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Abstract: SARS-CoV-2 shows great evolutionary capacity through a high frequency of genomic
variation during transmission. Evolved SARS-CoV-2 often demonstrates resistance to previous
vaccines and can cause poor clinical status in patients. Mutations in the SARS-CoV-2 genome involve
mutations in structural and nonstructural proteins, and some of these proteins such as spike proteins
have been shown to be directly associated with the clinical status of patients with severe COVID-19
pneumonia. In this study, we collected genome-wide mutation information of virulent strains and the
severity of COVID-19 pneumonia in patients varying depending on their clinical status. Important
protein mutations and untranslated region mutations were extracted using machine learning methods.
First, through Boruta and four ranking algorithms (least absolute shrinkage and selection operator,
light gradient boosting machine, max-relevance and min-redundancy, and Monte Carlo feature
selection), mutations that were highly correlated with the clinical status of the patients were screened
out and sorted in four feature lists. Some mutations such as D614G and V1176F were shown to be
associated with viral infectivity. Moreover, previously unreported mutations such as A320V of nsp14
and I164ILV of nsp14 were also identified, which suggests their potential roles. We then applied
the incremental feature selection method to each feature list to construct efficient classifiers, which
can be directly used to distinguish the clinical status of COVID-19 patients. Meanwhile, four sets
of quantitative rules were set up, which can help us to more intuitively understand the role of each
mutation in differentiating the clinical status of COVID-19 patients. Identified key mutations linked
to virologic properties will help better understand the mechanisms of infection and will aid in the
development of antiviral treatments.

Keywords: SARS-CoV-2; mutation; machine learning; feature selection; decision rules

1. Introduction

The outbreak of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
initiated the pandemic of the global infectious disease called COVID-19 [1]. The rapid
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spread of SARS-CoV-2 has affected more than 300 million people from over 200 countries as
of January 2022, and it has severely impacted public health and social economy. Scientists
have achieved some successes in vaccine development, and vaccination programs are
helping to prevent the infection and spread of SARS-CoV-2. However, emerging variants
of coronavirus with increased pathogenicity and infectivity are still a challenge to public
health [2,3]. SARS-CoV-2, as a type of single-stranded positive RNA virus, displays a
stronger ability of evolution through highly frequent genomic mutations during transmis-
sion [4]. The rapid evolution of SARS-CoV-2 has brought great challenges to epidemic
prevention. Viral genomics has become a major focus of current research which aims to
explore the association between genomic mutations and virological properties, such as
virulence, pathogenicity, and immunogenicity. Identifying the key mutations related to
virological properties will largely contribute to understanding the mechanism of infection,
which is important for antiviral treatment development.

SARS-CoV-2 belongs to the Betacoronavirus genus of the Coronaviridae family, which
is considered to originate from bats and can widely spread in bats, civets, and humans,
and usually causes respiratory illness in humans [5]. The genome of SARS-Cov-2 consists
of several nonstructural proteins (nsp), which play crucial roles in viral replication, and
four main structural proteins including envelope, membrane, nucleocapsid, and spike,
which are involved in the process by which SARS-CoV-2 enters human cells via interacting
with the host receptor ACE2 [6,7]. During the current pandemic, five variants of concern
have emerged including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and
B.1.1.529 (Omicron).

