhibits NLRP3 inflammasome in the NACHT domain
• Positive effect in mouse models of various

NLRP3-inflammasome-mediated diseases
• Reduces blood pressure in hypertensive mice model
• Alleviates the production of IL-1β and IL-18 and inhibits

neutrophil infiltration in ischemic disease
• Reduces brain lesion volume, and ameliorates cognitive and

neurological function by reducing leukocyte recruitment,
microglial activation, and pro-inflammatory cytokine release

[94,101,108–110]

Ginsenoside, Rg3

• Targets NEK7
• Hampers the interaction between NEK7 with NLRP3, and

ASC with NLRP3
• Inhibits the ASC oligomerization, hence altering the NLRP3

inflammasome cascade
• Inhibits K+ ion outflow-independent activation of NLRP3

inflammasome
• Inhibits K+ ion outflow-dependent interaction of

NLRP3-NEK7

[111]

Oridonin

• Targets NEK-NLRP3 interaction
• Acts as an anti-inflammatory, anti-oxidative, anti-tumor, and

neuroregulatory
• Inhibits the secretion of IL-1β, IL-6, TNF-α, and NF-κB

[112,113]

CY-09

• Inhibits the ASC-NLRP3 interaction
• Inhibits NLPR3-mediated inflammation in vivo
• Inhibits NLRP3 inflammasome, hence reducing the neuronal

pyroptosis following ischemia
• Inhibits neuronal loss and astrocytes activation

[101,114]

Dapansutrile or OLT1177

• Inhibits ASC-NLRP3 and NLRP3-caspase-1 interaction, hence
inhibits polymerization of NLRP3 inflammasome

• Ameliorates cognitive impairment in Alzheimer’s disease
mouse model

• Inhibits microglial cells to release TNF-α

[115,116]

Tranilast

• Bind to NACHT domain of NLRP3 and inhibits NLRP3-ASC
interaction

• Inhibits the activation of NLRP3 inflammasome by blocking
the assembly and oligomerization of NLRP3

• Inhibits the activation of NF-κB induced by cytokine
• Alleviates neuronal apoptosis following ischemia in the rat

model

[117]

Dehydrocostus Lactone

• Targets ASC
• Inhibits NLRP3 inflammasome activation in human

peripheral blood mononuclear cells
• Ameliorates inflammatory response in

lipopolysaccharide-mediated inflammation in mice model
• Inhibits NLRP3-ASC interaction, K+ ion outflow, IL-1β, and

NF-κB expression

[118]

Z-YVAD-FMK
• Targets caspase-1 and acts as an irreversible inhibitor for

caspase-1, hence inhibiting the release of IL-1β and IL-18 and
blocking the neuronal necrosis

[67]

Notes: ASC, apoptosis-associated speck-like protein; ATP, adenosine triphosphate; CRID3, cytokine release
inhibitory drug 3; IL-1β, interleukin 1β; K+, potassium ion; NACHT, nucleotide-binding and oligomerization
domain; NEK7, NIMA related kinase 7; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells;
NLRP3, nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-
containing 3; mRNA, messenger ribonucleic acid; T2DM, type-2 diabetes mellitus; TNF-α, tumor necrosis factor
alpha; Z-YVAD-FMK, Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone.

Apart from the various drugs available, several innate signaling pathways that can
reduce the onset and progression of CSVD have been identified. For example, the involve-
ment of the IFN-β–NLRP3 signaling pathway. IFN-β acts as an anti-inflammatory agent in
cerebrovascular disease by inhibiting NLRP3 inflammasome activity [119]. Furthermore,
a recent study discovered that IFN-β can reduce the degradation of tight junction pro-
teins in cerebral endothelial cells, thereby preventing the progression of CSVD to ischemic
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stroke [120]. In this case, IFN-β suppresses the production of ROS and induces the ex-
pression of anti-inflammatory agents such as IL-10 via a signal transducer and activator
of transcription 1 (STAT1) dependent manner. Hence, IL-10 mitigates the production of
pro-IL-1β [119,121] and subsequently inhibits the NLRP3 inflammasome. Besides that,
STAT1 has been widely studied in cerebrovascular disease as it is associated with neuronal
death. Therefore, the inhibition of STAT-1 and the NLRP3 inflammasome may play a
neuroprotective role in CSVD and ischemic stroke.

Nonetheless, it is important to note that these signaling pathways may or may not
correspond exclusively with the activation or suppression of NLRP3. The attempt to
accurately inhibit or induce changes in these signaling pathways (as described above) is
quite a challenge, as inhibiting or inducing one pathway may affect others. Therefore,
specific inhibitors or drugs (as tabulated in Table 1) may offer prevention and therapeutic
strategies for CSVD by targeting the NLRP3 inflammasome and its components.

4. Conclusions

The NLRP3 inflammasome has evolved into one of the most important components of
the cerebral immune system that offers plausible mechanistic roles in the natural history of
CSVD heterogeneous manifestations specifically, and cerebrovascular disease in general.
Neuro-thrombo-inflammation mediated by the NLRP3 inflammasome has been linked to
the progression of CSVD as the NLRP3 inflammasome mediates the production of pro-
inflammatory cytokines (i.e., IL-1β) that increase cellular infiltration and BBB permeability,
which can aggravate ischemic inflammation. Several specific drugs or compounds may
target specific NLRP3 inflammasome components and inhibit the activation and action
of the NLRP3 inflammasome that could prove beneficial for neuroprotective strategies of
CSVD and other cerebrovascular diseases.
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