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Abstract: Adipose-derived stem cells (ADSCs) are potential therapeutics considering their self-
renewal capacity and ability to differentiate into all somatic cell types in vitro. The ideal ADSC-based
therapy is a direct injection into the relevant organs. The objective of this study was to investigate the
viability and safety of intra-organ human ADSC (h-ADSC) xenotransplants in vivo. Subcutaneous
adipose tissue from the abdominal area of 10 patients was sampled. h-ADSCs were isolated from
adipose tissue samples and identified using immunofluorescence antibodies. Multi-differentiation
potential assays for adipocytes, osteocytes, and chondrocytes were performed. Cultured h-ADSCs
at passage 4 were transplanted into multiple organs of 17 rats, including the skin, subcutaneous
layer, liver, kidney, pancreas, and spleen. The h-ADSC-injected organs excised after 100 days were
examined, and the survival of h-ADSCs was measured by quantitative real-time polymerase chain
reaction (qRT-PCR) using specific human and rat target genes. h-ADSCs confirmed by stem cell
phenotyping were induced to differentiate into adipogenic, osteogenic, and chondrogenic lineages
in vitro. All rats were healthy and exhibited no side effects during the study; the transplanted h-
ADSCs did not cause inflammation and were indiscernible from the native organ cells. The presence
of transplanted h-ADSCs was confirmed using qRT-PCR. However, the engrafted survival rates
varied as follows: subcutaneous fat (70.6%), followed by the liver (52.9%), pancreas (50.0%), kidney
(29.4%), skin (29.4%), and spleen (12.5%). h-ADSCs were successfully transplanted into a rat model,
with different survival rates depending on the organ.

Keywords: adult stem cell; adipose-derived stem cell; direct intra-organ xenotransplantation;
differentiation; rats
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1. Introduction

Solid malignancies in breast and abdominal organs have been increasing world-
wide [1]. For these malignancies, complete surgical resection with negative margins is
still considered the central goal of treatment [2]. However, the attainment of clear surgical
margins in patients with locally advanced tumors in the breast region and abdominal
major organs may need extensive surgery and could cause uncovered tissue defects re-
lated to functional impairment as well as cosmetic issues; this is especially applicable in
cases of large tumors or localization adjacent to critical anatomic structures [2]. In these
circumstances, the application of adipose-derived stem cells (ADSCs) could be a potential
alternative in regenerative medicine and reconstruction because of their ability for unlim-
ited and self-renewal proliferation, immunomodulatory and proangiogenic features, and
differentiation into progenitor cells or tissue-specific cells [3–5].

ADSCs have attracted attention as a preferable cell source owing to their ease of
accessibility, clinically relevant abundance of adult mesenchymal stem cells, and reduced
ethical issues compared to the use of embryonic stem cells [6,7]. Furthermore, ADSCs
remain stable through extensive passages and can differentiate with low rates of apoptosis
and strong proliferative capacity [8]. ADSCs have been applied in several therapeutic
areas such as plastic, orthopedic, and cardiac surgery as well as in breast reconstruction [9].
Worryingly, possible oncologic risks associated with ADSC use have been proposed under
extreme circumstances with the injection of co-cultured fatal cancer cell lines and h-ADSCs
treated with ADSC conditioned medium in animal models [10,11], which is clearly different
from the no-residual-tumor status obtained after complete surgical resection. Stem cell-
based therapies for reconstruction after cancer would be safe if the patient is clinically
disease-free [12]. Given that transplanted ADSCs in situ exert self-renewal capacity and the
ability to differentiate into all somatic cell types [3], the optimal ADSC-based therapy would
consist of a direct single-cell transplantation of ADSCs into the relevant organs [13,14] to
generate organoids by mimicking human development or organ regeneration in vitro [15],
which might ameliorate the possible safety issues.