The B.1.1.7 variant was first discovered in the UK in September 2020, and then it
spread rapidly worldwide. The S protein of the B.1.1.7 strain has eight mutations (i.e.,
∆69–70 deletion, ∆144 deletion, N501Y, A570D, P681H, T716I, S982A, and D1118H), which
may have changed the transmission and infection ability of SARS-CoV-2 [8]. Nine mutations
(i.e., L18F, D80A, D215G, R246I, K417N, E484K, N501Y, D614G, and A701V) were found
in the S protein of the B.1.351 variant [9]. The E484K site located in the receptor-binding
domain (RBD) of the S protein directly contacts human ACE2 residue, which reduces the
neutralization susceptibility to convalescent serum. The P.1 variant has 10 mutations in
S protein (i.e., L18F, T20N, P26S, D138Y, R190S, H655Y, T1027I V1176, K417T, E484K, and
N501Y), among which 3 mutations (K417T, E484K, and N501Y) show striking similarity
to the RBD of the B.1.351 variant [10]. The B.1.617.2 variant was first discovered in India
in October 2020 and caused a second fatal wave of COVID-19 infections in India in April
2021, which quickly spread and attracted global attention. Its transmissibility has increased
by 97% compared with that of previous circulating strains [11]. Three key mutations in
the S protein of the B.1.617.2 strain (i.e., L452R, T478K, and P681R) reduce the probability
of reinfection and the effectiveness of the vaccine. The genome of the Omicron variant
strain has about 50 mutations, including more than 30 mutations in the S protein, which
overlaps with the B.1.617.2 and B.1.1.7 variants [12]. Previous studies have shown that
K417N, E484K, and N501Y mutations in the S protein exhibit the enhanced immune evasion
ability of Omicron [13]. The S protein is thought to be the most critical affecting factor of
the virulence and pathogenicity of SRAS-CoV-2.

The implications of SARS-CoV-2 genomic mutations on viral pathogenicity have been
summarized in some reviews [14]. However, the impact of viral mutations on COVID-19
severity demands further exploration. Previous articles have also mainly focused on
mutations in the S protein and drawn conclusions through clinical research of limited
cohort sizes. Identifying the potential mutational risk that indicates disease severity will be
important for medical care and targeted treatment. To this end, we integrate the available
data describing SARS-CoV-2 variants and patients’ outcomes in this study and perform a
novel computational analysis to investigate the influences of mutations in the SARS-CoV-2
genome on COVID-19 severity. Mutations in the whole genome, including structural
proteins, nonstructural proteins, and untranslated regions (UTRs), were included. Several
advanced computational methods were applied in the feature selection process. The
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associations of genomic mutations of SARS-CoV-2 with viral pathogenicity and patients’
clinical outcome were revealed. Many mutations in the S protein of remarkable relevance
to clinical outcome were obtained, such as V1176F and D614G. Several genomic mutations
in the nucleocapsid gene or nonstructural proteins were also closely related to the severity
of COVID-19 upon infection, which may indicate altered viral pathogenicity. This study
provides a novel computational approach to identify new potential mutations related to
viral pathogenicity. The key mutations identified in this study provide the theoretical
basis of pathogenesis, and these results will impact the development and application of
antiviral vaccines.

2. Materials and Methods
2.1. Data and Preprocessing

We downloaded 1513 viral genomes from the GISAID database (https://www.gisaid.org/
accessed on 6 December 2021), and the accession numbers were provided by Nagy et al. [15].
Each patient of viral origin was accompanied by clinical follow-up data. Nagy et al. divided
716 of these patients of viral genomic origin into the “mild” group and the 797 others into
the “severe” group [15]. To investigate the differences between two groups, a binary classi-
fication problem was set up where patients in the “mild” group were termed as positive
samples and those in the “severe” group were considered as negative samples. Most of
the patients in the severe group were in the ICU, and some had even died. The majority of
patients in the mild group were stable, and some were asymptomatic so could be treated at
home. Mutation features contained two main types: one was protein mutations, and the
other was nonprotein mutations. The protein mutations were extracted from the analysis
program of the Coronavirus Antiviral Research Database (https://covdb.stanford.edu/
accessed on 6 December 2021) [16]. This analysis program was fed viral sequences in
FASTA format as the input, using “Wuhan-Hu-1(NC_045512.2)” as the reference sequence.
The nonprotein mutations were extracted using the MUMmer3.0 [17] software, and substi-
tutions found in at least 10 genomes were chosen for further investigation. After filtering, 8
nonprotein mutations with frequencies greater than 10 were found out of 197 nonprotein
mutations. A total of 3641 protein mutation features and 8 nonprotein mutation features
were obtained for subsequent analysis. The first half of the name format for the protein mu-
tation feature was the protein name, the second half was the amino acid substitution, and
the number was the amino acid substitution position. Similarly, for nonprotein mutations
(SNP features), the numbers represented the positions of nucleotides on the whole genome.
Several studies have shown that age is an important predictor of clinical status in patients
with COVID-19. Therefore, we used age after discretization as one of the essential features
in our study [18,19]. In the feature matrix, a virus genome is denoted as “1” if it contains a
certain feature and “0” otherwise, and this feature matrix can be found in Table S1.

