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Abstract: The skin is the largest and outermost organ of the human body. The microbial diversity 

of the skin can be influenced by several variable factors such as physiological state, lifestyle, and 

geographical locations. Recent years have seen increased interest in research aiming at an improved 

understanding of the relationship between the human microbiota and several diseases. Albeit un-

derstudied, interesting correlations between the skin microbiota and several dermatological condi-

tions have been observed. Studies have shown that a decrease or increase in the abundance of cer-

tain microbial communities can be implicated in several dermatological pathologies. This narrative 

review (i) examines the role of the skin microbiota in the maintenance of skin homeostasis and 

health, (ii) provides examples on how some common skin diseases (acne inversa, candidiasis, pso-

riasis) are associated with the dysbiosis of microbial communities, and (iii) describes how recent 

research approaches used in skin microbiome studies may lead to improved, more sensitive diag-

nostics and individual therapeutics in the foreseeable future. 
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1. Introduction 

The skin is the external and the largest organ of the human body that functions as an 

important physical barrier (e.g., to protect against harmful external conditions and inva-

sion of pathogens) and communication tool (e.g., to respond to external stimuli) [1–3]. The 

human skin is home to millions of microorganisms, which are referred to as skin micro-

biota [1–3]. When compared to the more extensively studied gut microbiota, the skin mi-

crobiota seem to have similar characteristics, e.g., they also confer protection against path-

ogens, maintain the skin homeostasis, stimulate, and activate various immune responses, 

metabolize natural products, and produce antimicrobial peptides [3–6]. The physiological 

composition of the skin can be divided into four major micro-environments, i.e., (1) seba-

ceous (face, chest, and back), (2) moist (elbow, knees, genitalia), (3) dry (palms), and (4) 

foot-specific [3,5,7]. These micro-environments are characterized by specific microbiota 

that may have a considerable impact in maintaining a ‘healthy’ skin, whereas microbiota 

‘shifts’ can facilitate the development and progression of diseases [3,5,8,9]. Members of 

the genus Cutibacterium (previously known as Propionibacterium), for example, dominate 

the sebaceous (oily) sites of the human skin, while the moist sites are primarily colonized 

by members of the genera Staphylococcus and Corynebacterium, and the female genital tract 

is characterized by a predominance of Lactobacillus [3,8,10,11]. Although not as diverse as 
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the bacterial community, viral and fungal commensals are also present on our skin; for 

example, fungi of the genus Malassezia are widely distributed across the sebaceous sites 

of the skin [3,8,12,13]. 

The composition of the skin microbiota is assumed to be relatively stable. However, 

an imbalance in the proportion of ‘normal’ skin flora to pathogenic microorganisms, a 

phenomenon known as dysbiosis, results in the initiation and progression of several der-

matological diseases [1,3,8]. Until recently, microbiological culture-based methods were 

primarily used for the isolation and characterization of skin microbial communities 

[1,3,8,14]. However, these methods underestimate the ‘true’ diversity of organ-specific 

microbiota because many bacterial species differ considerably with regard to nutritional 

requirements and growth rates on agar plates, and a number of species simply cannot be 

grown in culture [3,8,14-18]. Staphylococcus spp., for example, grows faster than Cutibacte-

rium spp. and Corynebacterium spp. on agar plates inoculated by skin swabs, and the latter 

may thus be overlooked in culture-based studies. In an attempt to circumvent these biases 

and capture the total diversity of the skin microbiome, sequencing approaches are nowa-

days used to identify members of the skin microbial communities [1,3,15,18]. A commonly 

employed approach makes use of the targeted amplification of ‘molecular fingerprints’ of 

specific pathogen classes, e.g., the housekeeping 16S ribosomal RNA gene for bacterial 

communities [3,8,17] and the internal transcribed spacer 1 (ITS1) region of the eukaryotic 

ribosomal gene for fungi [3,8,15,16], which is then followed by nucleic acid sequencing of 

the amplified product for species identification. However, the constant evolution of se-

quencing technologies from conventional Sanger sequencing to more high-throughput 

techniques such as pyrosequencing and Illumina sequencing allows for an improved, 

more precise microbiota characterization, which is facilitated by increased read depths 

and shorter read lengths [3,8,19,20]. Amplicon sequencing, i.e., the sequencing of previ-

ously amplified nucleic acids from specific microbiota, can capture genetic variability in 

microbial communities efficiently [1,3,21–23]. Such amplicons can then be analyzed using 

different software tools such as mothur [3,24] and ‘Quantitative Insights Into Microbial 

