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Abstract: Most experimental results that guide research related to the origin of life are from laboratory
simulations of the early Earth conditions. In the laboratory, emphasis is placed on the purity of
reagents and carefully controlled conditions, so there is a natural tendency to reject impurities and
lack of control. However, life did not originate in laboratory conditions; therefore, we should take into
consideration multiple factors that are likely to have contributed to the environmental complexity
of the early Earth. This essay describes eight physical and biophysical factors that spontaneously
resolve aqueous dispersions of ionic and organic solutes mixed with mineral particles and thereby
promote specific chemical reactions required for life to begin.
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1. Introduction

Virtually all experimental results that guide research related to the origin of life are
from laboratory simulations of the early Earth conditions. How good are the simulations,
and how confident can we be that the results are applicable to understanding the process
by which life began 4 billion years ago in chemically complex and messy environments?
One way to think about this question is to ask what we mean by “messy.” In the laboratory,
emphasis is placed on the purity of reagents and carefully controlled conditions, so there is
a natural tendency to reject impurities and lack of control. The reason is obvious: scientists
want their results to be repeatable by others.

Another meaning of messiness refers to environments that incorporate multiple biolog-
ical and non-biological compounds [1–3]. An example is Bumpass Hell, a hydrothermal site
on the Mount Lassen volcano in northern California (Figure 1). The image shows extensive
deposits of clay, a common mineral in hydrothermal pools associated with volcanism. The
pool is acidic, with pH 3, due to sulfur dioxide dissolved in the water, and the temperature
is maintained at 91 ◦C by residual heat from the underlying magma that powered the
eruption. It seems improbable that life could begin in such conditions, which, yet, are
ubiquitous in volcanic regions of today’s Earth and presumably on the prebiotic Earth
4 billion years ago.

That brings us to the question being addressed in this essay: How could orderly
structures and functions emerge that led to the first forms of life? The answer must involve
physical and chemical processes that occur even in messy conditions. We will refer to
the result of such processes as resolution, meaning that relatively pure compounds are
produced and then concentrated in such a way that they can react despite the complexity
of their surroundings. However, it is helpful to realize that messiness can be divided into
chemical and physical components, and that there are synergistic combinations in which
certain physical conditions can promote specific chemical reactions. Each of the following
sub-topics are examples of such interactions.
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2. Physical Self-Assembly Processes Tend to Resolve Complex Mixtures

A number of concerns arise when a chemist considers a natural environment in com-
parison to a laboratory one. Some of these are related to the composition of a mixture, while
others come from physical variations such as temperature, pH, ionic solutes, adsorption
to mineral surfaces and concentration, all of which are controlled in the laboratory. Let us
begin with a few examples of such concerns:

1. Desired reactions cannot occur if a solution is composed of so many solutes that the
reactants are diluted.

2. Side reactions interfere with yields if other solutes are present as potential reactants.
3. If the temperature is too low, there will be insufficient activation energy, while too

high temperatures will result in what a chemist refers to as tar [4,5]. Rather than
controlled condensation reactions that synthesize specific bonds such as esters and
peptides, elevated temperatures and high activation energy drive the formation of
multiple, random bonds that produce the intractable polymers called asphalt and tar.

4. Extreme pH ranges markedly affect the kinds of reactions that can occur and their yields.
5. High salt concentrations, particularly, of divalent cations such as calcium, precipitate

anions that are essential for life. Calcium, for instance, reacts with phosphate to form
the insoluble mineral apatite.