2.2. Boruta Feature Filtering

A large number of redundant features exist among all mutation features, and they are
not very helpful in distinguishing patients’ clinical status and can become noisy features
for subsequent modeling. Boruta can filter the set of all features that have a correlation with
the dependent variable, and the experimental results are very stable and scalable [20,21].
Here, we used Boruta for the initial filtering of mutation features, which is implemented as
described below.

Boruta uses a random forest (RF) approach to extract features and disrupt the order of
features to calculate the importance of features. It iteratively runs an RF on an extended
version of the data for a given a dataset. The extended version of the data is a copy of
the original data with horizontally connected shuffled features in each iteration. This
method keeps features that are (1) more important than the best random sorting feature in
each iteration and (2) superior to random factors in terms of performance (using binomial
distribution). Boruta adopts the Z-Score as a measure of relevance because it considers
changes in the average loss of accuracy among trees in the forest. The importance of

https://www.gisaid.org/
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Boruta’s approach is that it can help us gain a better understanding of the features that
influence the dependent variable and, therefore, provide better and more efficient feature
selection.

The Boruta program was retrieved from https://github.com/scikit-learn-contrib/
boruta.py accessed on 14 September 2020 and was run with default parameters in our study.

2.3. Feature Ranking Algorithms

Among the features filtered by Boruta, each feature has a different importance for
classification. In this study, we ranked the Boruta-filtered features using four feature
ranking algorithms. Their brief descriptions are as follows.

2.3.1. Max-Relevance and Min-Redundancy

Identifying features that are significant for prediction is important, but obtaining a
collection of features that are not redundant is more crucial to boost robustness. When two
features are strongly dependent on each other, removing one of them has little effect on the
representative class’s discriminative power. As a result, the minimal redundancy require-
ment can be introduced to choose mutually exclusive features. The max-relevance and
min-redundancy (mRMR) criteria combine the two restrictions mentioned above [22–24].
Initially, mRMR uses mutual information to calculate the correlation between independent
variables and features, as well as between features. Ensuring maximum correlation between
features and independent variables, as well as minimum redundancy between features,
during the mRMR calculation process is important.

The mRMR program from http://home.penglab.com/proj/mRMR/ accessed on
2 May 2018 was performed with default parameters in the present research.

2.3.2. Monte Carlo Feature Selection

The Monte Carlo feature selection (MCFS) approach repeatedly selects many features
at random before building a series of decision tree (DT) classifiers [25,26]. Intuitively, if a
feature is chosen numerous times to form a classification tree, then it is significant because
the classification model will choose the most distinguishing feature to become a node. A
feature is given a score called relative importance depending on how well it behaves in
these classifiers, which is calculated using the formula:

RIg = ∑st
τ=1(wAcc)u ∑ng(τ)

IG
(
ng(τ)

)(no.in ng(τ)

no.in τ

)v

, (1)

where wAcc represents weighted accuracy; IG
(
ng(τ)

)
represents information gain (IG) of

ng(τ); (no.in ng(τ)) represents the sample numbers in ng(τ); and (no.in τ) represents the
sample numbers in the tree root. u and v represent two settled positive integers.

In this study, we adopted the MCFS program retrieved from http://www.ipipan.eu/
staff/m.draminski/mcfs.html accessed on 4 June 2019. Such program was performed using
its default parameters.