Ecology’ (Qiime) [25]. However, amplicon sequencing is prone to different shortcomings 

and may cause an analytical bias, which might be overcome by the application of the more 

recent shotgun metagenomic sequencing [1–3,8]. Through shotgun metagenomics se-

quencing, all the genetic materials present in a given sample are analyzed simultaneously 

by untargeted (and unbiased) sequencing of nucleic acids without prior polymerase chain 

reaction (PCR) assays to amplify specific sequences. Many short sequences are being gen-

erated, which are then reconstructed by computational biology into consensus sequences 

[8,26]. Shotgun metagenomics provides sufficient information to differentiate microbial 

genetic materials into species and further into strains [8,21,26]. This ability for strain dif-

ferentiation might be important to elucidate the functional differences within a species 

[8,21,26–28]. 

The aforementioned sequencing approaches have enabled researchers to depict a 

more accurate picture of microbiota at different body sites. Here, we review recent evi-

dence pertaining to sequencing-based studies of skin microbial communities, including 

their role in health, disease initiation, and progression. 

2. Materials and Methods 

A narrative literature review on the skin microbiome in health and several selected 

diseases was conducted using published articles available on the PubMed/MEDLINE da-

tabase. Research articles published until December 2021 were selected on the basis of the 

methods used and the relevance of the results. No language restriction was applied dur-

ing the search.  
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3. The Role of Microbiota in Healthy Skin 

Structurally, the skin is composed of three distinct layers: the epidermis, the dermis, 

and the subcutaneous fat tissue [29,30]. The epidermis, which is the outer layer of the skin, 

is differentiated into the stratum corneum, stratum lucidum, stratum granulosum, and 

stratum basale [3,30]. The stratum corneum, which is the outermost layer, is composed of 

terminally differentiated and enucleated keratinocytes that are chemically cross-linked 

and act as a barrier [28–30]. The keratinocytes present in the stratum granulosum are cys-

teine-histidine rich and bind keratin [28,31]. Basal keratinocytes, immune cells (Langer-

hans cells, T cells, and melanocytes) can be found in the stratum basale [28,31]. The dermis 

is located beneath the epidermis. It is differentiated into the papillary sub-layer that facil-

itates the transport of nutrients [3,28,32] and the reticular sub-layer in which the hair fol-

licles, sebaceous glands, and sweat glands are present. The dermis is also home to fibro-

blasts, myofibroblasts, and immune cells (macrophages, lymphocytes, and mast cells) 

[28,31–33]. The subcutaneous fat layer is composed of fibrocytes and adipocytes. This 

layer produces a wide variety of growth factors, adipokines, cytokines, and immune cells. 

The adipose tissue also stores energy and functions as an endocrine gland, which is crucial 

for glucose homeostasis and lipid metabolism [34–37]. The skin plays a vital role in stim-

ulating and training the human immune system [38–40]. Studies have shown that the mi-

crobiome is influenced by many factors, such as environment, lifestyle, diet, and medica-

tion. Changes within these factors could lead to a decrease in the diversity of the human 

microbiota, thereby negatively impacting the host immune system and microbe commu-

nication, which may lead to an altered immunological tolerance and miseducation of the 

immune system. The sebum produced by the sebaceous gland lubricates the hair and skin. 

Sapienic acid produced by the hydrolysis of sebum by commensal microbes acts alongside 

other antimicrobial peptides such as cathelicidin, beta-defensins, and antimicrobial his-

tones to control microbial colonization [1,38–40]. Eccrine sweat secreted directly onto the 

skin surface creates unfavorable conditions for the survival and proliferation of microbes 

[3,38,41]. The highly colonized dermal appendage is home to a variety of microbes. This 

environment allows for ample interaction between microorganisms and host cells [38]. 