How can we address these concerns? The approach described here is to realize that
certain physical properties of complex mixtures can add order to a disorderly system,
thereby promoting specific chemical reactions. For example, hydrothermal vents have
been proposed as a site conducive to the origin of life [6], and the hot seawater flowing
through alkaline vents is a highly complex mixture with available free energy and reducing
power [7,8]. The effluent is produced by a serpentinization reaction, and ionic solutes
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precipitate as mineral crystals when the hot fluid encounters the cooler seawater bathing
the vents. The minerals are mostly calcium carbonate, which illustrates an important point.
Ionic compounds in a solution are disordered and in a high entropy state, but when a hot,
alkaline solution is mixed with cool seawater the solubility limits of calcium and carbonate
are exceeded, and crystallization begins. Crystals are the most ordered state of ionic solutes;
therefore, simply mixing a vent fluid with seawater leads to a vast reduction of the entropy
of the system when relatively pure calcium carbonate crystals precipitate.

3. Three Conditions Are Key to Resolving Messy Reaction Mixtures

Here, we will focus on three conditions that are ubiquitous in the laboratory but seldom
invoked as solutions to deal with messy conditions on the early Earth. The conditions
are related to concentration, water activity and temperature. For instance, when organic
chemists synthesize an ester, they will mix pure, highly concentrated solutions of organic
acids and alcohols rather than dilute solutions in an aqueous phase. The obvious reason is
that water is a product of the condensation reaction that forms ester bonds, so the highest
yields require that the water activity is low. The chemist will also heat the reaction mixture
to provide activation energy that increases the rate of the reaction.

An important question is how linking bonds could be synthesized on the prebiotic
Earth to provide the more complex molecules required for life to begin. Examples that have
been explored in the laboratory include polyesters [9], peptides [10] and depsipeptides [11].
Taking a lesson from organic chemistry, the potential reactants must be concentrated, dry
and at an elevated temperature. There is only one natural environment that meets these
requirements: hydrothermal pools on subaerial volcanic land masses [12]. Precipitation
provides fresh water distilled from a salty ocean, and the water in hydrothermal pools
undergoes continuous cycles of evaporation and rewetting. If organic solutes are in the
water, they will become extremely concentrated films on mineral surfaces during the dry
phase of a cycle and then redissolve in the wet phase. Finally, the temperature is elevated,
but typically less than the 100 ◦C boiling point of water because of the lower atmospheric
pressure at higher altitudes. An important point is that even though a variety of solutes
might be present in a messy solution, only those solutes capable of self-assembly or forming
linking bonds will serve as reactants for polymerization, while the other solutes will be
inert. Given the significance of concentration, we can now consider processes that can
increase the local concentration of potential reactants.

4. Polar vs. Non-Polar: Oils and Monolayers at the Air–Water Interface

We tend to focus on water-soluble polar and ionized solutes when we think about
constituents of messy mixtures, but we should also consider non-polar compounds such as
aliphatic and aromatic hydrocarbons and their derivatives. One of the simplest resolutions
in a messy environment is the fact that oils are relatively insoluble in water and are also
less dense. Hydrocarbon oils therefore tend to separate spontaneously from other solutes
and float on water surfaces. Furthermore, some of the hydrocarbons present in unrefined
oil are likely to be amphiphilic compounds that have both polar and non-polar moieties
in their structure. Amphiphiles are classified as surfactants because they spontaneously
accumulate at air–water interfaces as monomolecular films and reduce the surface tension
as a result.

Fatty acids are common amphiphiles that take their name from the fact that biological
fat is a triglyceride with three fatty acids attached to a glycerol molecule by ester bonds.
When the fatty acids are released from fat by hydrolysis of the ester bonds in alkaline
solutions, the result is a natural detergent called soap. Palmitic acid is a 16carbon non-polar
hydrocarbon chain with the terminal carbon in the form of a hydrophilic carboxyl group:

CH3(CH2)14-COOH 
 CH3(CH2)14-COO− + H+ (1)

It is an organic acid because the terminal carboxy group can either be protonated
(-COOH) or become anionic (-COO−) when it releases the proton in an aqueous solution.
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If a crystal of palmitic acid is placed on the surface of water in a beaker, not much will
happen, but if it is warmed to approximately 63 ◦C, the crystal will melt and suddenly
spread to form a monomolecular layer that fills the available surface area. At the molecular
level, the hydrophilic carboxyl head group is interacting with the aqueous phase, while the
hydrophobic hydrocarbon chains are standing vertically, each occupying around 0.2 nm2

of surface area. A measurement of surface tension will show an immediate decrease from
72 mN/m of water to approximately 57 mN/m. The difference between these two values—
15 mN/m—is referred to as the surface pressure.