Several previous studies have exclusively targeted specific and limited organs. Nonethe-
less, there has been scarce information on simultaneously naive ADSC transplantation into
multiple abdominal organs in vivo with long-term follow-up in the field of regenerative
medicine of the subcutaneous fat, skin, liver, pancreas, kidney, and spleen, which are major
organs in the field of abdominal and breast oncology surgery. Previous studies showed
that intravenously injected human ADSCs (h-ADSCs) can migrate into injured atrial tissue
and express a cardiomyocyte-like phenotype, indicating the viability of intravenous stem
cell delivery [16]. Preliminary data revealed that direct intravenous infusion of autologous
bone marrow-derived stem cells was feasible and safe during a short-term follow-up pe-
riod [17]. In addition, the use of fetal calf serum or fetal bovine serum in cell culture may
cause problems [18], particularly regarding the safety of xenogeneic components during
heterologous stem cell transplantation. To date, most reports have relied on short-term
observations (<4 weeks) after cell transplantation [16,17]. The long-term safety of the direct
injection of h-ADSCs into various organs in rat models remains poorly understood. Further
knowledge on in vivo direct stem cell injection in animal models could help optimize
effective therapeutic strategies.

In this study, we evaluated the viability and potential safety of multiple intra-organ
administrations of h-ADSCs in rat models.

2. Materials and Methods
2.1. Patient Population and Sample Collection

This study was performed in compliance with the tenets of the Declaration of Helsinki
for experiments involving human tissues under the ethical approval issued by the In-
stitutional Review Board (IRB) (NON2019-003). Samples of subcutaneous adipose tis-
sue of the abdominal area were obtained from ten patients (mean age, 45 years; range,
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27–71 years) undergoing excision of benign nodules after obtaining written informed con-
sent in accordance with the IRB-approved protocol between August and September 2019.

2.2. ADSC Isolation, Culture, and Identification

The ADSCs from adipose tissue were isolated as previously described [19]. Briefly,
the fat tissues were minced with a sterile blade, washed with phosphate buffered saline
(PBS) three times, and digested with 0.1% collagenase type 1 (Invitrogen, Carlsbad, CA,
USA) in a shaking incubator at 250 rpm and 37 ◦C for 60 min. The digested tissues were
then centrifuged at 1500 rpm for 10 min to remove the remaining adipose tissue and oil.
The pellet was incubated with red cell lysis buffer (Roche) for 10 min and filtered using a
cell strainer (100 µm, Falcon, Corning, NY, USA), followed by centrifugation at 2000 rpm
for 5 min. The pellet was resuspended in PBS, filtered with a cell strainer (70 µm, Falcon),
and centrifuged at 2000 rpm for 5 min. The supernatant was discarded, and the cell pellet
was resuspended in low glucose Dulbecco’s modified Eagle medium (DMEM) medium
containing 15% fetal bovine serum (FBS, Invitrogen, Thermo Fisher Scientific Inc., Waltham,
MA, USA), 100 U/mL penicillin (Invitrogen), 100 µg/mL streptomycin (Invitrogen), and
2 mM L-glutamine (Invitrogen) and incubated at 37 ◦C and 5% CO2. After 48 h, the medium
was changed and ADSC (passage 0) were maintained for 6–8 days. Passage numbers 2–5 of
the ADSC were used for all experiments.

2.3. Phenotyping

For ADSCs phenotyping, samples were screened by immunofluorescence staining of
cultured cells. The identification of ADSCs was carried out using antibodies against the
specific cell surface antigens of ADSCs: positive [CD90 (sc-53456), CD29 (sc-9970, 1:500,
Santa Cruz, CA, USA), and CD105 (sc-18893, endoglin; 1:500, Abcam)] and negative [CD31
(sc-18916, 1:300, Santa Cruz), CD45 (sc-1187; 1:50), and CD11b (14-0112-82, M1/70; 1:100,
Abcam)] protein markers [20,21]. Cultured cells (passage 4) were seeded in a chamber
slide (Lab-Tek, Thermo Fisher), fixed with 4% paraformaldehyde (PFA), and blocked in 3%
bovine serum albumin (BSA; Sigma, St. Louis, MO, USA) in PBS (1X; 155 mM NaCl, 1 mM
KH2PO4, 3 mM Na2HPO4-7H2O, pH 7.4; Sigma) containing 0.3% Triton X-100 (Sigma).
Then, the cells were incubated with primary antibodies in 1% BSA in PBS containing
0.1% Tween-20 (Sigma) at 4 ◦C overnight. After washing, the cells were incubated with
Alexa Fluor® 555 goat anti-rabbit IgG (1:500, Invitrogen) for CD105 and Alexa Fluor ® 555
donkey anti-rat IgG (1:1000, Invitrogen) for CD11b at room temperature for 1 h. Negative
controls were treated with secondary antibodies only. Cell nuclei were counterstained with
4′,6′-diamidine-2-phenylindol (DAPI, Invitrogen, Carlsbad, CA, USA). Images of sections
were obtained using a fluorescence microscope (Olympus, Tokyo, Japan).