2.3.3. Light Gradient Boosting Machine

The light gradient boosting machine (LightGBM) is a framework for implementing
the gradient boosting decision tree algorithm which supports efficient parallel training and
has the benefits of faster training speed, lower memory consumption, better accuracy, and
distributed support for fast data processing [27]. The number of times a feature is used
in modeling is used to determine its importance in LightGBM, and features that are used
more often are considered more important. In this case, we used LightGBM in Python,
which was downloaded at https://lightgbm.readthedocs.io/en/latest/ accessed on 7 May
2019 with the default parameters.

https://github.com/scikit-learn-contrib/boruta.py
https://github.com/scikit-learn-contrib/boruta.py
http://home.penglab.com/proj/mRMR/
http://www.ipipan.eu/staff/m.draminski/mcfs.html
http://www.ipipan.eu/staff/m.draminski/mcfs.html
https://lightgbm.readthedocs.io/en/latest/
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2.3.4. Least Absolute Shrinkage and Selection Operator

Robert Tibshirani first presented least absolute shrinkage and selection operator
(LASSO) in 1996 based on Leo Breiman’s nonnegative garrote [28,29]. It is a regularization-
based regression analysis approach with a feature selection function with the goal of
enhancing statistical model detection accuracy and interpretability.

In a given training sample set where X = [x1, x2, . . . , xN ]
T ∈ RN∗d, xi denotes the

feature vector of the i − th sample, N denotes the number of training samples, and d
denotes the feature dimension. Y = [y1, y2, . . . , yN ]

T ∈ RN denotes the classification labels
corresponding to these samples. The objective function for the optimization of the LASSO
feature selection method is:

min
W

1
2
||Y− XTw ||22 + λ ||w ||1 (2)

where w denotes the regression coefficient of the eigenvector. The regularization term ||w ||1
using the L1 paradigm will produce a sparse solution in the feature space. The coefficients
corresponding to irrelevant and redundant features will be set to 0, while the features
corresponding to nonzero coefficients will be retained for subsequent classification. The
absolute value of the regression coefficient represents the importance of the features, and
the impact on the classification results is greater when the absolute value of the regression
coefficient is larger. In this study, we adopted the LASSO package integrated in Scikit-learn
and default parameters were used.

Through each of above algorithms, one feature list was obtained. For convenience,
the lists obtained by the LASSO, LightGBM, MCFS and mRMR methods were called the
LASSO, LightGBM, MCFS and mRMR feature lists, respectively.

2.4. Incremental Feature Selection

Four feature lists were obtained by using different feature ranking algorithms. They
measured the importance of each feature in different aspects. However, the number of
features in each feature list, which can be used for constructing efficient classifiers, was
unknown. Here, incremental feature selection (IFS) was employed to extract the optimal
subset of features for building the optimal classifiers [30–32]. The specific implementation
steps are as follows: (1) Setting a variable k (k = 1, 2, · · · , n), where n is the number of
features filtered by Boruta. (2) The top k features are taken from one feature list. (3) Sam-
ples containing k features are fed into one given classification algorithm for training a
classifier, and its classification performance is assessed by ten-fold cross-validation [33].
(4) After testing all possible k, the classifier with the best classification performance and its
corresponding features are selected as the optimal classifier and the optimal features.

2.5. Synthetic Minority Oversampling Technique

Synthetic minority oversampling technique (SMOTE) is an over-sampling method
which can produce new samples for minor classes so as to solve the imbalanced class
problem [34,35]. The main calculation procedure of the SMOTE algorithm is as follows: (1)
Randomly select one sample, e.g., x, from the minor class. (2) Its Euclidean distances to
other samples in the minor class are calculated and k nearest neighbors are selected. (3)
One neighbor, denoted by y, is randomly selected from these neighbors and a new sample
is calculated according to the following formula:

xnew = x + rand(0, 1)× (y− x) (3)

where rand(0, 1) stands for a random number between 0 and 1. The new sample is put into
the minor class. (4) The above procedures are executed several times until samples in the
minor class are same as those in the major class. In this study, the SMOTE method was
employed when classifiers were constructed in the IFS method. New samples produced by
SMOTE were not used in the feature analysis procedure.
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The present study adopted the SMOTE obtained from https://github.com/scikit-
learn-contrib/imbalanced-learn accessed on 24 March 2020. Default parameters were used.