Now we can consider an example demonstrating how the surfactant effect can resolve
a complex system. The Murchison meteorite is a mixture of silicate mineral grains with
approximately 0.1% by weight of soluble organic compounds that include monocarboxylic
acids, amino acids, alcohols, polycyclic aromatics such as pyrene and fluoranthene and
even some purines such as adenine. Figure 2 shows a result reported by Mautner et al. [13]
in which 20 mg of Murchison powder in 2 mL aqueous buffer was heated briefly to 100 ◦C
at low and high pH ranges. The initial surface pressure was near zero mN/m at room
temperature but increased dramatically to 8.1 mN/m when the powder was heated at pH
2, then increased further to 10.3 mN/m when heated at pH 11. The heat allowed small
amounts of surface-active compounds to escape from the mineral powder and form a
monolayer at the air–water interface. This represents a purification of the amphiphilic
compounds by simply heating the original mixture in an aqueous solution. When the
surface was cleaned, the surface pressure decreased but then rapidly increased as more
surfactant molecules migrated to the interface and formed a monolayer.
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Why might the assembly of surfactant monolayers and oils at air–water interfaces
be significant for the origin of life? The reason is that ultraviolet light was likely to be
an important energy source driving photochemical reactions, and polycyclic aromatic
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hydrocarbons (PAH) are pigments that are elevated to excited states when they absorb UV
photons. Oils and amphiphiles that accumulate on aqueous surfaces would be exposed to
UV light, and a variety of photochemical reactions would then occur. It has been proposed
that such reactions could have served as a primitive version of photosynthesis involving
electron transfer from a PAH such as pyrene to an acceptor such as benzophenone [14].

5. Bilayer Membranes Form Compartments by the Self-Assembly of Amphiphilic
Compounds

Figure 3 illustrates how an increasing concentration can drive the self-assembly of
amphiphilic compounds into membranous compartments. The amphiphile is decanoic acid,
a monocarboxylic acid with a 9-carbon hydrocarbon chain and a carboxyl head group. In a
dilute solution, the acid is present as individual molecules dissolved in an aqueous phase
(A). If the concentration increases, for instance by evaporation, at some point the critical
micelle concentration (CMC) is exceeded, and micelles begin to form (B). When the critical
vesicle concentration (CVC) is exceeded, the micelles fuse into vesicles bounded by bilayers
(C). At the highest concentration near dryness, the vesicles fuse into a multilamellar matrix
(D), but then reassemble into vesicles upon rehydration (E).
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Figure 3. Self-assembly processes in solutions of amphiphilic molecules such as fatty acids.

This is another example of orderly structures emerging from disorderly, messy con-
ditions. Membrane-bounded compartments were essential prerequisites for the origin of
cellular life, and it seems likely that micelles and vesicles were abundant in the prebiotic
environment [15]. Assuming that various polymers were also being synthesized, the mi-
croscopic membranous compartments would be able to encapsulate random peptides and
oligonucleotides to generate protocells. Although protocells are not alive in the usual sense,
they represent an essential step toward life. Each protocell differs in composition from all
the rest and represents a microscopic experiment. Most are inert, and their components
would be recycled, but a few might happen to have properties that allowed them to survive
stresses imposed by the environment. Populations of protocells would therefore undergo
the first stages of selection and evolution [12,16].