2.4. Adipogenic, Osteogenic, and Chondrogenic Differentiation and Identification

To confirm the capacity of ADSCs to differentiate into adipogenic, osteogenic, and
chondrogenic cells, ADSCs were differentiated in a specific differentiation medium.

To identify the adipogenic differentiation capacity of ADSCs, they were placed into
96-well plates at 3000 cells per well and cultured in DMEM or adipogenic differentiation
medium (StemPro Adipogenesis Differentiation Kit, Thermo Fisher Scientific Inc.) for
14 days. The culture medium was changed every three days. On day 14 after induction for
adipogenic differentiation, the cells were fixed with 4% PFA solution, washed with PBS,
and stained with a solution of 0.5% (w/v) Oil Red O (Sigma) in 60% 2-propanol for 30 min
to identify neutral lipid accumulation. The cells were rinsed three times with distilled
water and observed under a microscope.

The osteogenic differentiation capability of the isolated cells was investigated using
the protocol provided by the commercial differentiation kit (StemPro Osteogenesis Dif-
ferentiation Kit, Thermo Fisher Scientific Inc.). ADSCs were cultured in a control growth
medium (CGM) or osteogenic medium for 21 days and fixed with 4% PFA for 60 min.
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To detect mineralization, the cells were stained with 2% alizarin red (pH 4.1) at room
temperature for 45 min, washed with PBS, and observed under a microscope.

To examine the chondrogenic differentiation of ADSCs, a micromass culture of isolated
ADSCs was performed. ADSCs (105 cells/10 µL) were spotted in the center of the well
of a 12-well culture plate and were incubated for 2 h without the addition of a medium.
The isolated cells were incubated with CGM or a chondrogenic differentiation medium
(low glucose DMEM), supplemented with 2 mM L-glutamine, 1× Insulin-Transferrin-
selenim, 50 µM L-ascorbic acid, 40 µg/mL L-proline, 0.1 µM dexamethasone, and 10 ng/mL
recombinant human transforming growth factor (TGF)-β3 for 28 days. After complete
differentiation, the micromass cultures were fixed with 4% PFA, stained in the dark with
1% alcian blue solution for 1 h, and washed with PBS.

2.5. Transplantation of Cells into Animal Organs

All animal study protocols and experimental procedures were reviewed and approved
by the Institutional Animal Care and Use Committee (HMC 2019-1-0612-17) and carried out
in accordance with the Guidelines for the Care and Use of Laboratory Animals published by
the U.S. National Institute of Health. The animals used in this study included 20 young male
Sprague Dawley rats (6–7 weeks old, weighing 198–253.5 g), which were purchased from
the Jun Biotech Inc. (Daegu, Korea) and housed in micro-isolator cages at the Laboratory
Animal Center in Hallym University Medical Center (Anyang, Korea). Throughout the
study, all rats were kept in an environmentally controlled room at a constant temperature
of 22 ± 1 ◦C with a relative humidity of 60%, with a 12 h light-dark cycle, and free access to
food and water (Supplementary Figure S1).

For all procedures (Supplementary Figure S2), the animals were anesthetized by the
inhalation of a mixture of O2 and 2% isoflurane (Hana Pharm. Co., Seoul, Korea), and
mechanically ventilated (136 bpm, tidal volume 0.15 mL). After anesthesia, the animals were
skinned, cleaned, fixed using a rubber band on the rat’s extremities on the experimental
table in a supine position, disinfected, and laid with sterile surgical towels. After skin
preparation, the abdomen of the rats was opened with sterile manipulation. Peripheral
organs such as the abdominal subcutaneous tissue layer, skin, liver, kidney, pancreas, and
spleen were identified, and h-ADSCs were injected with clip marking.