Dendritic cells are found in the epidermis and act as antigen-presenting cells to T lympho-

cytes in the nearby lymphoid organs. T cells become activated in the presence of invading 

pathogens, and trigger an inflammatory response. However, a dysregulation in this mech-

anism can occur, which may result in the emergence of inflammatory skin diseases [38]. 

Extensive microbe-microbe interaction is expected between organisms that share a 

similar niche as they compete for nutrients and other growth factors [38]. For example, 

Staphylococcus aureus, which is a commensal skin colonizer in roughly 30 percent of the 

population, has been studied extensively with regard to its interaction with other mi-

crobes. S. aureus is an opportunistic pathogen that can cause severe infection, particularly 

in immunocompromised hosts. Other Staphylococcus spp. that inhabit the skin of humans, 

for example Staphylococcus hominis and Staphylococcus lugdunensis, may produce antimi-

crobial peptides that specifically inhibit colonization by S. aureus. Other species are also 

known for their potentially beneficial effect on the human skin, such as Lactobacillus spp., 

which prevent pathogen colonization and produce anti-inflammatory secondary metabo-

lites [39–41]. The microbial diversity of the skin microbiota is influenced by several factors 

such as lifestyle, age, medications, etc. [3,8,38,42,43]. The immune system often recognizes 

the host’s commensal microbiota and establishes a mutualistic interaction. Some bacteria, 

such as Staphylococcus epidermidis, can also interact with the host’s keratinocytes directly, 

thereby inducing the production of antimicrobial peptides via immune cell signaling [40]. 

However, dysbiosis may occur and can trigger the initiation of chronic inflammatory skin 

disorders [38,42–44]. The incidence of specific pathologies such as atopic dermatitis and 

psoriasis have risen considerably in high-income countries, and it is speculated that die-

tary changes, lifestyle modifications, hygiene, and environmental factors may have con-

tributed to this, as they may adversely affect the microbial diversity and metabolism of 

the skin, which might in turn lower the organ’s immune tolerance [42,43]. Disease-specific 
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examples will be provided in the following sections for three selected conditions, i.e., (1) 

acne inversa, (2) (muco-)cutaneous candidiasis, and (3) psoriasis. Psoriasis and acne in-

versa are not directly associated with skin infections by pathogenic microorganisms. 

However, psoriasis as one of the most prevalent skin conditions is being studied inten-

sively in regard to microbiome analysis. Researchers aim to find microbial species which 

affect this disease, both positively, and negatively. The role between the skin microbiome 

and acne inversa, on the other hand, has not been established yet. In contrast to psoriasis, 

research on acne inversa is still in the early stages. In this review, we would like to point 

out the current state of research on these two diseases. In contrast to non-infectious skin 

diseases, we also aim to elucidate the impact of the skin microbiome during the infectious 

disease candidiasis. 

4. The Role of Microbiota in Selected Dermatological Diseases 

4.1. Hidradenitis Suppurativa (Acne Inversa) 

Hidradenitis suppurativa (HS), also known as acne inversa, is a chronic inflamma-

tory skin disorder [45–47]. It is clinically characterized by deep-seated fistulae, nodules, 

abscesses, sinus tracts, and scars in the axillae, inguinal folds, perianal and perineal re-

gions, buttocks, and infra/inter-mammary folds. HS is a painful and discomforting skin 

condition, which has an adverse impact on the psycho-social health of affected patients. 

Indeed, research has elucidated that people suffering from HS develop depression more 

frequently and are twice more likely to be unemployed [48,49]. The morbidity associated 

with HS is significantly higher than observed in other inflammatory skin diseases [49,50]. 

HS severity can be measured by different staging systems, e.g., the Hurley classification, 

Sartorius scoring, and HS severity index [45]. With regard to epidemiology, HS has a rel-

atively high prevalence in young females of African descent [45,51]. The etiology of HS 

has been linked to several contributing factors such as (i) cutaneous microbiome dysbiosis, 

(ii) genetics, (iii) lifestyle specificities and obesity, (iv) hormonal dysbalance, and (v) im-

mune system modifications. Here, we focus mainly on the influence of the skin microbiota 

on disease severity. 