2.6. Classification Algorithm

To execute the IFS method, one classification algorithm is necessary. In this study, we
tried four algorithms: DT [36], k-nearest neighbor (KNN) [37], RF [38], and support vector
machine (SVM) [39]. They have wide applications in dealing with biological and medical
problems [40–49].

2.6.1. Decision Tree

A tree structure is referred to as a DT [36]. Each branch represents the output of this
feature attribute on a value domain, and each leaf node carries a category. Starting at the
root node, the associated feature attribute in the object to be classified is tested, the output
branch is selected based on its value until it reaches the leaf node, and the category stored
in the leaf node is taken as the decision result. This supervised learning method is based on
the if-then-else rule, and the DT’s rules are learned through training rather than by hand.
In this study, we use optimal DTs to extract the classification rules. We conduct DT using
the Scikit-learn package and the CART method with Gini coefficients as the information
gain [50]. For convenience, default parameters were used to execute the above package.

2.6.2. k-Nearest Neighbor

KNN can be used for classification and regression predictive problems [37]. The closest
neighbor technique uses a vector space model for categorization. The key assumption is
that examples belonging to the same category have a high degree of similarity and that the
categorization of cases belonging to unknown categories may be determined by comparing
them to cases belonging to known categories. We achieve this precondition by specifying
the default settings for the KNN model in the Scikit-learn package [50]. Likewise, default
parameters were used.

2.6.3. Random Forest

RF is an ensemble learning model with strong predictive capacity that has great noise
tolerance and unpredictability [38]. RF is a combinatorial classifier that relies on DTs as its
foundation. This way alleviates some of the restrictions of a single classifier and allows
for improved accuracy. It also alleviates some of the limitations of a single classifier and
allows for improved prediction accuracy. At the same time, the unpredictability of the RF
allows it to absorb the effects of outliers and noise to a higher extent, which reduces the
overfitting problem of the DT method and improves generalization ability. In this case, we
used RF from the Python Scikit-learn package [50]. This package was used with its default
parameters.

2.6.4. Support Vector Machine

SVM is a quick and trustworthy classification system that works well with little
amounts of data [39]. The principle of the SVM classification model is to use a kernel
function for mapping sample points to a multidimensional feature space. Then, it constructs
an optimal classification hyperplane that maximizes the distance between the hyperplane
and a set of samples from different classes to maximize generalization ability. The SVM
model from the Scikit-learn package is used in this research [50]. It was executed with its
default parameters.

2.7. Performance Evaluation

For a binary classification, the predicted results can be counted as a confusion matrix
containing four entries: true positive (TP), false negative (FN), false positive (FP), and true
negative (TN). Based on these entries, several measurements can be computed. In this
study, we used the following measurements: sensitivity (SN, also called recall), specificity

https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn
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(SP), accuracy (ACC), precision, F1-measure, Matthews correlation coefficient (MCC), and
G-Mean. They can be computed by:

SN =
TP

TP + FN
(4)

SP =
TN

TN + FP
(5)

ACC =
TP + TN

TP + FN + TN + FP
(6)

MCC =
TP · TN − FP · FN√

(TN + FN)(TN + FP)(TP + FN)(TP + FP)
(7)

Precision =
TP

TP + FP
(8)

F1−measure =
2× (Recall × Precision)
(Recall + Precision)

(9)

G−mean =
√

SN · SP (10)

Among above measurements, the F1-measure was selected as the key measurement to
help us select a classifier with the best performance.

3. Results

In this study, we extracted key mutational features to predict patients’ clinical status
and identified the rules used to distinguish different clinical states by a powerful computa-
tional analysis. Figure 1 depicts the whole computing process. The outcomes of each stage
would be detailed in the following sections.

3.1. Results of Boruta and Feature Ranking Algorithms

The Boruta method was first used to analyze the importance of all mutant features.
Irrelevant features were excluded. As a result, 57 mutant features were selected by the
Boruta method, which can be found in Table S2.