As the h-ADSC solution for injection was composed of 106 cells per cc, the stem cell
number for transplantation was 1 × 106 cells per organ. Rats were randomly assigned
to three groups (Supplementary Table S1): (I) a single organ injection group—four rats
were transplanted with 1 mL h-ADSC solution to one organ (adipose tissue, liver, kidney,
and skin); (II) five organ injection group—six rats were transplanted with 1 mL h-ADSC
solution to five organs (adipose tissue, liver, kidney, skin, and pancreas); and (III) six organ
injection group—seven rats were transplanted with 1 mL h-ADSC solution to five organs
(adipose tissue, liver, kidney, skin, pancreas, and spleen). As a negative control group, three
rats were injected with an equal volume of PBS alone into the subcutaneous tissue, liver,
kidneys, pancreas, and spleen.

The animals were monitored postoperatively for immediate reactions (e.g., allergic
reactions [tachycardia, fever, skin eruption], local complications [hematoma or local infec-
tion at the injection site], vascular obstruction [tachypnea, oliguria, or peripheral vascular
insufficiency], systemic complications [systemic infections]), and long-term adverse events
(e.g., tumor formation and zoonoses including myoclonus, rapidly progressing dementia,
or ataxia), or abnormal behavior.

After 100 days, all rats were euthanized using a CO2 chamber. The h-ADSC-injected
organs were excised after 100 days and reviewed by pathologists for the identification and
analysis of stem cell implants.

The primary outcome measure was the long-term safety profile over 3 months. We
monitored mortality of any cause and serious adverse events possibly related to xenotrans-
plantation of h-ADSCs into rats. The secondary outcome measure was the settlement of
h-ADSCs with organ-specific differentiation.
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2.6. Detection of Human and Rat Cells by Quantitative Real-Time Polymerase Chain Reaction

Quantitative real-time polymerase chain reaction (qRT-PCR) can be used to identify the
presence of specific human and rat materials through a biochemical process of amplification
using enzymes and based on specific target recognition. Therefore, the presence of h-ADSCs
in rat organs was measured by qRT-PCR using TaqMan Gene Assays (Thermo Fisher
Scientific, USA). The following rat- and human-specific gene primer pairs were used as the
reference assay: β-actin (ACTB) (Rn_07315855_s1; Thermo Fisher Scientific) and RNaseP
(Thermo Fisher Scientific; Part No. 4403326), respectively. For each human-specific primer
pair validation, we performed a no template control (NTC) and normal genomic DNA
(Roche, Basel, Switzerland; Part No. 11 691 112 001). PCR amplifications were performed in
triplicate using the following conditions on QuantStudio 3 (Thermo Fisher Scientific, USA):
2 min at 50 ◦C and 10 min at 94 ◦C, followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C for
60 s. Quantitative values were obtained from the cycle number (Ct value) (Thermo Fisher
Scientific), according to the manufacturer’s instructions.

2.7. Histological Evaluation for Transplanted Tissues

For light microscopic examination, the h-ADSC-injected organs resected from experi-
mental animals were fixed in 10% buffered formalin, embedded in paraffin, and cut into
1-µm sections (this thickness was the minimum allowed by the microtome in the labora-
tory). The sections were stained with hematoxylin and eosin (H&E). All the sections were
examined under a light microscope and photographed. The purpose of the H&E-stained
microscopic examination was to observe any morphological changes (including immediate
and long-term adverse microscopic reactions) in the tissues of the rats transplanted with
h-ADSCs.

2.8. Statistical Analysis

Results and demographic data are presented as mean ± standard deviation (SD)
deviation or as numbers (n) and percentages. The SPSS statistical software (ver. 20) (IBM
Corp., Armonk, NY, USA) was used for all the statistical analyses. p < 0.05 was considered
statistically significant.

3. Results
3.1. Identification of ADSC by Immunofluorescence

In the present study, h-ADSCs cultured in a medium containing 20% fetal bovine
serum showed a characteristic spindle-shaped and fibroblast-like morphology (Figure 1A).