A variety of studies demonstrated that skin microbiota play a key role in the etiopath-

ogenesis of HS [52–67]. Using a bacteriological culture-based approach, Brook et al. de-

scribed a polymicrobial nature of HS lesions. S. aureus, Streptococcus pyogenes, and Pseudo-

monas aeruginosa were the most prevalent aerobic bacteria, and Peptostreptococcus spp., 

Prevotella spp., microaerophilic streptococci, Fusobacterium spp., and Bacteroides spp. were 

the most common anaerobes [45–57]. Lapin et al. confirmed such a bacterial diversity in 

HS lesions and described S. aureus and coagulase-negative staphylococci as the most 

abundant aerobic bacteria species, while Peptostreptococcus spp. and Cutibacterium acnes 

were the most common anaerobes [68]. However, S. aureus was not frequently isolated 

from acute lesions, which raises the question of how the microbiota composition might 

shift during acute flares of HS and in different disease activity stages. A study carried out 

by Guet-Revillet et al. employed a combination of microbiological culture and meta-

genomic techniques to address this issue. According to the bacterial culture method, two 

microbiological profiles were apparent (A and B). In profile A (Hurley stage 1), S. lug-

dunensis was predominant, while in profile B (Hurley stages 2 and 3), a variety of anaero-

bic bacteria species were isolated. Metagenomic sequencing after PCR amplification of 16S 

rRNA yielded similar results, with staphylococci predominating in profile A and different 

anaerobic species (mainly Prevotella spp., Porphyromonas spp., Anaerococcus spp., and Mo-

biluncus spp.) being more characteristic of more advanced disease stages of the disease 

[53]. More recent studies carried out by Naik et al. showed a decrease in the abundance of 

Cutibacterium spp. in a study cohort which suffered from HS and was instructed to avoid 

any type of detergents, cosmetics, oral and topical antibiotics, and bathing before skin 

swabs were taken [68]. This result was consistent with other studies, which reported a 

decrease of Cutibacterium spp. and an increase of Prevotella spp. and Porphyromonas spp. 
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as being potentially linked to disease progression and severity [69]. Key findings are sum-

marized in Table 1. However, the aforementioned studies are limited by their small sam-

ple sizes, the use of PCR-based amplification before sequencing, and potential cross-con-

tamination [68,69]. Hence, further research should address HS patients with varying dis-

ease activities by examination of skin swabs employing unbiased shotgun metagenomic 

sequencing to overcome the potential shortcomings of culture and amplicon sequencing. 

Table 1. Summary of microorganisms that change abundance in hidradenitis suppurativa lesions 

(acne inversa). List of microorganisms, which may be either increased or decreased in abundance 

during hidradenitis suppurativa. An increase is marked with an arrow pointing up, a decrease with 

an arrow pointing down, and contradictory results are marked with one arrow pointing left and 

one pointing right. 

Microorganism Abundance 

Staphylococcus aureus  
Streptococcus pyogenes  

Pseudomonas aeruginosa  
Peptostreptococcus spp.   

Prevotella spp.  
Microaerophilic Streptococcus spp.  

Fusobacterium spp.  
Cutibacterium acnes  

Staphylococcus lugdunensis  
Porphyromonas spp.  

Aerococcus spp.  
Mobiluncus spp.  

4.2. (Muco-)Cutaneous Candidiasis 

Candidiasis or thrush is a fungal infection caused by members of the genus Candida 

[70]. Only a few members of the genus are pathogenic to humans. Out of the over 150 

species of Candida, Candida albicans is considered the most pathogenic. Yet, other species 

such as C. glabrata, C. tropicalis, C. krusei, C. kefyr, C. guilliermondii, C. dubliniensis, and, more 

recently, C. auris, may also cause human disease, and some of these pathogens are consid-

ered as potential public health concerns because of their relatively high propensity to 

cause outbreaks and to become resistant to commonly used anti-fungal agents [71–86]. 