The obtained 57 features were further investigated by four feature ranking algorithms,
respectively. Each algorithm yielded a feature list, which can also be found in Table S2.

3.2. Results of IFS Method on Four Feature Lists

Four feature lists generated by different feature ranking algorithms were fed into the
IFS method one by one, which incorporated four classification algorithms (DT, KNN, RF
and SVM). For each list, the IFS method constructed all possible feature subsets, each of
which contained some top features. A classifier based on one given classification algorithm
was built on each feature subset and evaluated by ten-fold cross-validation. Detailed
evaluation results are listed in Table S3.

3.2.1. Results of IFS Method on LASSO Feature List

For the LASSO feature list, the performances (F1-measure) of four classification algo-
rithms for all possible feature subsets constructed from the list are illustrated in Figure 2.
It can be observed that DT yielded the highest F1-measure of 0.798, which was obtained
by using the top 57 features in the list. Accordingly, the optimal DT classifier was set up
with these features. As for the other three classification algorithms, their highest F1-measure
values were 0.732, 0.776 and 0.775, respectively. They were accessed by using the top 57, 6
and 6 features. Likewise, optimal KNN, RF and SVM classifiers could be built with corre-
sponding features. Evidently, the optimal DT classifier provided a higher F1-measure than
the other three optimal classifiers, indicating that it outperformed other optimal classifiers.
Table 1 details the performance of the four optimal classifiers, from which we can see that
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the optimal DT classifier provided the highest performance on almost all measurements
except SN. This further confirmed the superiority of the optimal DT classifier.
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Figure 1. Flowchart of the whole analytical procedure of this research. Genome-wide mutation
features of patients were obtained from the GISAID database and the Coronavirus Antiviral Research
Database. Each patient was classified as “mild” or “severe” according to clinical status. Four lists
of features were obtained after Boruta as well as four feature ranking algorithms. Subsequently, the
optimal classifiers and the corresponding optimal features were obtained using the IFS method. The
classification rules were mined by the optimal DT classifiers to obtain the classification basis for
distinguishing the clinical status of different patients.
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Table 1. Performance of the optimal classifiers based on different classification algorithms and LASSO
feature list 1.

Term Decision Tree k-Nearest Neighbor Random Forest Support Vector Machine

Number of features 57 57 6 6
SN 0.788 0.824 0.821 0.820
SP 0.832 0.616 0.734 0.734

ACC 0.811 0.714 0.775 0.775
MCC 0.621 0.447 0.555 0.554

Precision 0.808 0.658 0.735 0.735
F1-measure 0.798 0.732 0.776 0.775

G-mean 0.809 0.712 0.776 0.776
1 Numbers in bold are highest in the corresponding rows.

3.2.2. Results of IFS Method on LightGBM Feature List

The same procedures were performed on the LightGBM feature list. To clearly display
the performance of four classification algorithms on all feature subsets, one IFS curve was
plotted for each classification algorithm, as shown in Figure 3. DT/KNN/RF/SVM yielded
the highest F1-measure with 0.803/0.758/0.785/0.783. This performance was achieved by
using the top 24/52/24/24 features in the list. Accordingly, an optimal DT/KNN/RF/SVM
classifier could be built. Similar to the results of the LASSO feature list, the optimal DT
classifier also provided the best F1-measure. By observing the measurements of the four
optimal classifiers, as listed in Table 2, we could further confirm that the optimal DT
classifier was better than the other three optimal classifiers.

Table 2. Performance of the optimal classifiers based on different classification algorithms and
LightGBM feature list 1.