The isolated h-ADSCs were identified based on the expression of h-ADSC surface
antigens (CD90, CD29, and CD105) and negative markers (CD31, CD45, and CD11b)
assessed by immunofluorescence staining. Compared with the control, we found that the
analyzed cells were positive for stem cell markers (CD90, CD29, and CD105) (Figure 1B–D)
but negative for endothelial cells or hematopoietic lineage markers (CD31, CD45, and
CD11b) (Figure 1E–G). Control cells were negative for CD90, CD29, CD105, CD31, CD45,
and CD11b. These results revealed that cultured h-ADSCs were homogeneous and did
not contain endothelial cells or hematopoietic lineages, which is consistent with previous
reports [20,21].

To examine the differentiation capability of h-ADSCs, cells cultured at passage 4
were induced to differentiate into adipocytes, osteocytes, and chondrocytes (Figure 2).
Adipogenesis was confirmed by lipid droplet formation in the cytoplasm stained red with
the Oil Red O dye. Osteogenesis was also identified by the presence of black calcium
deposits in cultures stained red by alizarin red staining. Chondrogenesis was detected
by alcian blue staining of proteoglycans synthesized by chondrocytes differentiated from
h-ADSCs. These results showed that the analyzed cells were h-ADSCs with multiple
differentiation capabilities.
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Figure 1. (A) Representative micrographs of human adult adipose tissue-derived stem cell (h-ADSC)
morphology in day 4 under light microscopy, magnification ×400. Immunofluorescence staining of
cultured cells demonstrates the features of h-ADSCs positive for CD90 (B), CD29 (C), and CD105 (D)
and negative for CD31 (E), CD45 (F), and CD11b (G).

Figure 2. Cultured cells were differentiated into adipocytes identified by Oil Red O staining (A),
osteocytes by alizarin red S staining (C), and chondrocytes by alcian blue staining (E). The respective
control cells (B,D,F) in the DMEM medium were negative.
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3.2. Transplantation of h-ADSCs into Rats

We next investigated the fate of h-ADSCs in vivo, depending on the organ. h-ADSCs
at passage 4 were injected into the subcutaneous fat, skin, liver, kidney, pancreas, and
spleen of 17 rats, while normal saline was injected into the corresponding organs of three
control rats (Figure 3). All 20 animals enrolled in the study were healthy during the
study period, exhibited normal weight gain, and displayed normal behavior without any
signs of immediate reaction or long-term adverse events throughout the study (Figure 4).
During follow-up, mortality from any cause and serious adverse effects, possibly related
to xenotransplantation of h-ADSCs into rats, were not observed. The h-ADSC-injected
skin, subcutaneous fat, liver, kidney, pancreas, and spleen were examined in H&E-stained
sections 100 days after either cell transplantation or saline injection. All organs were grossly
normal except for the granulation tissue identified at the renal injection site. There were no
obvious or microscopic morphological differences between the control and experimental
rat groups (Figure 5). The normal structure of each organ was microscopically observed
in both groups; no neoplastic changes, inflammatory cell aggregates, or immuno-rejection
were observed in the h-ADSC-injected areas.

Figure 3. Xenotransplantation of human adult adipose tissue-derived stem cells (h-ADSCs) in a rat
model. (A) h-ADSCs were injected in a sterile manner into the abdominal skin and subcutaneous
tissue. (B) The intraperitoneal cavity was opened, and abdominal organs were exposed. (C,D) h-
ADSC was injected into the pancreas (C), liver (red arrow), and kidney (green arrow).
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Figure 4. All 20 rats enrolled in the study were healthy during the 100 days of the study. The rats
exhibited normal weight gain and behavior.

Figure 5. Gross findings of the injected human adult adipose tissue-derived stem cells (h-ADSCs) in
a rat model. After euthanasia, injected h-ADSCs were harvested from abdominal subcutaneous tissue
(A), and abdominal organs (B,C). Granulation tissue was identified on the renal injection site (D).



Life 2022, 12, 1116 9 of 13

3.3. Human- and Rat-Specific Reference Genes in h-ADSC-Injected Organs

We used qRT-PCR to evaluate the presence of ACTB in rats and the human-specific
gene (RNaseP) primer pairs to detect the presence of h-ADSCs in the injected rat organs
(Figure 6). The detection of RNaseP in the h-ADSC-injected rat organs after 100 days
is summarized in Table 1. The most common organ for human-specific gene detection
was the subcutaneous fat (70.6%), followed by the liver (52.9%), pancreas (50.0%), kidney
(29.4%), skin (29.4%), and spleen (12.5%). These in vivo data were consistent with the
results obtained using h-ADSCs.