C. albicans is most commonly found in the vagina of about 30 percent of women [87]. Other 

non-C. albicans species are also found in the reproductive tract of about 10–30 percent of 

women [87–93]. Candida species are opportunistic pathogens that cause infections ranging 

from superficial oral thrush and vaginitis to systemic, potentially fatal infections (can-

didemia) [70,71,94]. Mucocutaneous candidiasis can be classified into non-genital (oro-

pharyngeal and invasive infections) and genitourinary diseases [76]. Here, we will focus 

on the common genitourinary diseases caused by Candida species, which share many char-

acteristics with cutaneous candidiasis. Candidiasis occurs in men, women, and children 

alike. The most prevalent genitourinary diseases are vulvovaginal candidiasis in women, 

balanitis, balanoposthitis in men, and candiduria in both sexes and children [76]. Vulvo-

vaginal candidiasis (VVC) is a common infection of the lower female reproductive tract 

[76,77]. VVC is characterized by itching, burning and painful urination, redness, curd-like 

and foul-smelling vaginal discharge, and painful sexual intercourse [76,77]. About 75 per-

cent of women develop VVC at least once during their lifetime [76–78]. VVC can be recur-

rent and it is medically termed recurrent vulvovaginal candidiasis (RVVC), if it occurs 

more than four times per year [76,77]. Approximately 8 percent of women globally suffer 

from RVVC [76,77]. Several factors influence the occurrence of VVC and RVVC such as 

the use of antibiotics, sexual activity and HIV infection, high estrogen-containing oral 
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contraceptives, pregnancy, the use of sodium cotransporter 2 (SGLT2) inhibitors, and un-

controlled diabetes mellitus [76,80]. Compared to oropharyngeal candidiasis, VVC occurs 

frequently also in immunocompetent and otherwise healthy women [76–82]. RVVC re-

quires the long-term use of antifungal drugs to prevent it from relapsing [76,77,83]. One 

study carried out by Ceccarani et al. in 2019 showed a significant reduction of Lactobacillus 

spp. in infected vaginal ecosystems of 18 females suffering from VVC compared to 21 

healthy individuals [84]. These findings suggest a protective role of Lactobacillus spp., such 

as L. crispatus, to prevent overgrowth of Candida spp. However, some studies also suggest 

an abundance of Lactobacillus spp. with a greater incidence of Candida colonization 

[87,88,95]. Eastment et al. conducted a study in 2021 to analyze the microbiota composi-

tion of VVC patients in Kenya and the United States. Microbiota composition was ac-

quired using amplicon sequencing. The study demonstrated that a higher relative abun-

dance of Megasphaera species and Mageeibacillus indolicus was associated with a lower risk 

of yeast detection in the vaginal area. Moreover, higher abundances of Bifidobacterium bi-

fidum, several Streptococcus spp., and Aerococcus christensenii were correlated with yeast 

detection, suggesting a possible interaction of those species, thereby increasing the colo-

nization of yeast species in the vaginal area [85]. Other studies suggest the co-occurrence 

of Candida with other bacterial vaginosis (BV)-associated bacteria [95–99]. 

An important limitation of these studies is that Lactobacillus spp. were not identified 

at the species level [84,87,88,95]. Different Lactobacillus spp. can either be beneficial for the 

host and protect from an infection with Candida spp., or increase the risk of such a coloni-

zation. Therefore, identification to the species level is crucial when regarding the impact 

of Lactobacillus spp. on candidiasis. For example, studies hypothesized that the presence 

of L. iners in the female reproductive tract creates a suitable environment for the co-occur-

rence of C. albicans, especially when compared to L. crispatus. Tortelli et al. proved this 

hypothesis by examining the vaginal microbiome of women. They observed that women 

whose reproductive tract were colonized by L. iners had an increased incidence of the co-

occurrence of Candida spp. in comparison to women with diverse vaginal microbiomes 

and those colonized by L. crispatus. It was speculated that L. iners produces more lactic 

acid, which increases the pH of the vagina and significantly supports the colonization and 

co-occurrence of Candida spp. [93]. However, a main limitation of this study was that the 

entire vaginal microbiome may not have been captured because of the use of amplicon 

sequencing only to detect Lactobacillus species. [93]. The microorganisms, which might 

play a role in C. albicans colonization and infection, are summarized in Table 2. 