6. Adsorption as an Organizing Factor

Many physical and chemical processes cannot occur in the absence of a threshold
concentration; so, a physical process that specifically increases the local concentration of
a potential reactant can act as a catalyst. Clays are aluminum silicate minerals that have
an enormous capacity to adsorb polar and ionic solutes. As shown in Figure 4, they are
microscopic particles that are often present as layered structures called smectic phases.
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Various clays have surface areas ranging from 100 to 400 square meters per gram to which
solutes can bind. James Ferris and co-workers tested whether clay surfaces could promote
the polymerization of activated nucleotide monomers. In their initial studies, they reported
that when the nucleotides saturated the surface of montmorillonite clay, oligomers ranging
up to 10 nucleotides could be detected [17]. Later research demonstrated chain lengths as
long as 30–50 nucleotides [18].
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A chemist accustomed to reactions in aqueous solutions might be disappointed by the
lack of polymerization in a solution of activated nucleotides, but then would be surprised
to see polymers appear when the solution becomes more complex and “messier” with the
addition of clay. The catalytic effect of clay minerals is an example of why messy conditions
should be explored more extensively. There may be other surprises in store.

7. Eutectic Phases

The most common eutectic phase occurs when an aqueous solution freezes. As
ice crystals form, they tend to exclude solutes, which become highly concentrated films
between the crystals. The concentrating effect is similar to evaporation because reactions
can occur that cannot proceed in a dilute, disordered solution. The power of eutectic phases
to promote reactions was demonstrated by Monnard et al. [19] who froze complex mixtures
of nucleotides at−18 ◦C. The nucleotides were chemically activated as imidazole esters and
spontaneously formed ester bonds to polymerize into strands 5 to 14 nucleotides in length.
Attwater et al. [20] also tested freezing temperatures as a way to promote the non-enzymatic
polymerization of RNA. They used in vitro selection to evolve a cold-adapted ribozyme
that was capable of catalyzing the template-directed synthesis of a 206-nucleotide RNA
sequence. The reaction was markedly promoted by a cycle of freezing that concentrated
the reactants in a eutectic phase.

Bada et al. [21] proposed that the early Earth may have passed through a “snowball”
phase related to decreased solar luminosity at the time. They speculated that freeze–thaw
cycles related to bolide impacts may have promoted reactions that synthesized organic
compounds required for life’s origin. Eutectic phases associated with freezing would have
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played a role by concentrating reactants such as HCN, NH3 and aldehydes that would then
undergo Strecker synthesis to form amino acids. Although this idea remains speculative,
it does illustrate how another physical process, freezing and thawing in this case, has the
potential to resolve specific reactions in complex conditions.

8. Duplex Structures of Nucleic Acids—Stacking and Base Pairing

Although three-dimensional crystals are common, and crystallization often serves
to purify specific compounds from complex mixtures, the assembly of compounds into
one-dimensional linear crystals is less familiar. We tend to take it for granted that the
double helix of DNA is primarily stabilized by Watson–Crick base pairing between the
two strands, but in fact stacking of the base pairs is even more important in terms of
stabilization. Guanine monophosphate (GMP) quadruplexes are examples of spontaneous
stacking that produces a linear crystal [22]. Figure 5 shows how four guanines form a
quadruplex stabilized by eight hydrogen bonds indicated as dashed lines.
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guanine by N-glycoside bonds. One of the guanines is indicated by red fonts.

Atomic force microscopy can be used to visualize the linear crystals produced when a
solution of GMP and cytidine monophosphate (CMP) is concentrated by evaporation at
room temperature on a freshly cleaved mica sheet (Figure 6A). The GMP stacks into long,
linear crystals that exclude the CMP. The linear crystals are adsorbed to three axes of the
mica crystal, which accounts for their obvious alignment along three axes at 60◦. Signifi-
cantly, if the solution of GMP and CMP is evaporated on mica at 80 ◦C to provide activation
energy, long polymeric strands emerge from the mixture [23], presumably composed of
GMP and CMP linked by ester bond synthesis (Figure 6B).
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strands assemble when a mixture of GMP and CMP is dried on a freshly cleaved mica surface at room
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surface of the mica substrate. A different result occurs if the mixture is exposed to three wet–dry
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This is an example of how two physical processes can drive a significant chemical
reaction. The first process is evaporation that concentrates potential reactants on a mica
surface so that one of the reactants forms quadruplexes and linear crystals. The second pro-
cess is heating the mixture to provide activation energy that drives a condensation reaction
leading to polymerization. These are conditions that are rarely used in the laboratory but
common in hydrothermal sites associated with volcanism.