Figure 6. Quantitative real-time-polymerase chain reaction (qRT-PCR) using specific human and rat
target genes for the human adult adipose tissue-derived stem cells (h-ADSC)-injected rats’ organs.
The RNaseP gene was amplified in the subcutaneous tissue and liver of the rat (ID: 13) injected with
h-ADSCs after 100 days.

Table 1. Detection rate of human-specific gene (RNaseP) in rats’ organs after 100 days.

RNaseP Positive RNaseP Negative Fail

Subcutaneous fat (n = 17) 12 (70.6%) 4 (23.5%) 1 (5.9%)
Skin (n = 17) 5 (29.4%) 10 (58.8%) 2 (11.8%)
Liver (n = 17) 9 (52.9%) 8 (47.1%) 0 (0%)

Kidney (n = 17) 5 (29.4%) 12 (70.6%) 0 (0%)
Pancreas (n = 4) 2 (50.0%) 2 (50.0%) 0 (0%)
Spleen (n = 16) 2 (12.5%) 14 (87.5%) 0 (0%)

4. Discussion

In the current study, we successfully isolated h-ADSCs from lipoaspirate tissue sam-
ples, which were confirmed by immunofluorescence and assessment of adipogenic, chon-
drogenic, and osteogenic differentiation potential. These h-ADSCs showed specific cell
surface stem cell markers (CD90, CD29, and CD105) but negative endothelial cell or
hematopoietic lineage markers (CD31, CD45, and CD11b), which is consistent with the
expression profiles of ADSCs [7,20,21]. The highlights of our study include the direct
simultaneous in vivo injection of naive h-ADSCs into up to 6 abdominal organs and related
tissues that are the most frequently encountered in abdominal surgery as well as the related



Life 2022, 12, 1116 10 of 13

reconstruction, which may further the understanding of h-ADSCs engraftment that was
confined to several major organs in previous studies [9].

ADSC implantation in the organ is a complex process involving organ-specific cell
differentiation, proliferation, and cell survival, which are essential for successful transplan-
tation [22]. The direct incorporation of stem cells into organs may enhance organ-specific
differentiation [23]. We observed the presence of h-ADSCs in all six injected organs (skin,
subcutaneous fat, liver, pancreas, kidney, and spleen) injected with a single cell suspension
containing 1 × 106 cells per cc, which was confirmed through the presence of human-
specific genes using qRT-PCR. This suggests that transplanted h-ADSCs were engrafted
into various rat organs. The h-ADSCs did not disappear and were able to survive 100 days
after transplantation. Similarly, in the heart, the direct transplantation of ADSCs into
the target organ has been demonstrated to lead to enhanced cell retention and improved
organ function compared to intravascular infusion [24]. In many cases, the survival of
transplanted stem cells is too low to explain the significant organ improvement. The
transplanted stem cells have been shown to release soluble factors including cytokines and
growth factors in a paracrine fashion, mediating tissue repair, remodeling, and metabolism
as well as endogenous regeneration via the activation of resident organ stem cells [25].

The engrafted survival rate varied in this study. Subcutaneous fat was the highest site
of human RNase P detection. The human gene was detected in 50% of liver or pancreas
samples and 30% of kidney or skin samples. The spleen had the lowest detection rate. These
results indicate that the successful settlement proportions of the injected h-ADSCs vary
depending on the recipient rat organ. Since h-ADSCs were originally obtained from adipose
tissue sources, the settlement rate of h-ADSCs may be highest in the same cell-derived ori-
gin organ sites. The leading causes of the poor survival of stem cells in vivo are connected
to anoikis, potential immune rejection, and oxidative damage- mediating apoptosis [26]. To
boost the stem cell survival and therapeutic function after transplantation, pro-survival
cocktail injections, microenvironmental preconditioning including hypoxia, heat shock,
and exposure to oxidative stress, aggregate formation, and hydrogel encapsulation have
been modulated to lessen cell apoptosis in vivo while sustaining cellular biological func-
tions [6,25,27]. However, stem cell manipulation may possibly be carcinogenic, potentially
increasing the risk of additional harm in cancer patients [9,28].