Table 2. Summary of microorganisms that change abundance during (muco-)cutaneous Candid-

iasis. List of microorganisms, which may be either increased or decreased in abundance during 

hidradenitis suppurativa. An increase is marked with an arrow pointing up, a decrease with an 

arrow pointing down, and contradictory results are marked with one arrow pointing left and one 

pointing right. 

Microorganism Abundance  

Staphylococcus aureus  
Streptococcus spp.  

Aerococcus christensenii  
Lactobacillus iners   

Prevotella spp.  
Megasphaera spp.  

Mageeibacillus indolicus  
Lactobacillus crispatus  

Bifidobacterium bifidum  

There is a high possibility that other anaerobic bacteria present in the female repro-

ductive tract may play crucial roles in the etiopathogenesis of VVC and RVVC. The 
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authors also did not consider the various stages of the menstrual cycles of the women 

sampled. It would be interesting to understand the role of the menstrual cycle in the ini-

tiation and progression of VVC and if the vaginal microbiota composition changes during 

the different stages of the menstrual cycle. A study using modern shotgun genome se-

quencing would shed more light on these interesting research questions. With regard to 

Candida balanitis, a lot is still unknown about the influence of the host-microbiome on 

disease occurrence. Studies carried out by Meng et al. showed that sexual behavior (the 

use of condoms), circumcision, lifestyle, and personal hygiene play an important role in 

disease incidence. They observed that men who use condoms are more likely to have 

Staphylococcus spp. as the prevalent bacteria implicated in disease severity, while men 

without sexual activities are more likely to harbour Prevotella spp. [100]. However, con-

siderably less studies have been carried out on Candida balanitis than vaginitis. 

4.3. Psoriasis 

Psoriasis (PS) is a chronic inflammatory skin disease thought to have a genetic and 

immunological link [101]. About 2 percent of the world’s population is affected by PS. Its 

prevalence varies according to geographical locations [101,102]. Studies have also shown 

that Caucasians and Scandinavians are more likely to be affected by PS than Africans and 

Asians [102–105]. The etiology of PS remains vividly debated; however, some studies have 

shown a correlation between the skin microbiota dysbiosis and the occurrence of PS 

[101,106]. Several studies have established a relationship between the colonization of the 

psoriatic skin lesions and S. aureus. The authors observed that approximately 60 percent 

of people affected by psoriasis have their skin and nares colonized by S. aureus, as com-

pared to 3 to 30 percent in healthy people, thereby pointing out the possibility that S. au-

reus may exacerbate PS flares [106–108]. Viruses, such as the human papillomaviruses 

(HPV) have also been implicated to play a role in the occurrence of PS [106]. Fry and Baker 

proposed that HPV infection of the keratinocyte is supported by epidermal proliferation, 

and that epidermal hyperproliferation, which is a characteristic of PS, results in an oppor-

tunistic infection [106]. Arguably, HPV might be one assumed autoantigen recognized by 

the CD4+ and CD8+ T cells in psoriatic lesions [106,109]. Malassezia spp. have also been 

hypothesized as contributors in the development of this disease. Malassezia is a common 

inhabitant of the scalp [106]. It was observed that orally administered antifungal drugs 

resulted in a significant decrease in the abundance of the yeast on the scalp and an im-

provement of the disease condition [110,111]. To further examine this finding, Lober et al. 

carried out patch testing of sonicated, heat-killed Malassezia spp. cells on patients with 

inactive PS. It was observed that skin lesions clinically and histologically similar to PS 

were formed [110]. To further demonstrate the relationship between the skin microbiota 

and PS flares, Alekseyenko et al. performed a study between 2008 and 2011, which in-

cluded 75 patients with psoriasis and 124 healthy controls. Skin swabs were obtained from 

all participants. Diseased individuals were swabbed at the affected and unaffected body 

sites. DNA was extracted and the bacterial composition analyzed by amplicon sequenc-

ing. The authors found a significant increase in the abundance of Corynebacterium, Propi-

onibacterium, Staphylococcus, and Streptococcus in psoriatic plaques [55]. In contrast to the 