9. Thermodynamics, Kinetics and Wet–Dry Cycles

An important test of any chemical reaction proposed to be relevant to prebiotic chem-
istry is whether it is feasible in terms of thermodynamic principles [24]. A simplified
description of the primary thermodynamic principle is that the free energy (∆G) available
to drive a reaction is a function of the change in enthalpy (∆H) and entropy (∆S) terms:
∆G = ∆H − T∆S. If heat can be released by a reaction, and disorder increases, the Gibbs
free energy (∆G) is negative, and the reaction is spontaneous.

If one visits volcanic regions on today’s Earth, a striking feature is that precipitation
constantly supplies water to hydrothermal sites. A well-known example is Yellowstone
National Park, but similar sites can be found in Kamchatka, Russia, New Zealand and
Iceland. We refer to these as prebiotic analogues because similar sites would have been
abundant on the early Earth 4 billion years ago before life began. A characteristic of hy-
drothermal sites is that the pools and hot springs undergo continuous cycles of evaporation
and rewetting. There are two important properties of the wet–dry cycles that go beyond
traditional laboratory methods. First, as a solution of potential reactants is concentrated to
dryness, it makes chemical free energy available through the favorable changes in enthalpy
and entropy described earlier. The enthalpy change is due to the reduction in water activity
which draws the equilibrium of a condensation reaction to the right. The entropy change is
favorable because as the reactants in a dilute solution become concentrated, they have an
increased probability of interacting and losing water to the environment.

Finally, in the laboratory a typical reaction undergoes a single cycle in which reactions
proceed downhill to products. However, multiple cycles available in natural conditions
can take advantage of kinetic traps in which a forward reaction can be fast, but a back
reaction is slow. For instance, the synthesis of ester bonds during the dry phase of a cycle
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can be very fast, but the spontaneous hydrolysis of polymers is slow. As a result, polymers
accumulate in a steady state away from the thermodynamic equilibrium [24,25].

10. Stepping Out of the Laboratory into the Wild

A given reaction can work under carefully controlled laboratory conditions using pure
reagents, buffered solutions at a specific pH and ionic solutes such as Mg2+ that may be
required, but how valid is the assumption that it would have also been able to proceed
on the prebiotic Earth? There is one way to become more confident of this assumption,
which is to test whether a significant experiment also works in a prebiotic analogue site on
today’s Earth. If the reaction is sufficiently robust, it will be reproduced even though such
analogue sites are, by definition, messy and complex.

A few preliminary studies have been undertaken, and it is worth describing them
here so that others might accept the challenge. Given that liquid water is essential for the
origin of life, we should first note that on the Earth today there are two types of water
that have been proposed as sites for the origin of life. Over 99% of the Earth’s water is
salty seawater with 580 mM NaCl, 53 mM MgCl2 and 10 mM CaCl2; therefore, a common
assumption is that life must have begun in the ocean. The assumption was supported when
hydrothermal vents called “black smokers” were discovered, in which abundant microbial
life used the reducing power of hydrogen sulfide (H2S) as a source of chemical energy [7].
The second type consists of the alkaline vents described earlier that emit a strongly alkaline
solution containing up to 10 mM hydrogen gas in solution, which may serve as a source of
reducing power [26].