Previous studies have demonstrated that transplantation of ADSCs into the mouse
liver transdifferentiated into hepatic lineage cells [14,29], suggesting that ADSCs are a
potential source of undifferentiated cells for liver cell transplantation. However, there
has been scarce research regarding other organs [16,22,30]. When transplanted in vivo
into specific organs, ADSCs demonstrate a high regenerative potential and impart to
specific cell formation and to the repletion of the blood vessels probably due to their
intrinsic multipotency [31,32]. Mesenchymal cells of human adult tissue can be directed
toward an organ-specific cell phenotype when in contact with differentiating primary organ
progenitor cells in vitro and in vivo [32–34], whereas ADSCs are likely unable to produce
new muscle fibers de novo or even to promote a complete skeletal muscle program [35,36].
In this context, ADSC-based therapy may contribute to the further development of tissue
engineering to recover tissue defects or damage after oncologic surgery leading to cosmetic
problems [37].

The safety and reliability of heterologous h-ADSCs transplantation into animals or vice
versa remain controversial [8,38]. Due to the potentially different in vivo microenvironment
in rats compared with humans, it may be hard to assess the interaction between ADSC-
based therapy and the immune system [39]. We observed that h-ADSCs collected from 10
different donors did not cause any immediate or delayed fatal reactions or death when
those stem cells were injected into 17 rats over 3 months. All rats displayed normal health
and behavior. These results indicate that h-ADSC-transplanted rat organs may be stable and
safe from inflammatory or immunogenic reactions [13]. Mesenchymal stem cells may have
anti-inflammatory and immunomodulatory properties [40], allowing immunosuppressive
drug minimization, and inducing immune tolerance towards the transplanted organ [8,41].
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Intra-organ administration of 1× 106 xenotransplanted h-ADSCs into six rat organs did not
elicit any detectable inflammatory or necrotizing reactions within the organs. We also found
no gross or microscopic adverse morphological changes. Xenotransplantation of h-ADSCs
did not adversely affect the anatomical structures in naïve rat organs. These results suggest
the potential safety of multiple intra-organ administrations of h-ADSCs in xenotransplanted
rat models. Our results support recent biological tissue engineering approaches by stem
cell transplantation, which automatically regulate and achieve individually specified organ
phenotypes and functions that adapt to the patient’s physiological requirements [30].
The trans-lineage differentiation power and peculiar immunogenic features of ADSCs
have identified them as a potential substitute for cellular transplantation in regenerative
medicine [42]. However, caution must be exercised regarding the malignant potential of
ADSC injections as previous studies have shown that ADSCs may enhance tumor initiation
and growth in breast and colon cancer cells, stimulating cancer cells to secrete interleukin-6
in a paracrine manner to enhance their malignant properties [9].

Our study has limitations. h-ADSCs were successfully transplanted into this rat model
and the overall behavioral and morphological parameters were normal. The potential
clinical significance of this study may include the relatively high survival rates of directly
injected ADSCs into multiple clinically relevant organs mediated by xenotransplanted rat
models, which allowed us to recognize their long-term survivals using the human- and
rat-specific target genes. Nonetheless, we could not investigate the differentiation control
of h-ADSCs in vivo and the functional ability of the engrafted h-ADSCs, which requires
further research.

In summary, human ADSCs injected into the normal organs of rats survived and
engrafted at varying rates depending on the recipient rat organ after 100 days. The current
study highlights the practical application of xenotransplantation of h-ADSCs directly into
various organs of rats.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/life12081116/s1, Figure S1: Rats had ad libitum access to water and
food and were housed under adequate temperature (23 ◦C) and a 12-h light-dark cycle. Figure S2: (A)
During direct intra-organ xenotransplantation of human adipose-derived stem cells (h-ADSCs), rats
were anesthetized and mechanically ventilated. The rat was fixed in a supine position using a rubber
band on the extremities on the experimental table, disinfected, and laid with sterile surgical towels.
(B) After skin preparation, rat abdomens were opened using a sterile procedure. Table S1: Summary
of weight changes and study profile of 20 study and control rats throughout the study period.
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