previous results, Gao et al. revealed that members of the phylum Firmicutes were 

overrepresented in PS lesions, while the members of the phylum Actinobacteria and Cuti-

bacterium spp. were the least abundant [57]. Likewise, Quan et al. analyzed the microbiota 

of healthy individuals and affected and unaffected skin of PS patients. They observed an 

abundance of Corynebacterium sp. and a decrease in the abundance of Cutibacterium in PS 

lesions [112]. Drago et al. identified a dysbiosis of the microbiome of one Italian PS patient 

in 2016. They observed that a significant increase in the abundance of Proteobacteria and 

a decrease in the abundance of Streptococcaceae, Rhodobacteraceae, Campylobacteraceae, 

Moraxellaceae, and Firmicutes was associated with PS plagues [113]. Contrary to the result 

of the experiment published by Lober et al., Paulino revealed that the occurrence and dis-

tribution of Malassezia spp. were not host-specific and its population on the skin remained 
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stable over time. Additionally, there was no significant difference in the abundance of 

Malassezia in both diseased and healthy skin areas of PS patients. However, only two in-

dividuals, one male and one female located in North America were included in the study 

[114]. In order to estimate a significance of these findings, more participants should be 

included in the study. Different climate zones should also be considered, as the environ-

ment (e.g., temperature range, humidity, and air pollution) plays a major role in the skin 

microbial composition [115]. A summary of all microorganisms mentioned above, which 

might play a role in disease severity and/or progression, is shown in Table 3. 

Table 3. Summary of microorganisms that change abundance in psoriasis lesions. List of micro-

organisms, which may be either increased or decreased in abundance during hidradenitis suppura-

tiva. An increase is marked with an arrow pointing up, a decrease with an arrow pointing down, 

and contradictory results are marked with one arrow pointing left and one pointing right. 

Microorganism Abundance  

Staphylococcus aureus  
Malassezia spp.  

Corynebacterium spp.  
Firmicutes  

Proteobacteria  
Cutibacterium spp.  

Actinobacteria   

Another study from Italy employed shotgun metagenomic sequencing to analyze the 

skin microbiome of PS patients. Skin lesions were compared to non-lesional skin areas. 

The findings suggested an increase in Staphylococcus spp. in lesioned skin (Table 3). On 

average, the observed alpha diversity, a measure to analyze the biodiversity of microbi-

omes, was significantly lower in diseased compared to unaffected areas [115]. Similar re-

sults were shown concerning the gut microbiome of PS patients. Indeed, an interesting 

study by Todberg and colleagues analyzed very recently whether PS also has an impact 

on the gut microbiome. They performed shotgun metagenomic sequencing on fecal sam-

ples of 53 untreated patients with plaque PS and 52 healthy controls. Overall, participants 

suffering from plaque PS showed a significantly reduced alpha diversity of their gut mi-

crobiomes compared to healthy participants. They further confirmed the higher abun-

dance of Blautia spp. in diseased participants, whereas Faecalibacterium spp. displayed a 

lower abundance [116]. The limitations of the aforementioned studies include small sam-

ple sets, sometimes a lack of precise details on the actual study design, and the more com-

monly used amplicon sequencing instead of untargeted sequencing methods. 

4.4. Correlation of the Skin Microbiome and Other Dermatological Conditions 

Apart from the three selected skin conditions, i.e. (i) hidradenitis suppurativa (acne 

inversa), (ii) (muco-)cutaneous candidiasis, and (iii) psoriasis, there are many other skin 

conditions, for which the role of the microbiome has been described regarding disease 

initiation and progression. Atopic dermatitis (AD), for example, has been extensively 

studied. AD is a chronic inflammatory disease, affecting 1–3% of adults and 5–20% of chil-

dren worldwide [117–119]. Especially an increase of S. aureus has been correlated with 

lesional skin areas of AD patients and a more severe form of the disease [120]. In contrast, 

S. epidermidis has been associated with milder cases of AD [8,121,122]. Overall, a lower 

alpha diversity has also been shown for AD patients in contrast to healthy skin 

[118,123,124]. Specific bacterial genera that decreased in lesional skin of AD patients are 