The other 1% of the Earth’s water is distilled from salty seawater and falls as precipi-
tation on subaerial continental land masses and volcanic islands like Hawaii and Iceland.
Today, most of the freshwater is in the form of ice covering Antarctica and Greenland,
but 4 billion years ago such extensive ice would have been absent when the global tem-
peratures were estimated to be 55–80 ◦C. However, active volcanoes were likely to have
been emerging from the ocean, and distilled water falling as precipitation would become
incorporated into hydrothermal hot spring sites resembling those we see today.

Freshwater hot spring sites are an alternative to salty seawater for several reasons:

1. The concentration of soluble cations is very low, in the range of a few millimolar [27].
2. Because of sulfur dioxide emissions that dissolve in the water, the solution is in the

acidic range, with pH 2–4.
3. Cycles of evaporation and rewetting serve to concentrate potential reactants as films

on mineral surfaces.

Hydrothermal fields such as those illustrated in Figure 1 are accessible prebiotic ana-
logue sites which can be used to test the assumption that laboratory simulations represent
processes and reactions expected to occur 4 billion years ago. A few such tests have been
performed. For instance, Milshteyn et al. [28] asked whether membrane-bounded vesicles
could assemble in hot spring conditions. Water samples were taken from Yellowstone hot
spring pools at acidic and neutral pH ranges. Because contemporary membrane lipids
such as phospholipid and cholesterol are products of metabolism, neither would have been
available on the prebiotic Earth. Therefore a 1:1 mole ratio mixture of 12-carbon lauric acid
and its monoglyceride was used to model the kinds of amphiphiles likely to be present.
It was observed that vesicles readily formed in the hot spring water but not in seawater
(Figure 7) because divalent cations of Ca2+ and Mg2+ caused the fatty acid to crystallize.
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Similar experiments were performed by Joshi et al. [29] using a mixture of 40 mM
decanoic acid and 20 mM monoglyceride exposed to hot spring water samples from
the Puga region of Ladahk, India. Vesicles ranging from 5 to 10 µm in diameter were
abundant, so it seems reasonable to assume that membranous compartments were present
in freshwater hot springs on volcanic land masses emerging from the global ocean 4 billion
years ago.

11. Conclusions

It is worth keeping in mind that a living cell is the messiest environment we can imag-
ine, yet somehow, the biochemical reactions of metabolism proceed smoothly despite the
incredible complexity of the cytoplasm. This is possible because enzymes catalyze specific
reactions that allow those reactions to follow metabolic pathways established by several
billion years of evolution. A second reason is that biophysical forces arrange structures
within cells to optimize those functions. A prominent example is the self-assembly of
biological membranes involved in electron transport and ATP synthesis. Although the
kinds of lipids composing the membranes are under genetic control, the assembly process
is not.

Another point is that the reaction of a pure, well-defined single reactant can generate
what most researchers would call messy products. A classic example is the formose reaction
in which hundreds of compounds are produced when formaldehyde (CHCO) reacts with
itself in alkaline solutions. Another is the spontaneous polymerization of alpha hydroxy
acids [9]. For instance, glycolic acid exposed to drying at 80 ◦C forms oligomers up to
12 subunits in length, with most between 3 to 6.

Although it is generally a good idea to use pure reagents and controlled conditions in
the laboratory, it is also useful to realize that if we limit ourselves to the laboratory, we might
miss an important ingredient or physical process. Which laboratory simulations of reactions
related to the origin of life could be expected to proceed in prebiotic analogue conditions?
This is a challenge to origins of life research because few investigators have been bold
enough to perform such experiments in the field. The factors described here—concentration,
crystallization, self-assembly of monolayers and bilayers, adsorption, eutectic phases,
stacking and base pairing—can all occur in prebiotic environments and have the potential
to promote desired reactions even in messy, complex conditions. Some of them, either
singly or in combination, may provide significant clues to understand prebiotic chemistry
that are not obvious in laboratory simulations.
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