Streptococcus, Cutibacterium, and Corynebacterium [8,125]. A shift to a more diverse micro-

biome has previously been achieved after UV-B exposure [126]. However, probiotic baths 

and lotions, as well as a specific inhibition of S. aureus might also become adjunctive ther-

apy options. 
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Skin cancer, such as malignant melanoma and basal cell carcinoma, has also been 

shown to be affected by the cutaneous microbiome [127–129]. One striking study carried 

out by Mekadim et al. in 2022 detected an increase in Fusobacterium, Trueperella, Staphylo-

coccus, Streptococcus, and Bacteroides in melanoma tissue, compared to healthy skin. The 

researchers were also able to show a two-fold decrease in alpha diversity of melanoma 

tissue in contrast to healthy skin [126]. 

Next to skin cancer, certain autoimmune diseases also play a crucial role in derma-

tology, e.g. systemic sclerosis and bullous pemphigoid. The skin microbiome has been 

described for both dermatological conditions [130,131]. Johnson et al. have analyzed the 

skin microbiome of systemic sclerosis patients in 2019. They described an increase in 

gram-negative taxa, such as Burkholderia, Citrobacter, and Vibrio, whereas lipophilic taxa 

seem to be increased [131]. More research is needed to evaluate existing microbiome data 

and gain new insights into the complex interplay of microbes and the host. 

5. Conclusions and Perspectives 

There is an evident association and possibly a causal relationship between the skin 

microbiota and the initiation, maintenance, and progression of several dermatological pa-

thologies, which warrants further investigation. Although a lot is still unknown about the 

molecular mechanisms giving rise to these interactions, it is becoming increasingly evi-

dent that an in-depth understanding of these associations will be key to the development 

of new therapeutic and, potentially, preventive strategies. Thus far, it is acknowledged 

that several pathologies are associated with an increase or decrease in certain microorgan-

isms. However, as many of the affected bacteria are common commensals of the human 

skin, an accurate understanding will require further typing beyond the sole species level 

to understand how specific bacteria interact within the human body. Recent advances in 

metagenomics and computational biology will enable us to decipher these intricate rela-

tionships. Ideally, future research should focus on skin microbiota-derived metabolites 

and how they can be exploited as therapeutic tools. In contrast to standard microbiological 

diagnostic methods, which only allow the detection of cultivatable strains or search for 

specific strains performing polymerase chain reaction, next generation sequencing tech-

niques, in particular shotgun metagenomic sequencing of whole-genome DNA extracted 

from clinical samples enable the analysis of all microorganisms present. This can help with 

drawing correlations of certain, thus far not disease-associated species with (non-)infec-

tious skin conditions. In the case of psoriasis, acne inversa and candidiasis, therapy could 

benefit from readjusting a balanced skin microbiome by using probiotic treatment which 

could help curing a potential microbiome dysbiosis. In that regard, it will also be interest-

ing to elucidate the effects of several non-invasive dermatological procedures (e.g., UV 

light therapy) on the skin microbiota. Beneficial metabolites, produced by the microor-

ganisms on our skin are another option for an improved therapy strategy. Many thera-

peutics currently used to treat skin diseases have side effects, e.g., (i) antibiotics, (ii) anti-

fungals, and (iii) immunosuppressants. Microbiota-derived metabolites have a decreased 

risk of causing side effects since they are synthesized by microorganisms living on our 

skin and we are exposed to them and the compounds they produce on a daily basis. Most 

microorganisms constantly compete with each other for nutrients and space, thus being 

an excellent target for searching novel antimicrobial compounds. They also harbor the 

potential to be species-specific, meaning these metabolites inhibit the growth of or act bac-

tericidal towards only a few, rather than all other microorganisms inhabiting the skin. 

Besides methodological biases (e.g., due to amplicon sequencing), many of the studies 

published thus far are limited by the relatively small sample sizes. Hence, it appears 

promising to comparatively analyze the skin microbiome of large cohorts across diverse 

geographical locations, to fully understand the effect of climate, lifestyle, age, sex, and 

other variable factors on the microbial diversity of the skin. 
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