Term Decision Tree k-Nearest Neighbor Random Forest Support Vector Machine

Number of features 24 52 24 24
SN 0.844 0.878 0.813 0.816
SP 0.769 0.605 0.768 0.760

ACC 0.804 0.734 0.789 0.787
MCC 0.612 0.498 0.580 0.575

Precision 0.766 0.666 0.759 0.754
F1-measure 0.803 0.758 0.785 0.783

G-mean 0.805 0.729 0.790 0.788
1 Numbers in bold are highest in corresponding rows.
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3.2.3. Results of IFS Method on MCFS Feature List

As for the MCFS feature list, the IFS method was also performed. An IFS curve was
also plotted to show the performance of each classification algorithm on different feature
subsets, as illustrated in Figure 4. The highest F1-measure values for four classification
algorithms were 0.800, 0.745, 0.760 and 0.758, respectively, which were obtained by using
the top 43, 55, 10 and 10 features in the list, respectively. Thus, we could set up the optimal
DT, KNN, RF and SVM classifiers with the corresponding top features. Interestingly,
the optimal DT classifier also generated the best F1-measure, conforming to the results
of the LASSO and LighGBM feature lists. The performance details, including the seven
measurements listed in Section 2.7, of the four optimal classifiers are provided in Table 3. It
can be observed that the optimal DT classifier provided the best performance of all seven
measurements, suggesting the high performance of the optimal DT classifier.
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3.2.4. Results of IFS Method on mRMR Feature List

Finally, the IFS method was applied on the mRMR feature list. The F1-measure values
yielded by each classification algorithm of the different feature subsets are illustrated in
Figure 5, from which we can see that the highest F1-measure values for the four classification
algorithms were 0.797, 0.759, 0.757 and 0.756, respectively. The highest performance
was obtained by using the top 53, 52, 24 and 23 features in the list, respectively, with
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which optimal DT, KNN, RF and SVM classifiers could be set up. Likewise, the optimal
DT classifier also provided the best F1-measure, suggesting it was better than the other
three optimal classifiers. Details of the performance of the four optimal classifiers are
provided in Table 4. The optimal DT classifier generated the highest performance of the
four measurements, indicating its superiority.

Table 3. Performance of the optimal classifiers based on different classification algorithms and MCFS
feature list 1.

Term Decision Tree k-Nearest Neighbor Random Forest Support Vector Machine

Number of features 43 55 10 10
SN 0.848 0.832 0.816 0.811
SP 0.755 0.637 0.704 0.704

ACC 0.799 0.730 0.757 0.755
MCC 0.603 0.476 0.521 0.516

Precision 0.757 0.673 0.712 0.711
F1-measure 0.800 0.745 0.760 0.758

G-mean 0.800 0.728 0.758 0.756
1 Numbers in bold are highest in corresponding rows.

Table 4. Performance of the optimal classifiers based on different classification algorithms and the
mRMR feature list 1.

Term Decision Tree k-Nearest Neighbor Random Forest Support Vector Machine

Number of features 53 52 24 23
SN 0.777 0.885 0.666 0.665
SP 0.846 0.598 0.915 0.916

ACC 0.813 0.734 0.797 0.797
MCC 0.625 0.501 0.604 0.604

Precision 0.819 0.665 0.875 0.877
F1-measure 0.797 0.759 0.757 0.756

G-mean 0.810 0.728 0.781 0.780

1 Numbers in bold are highest in the corresponding rows.
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According to the above descriptions, several optimal classifiers were set up. For each
classification algorithm, four optimal classifiers were built based on four different feature
lists. Their F1-measure values are illustrated in a box plot, as shown in Figure 6. It can
be observed that the performance of each optimal classifier of different feature lists was
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quite similar and the optimal DT classifier provided the best performance. Accordingly, for
each feature list, we selected the features used in the optimal DT classifiers as the optimal
features.
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feature lists and the optimal DT classifier provided the highest performance.

3.3. Results of Intersection of Optimal Features on Different Feature Lists

By applying the IFS method to four feature lists, four sets of optimal features were
accessed; these were the features used to construct the optimal DT classifier. The intersection
of these four optimal feature subsets was investigated. Venn diagrams for these feature
subsets can be found in Figure 7. It can be observed that 15 features occurred in all four
feature subsets; 34 features existed in three feature subsets; 7 features belonged to exactly
two feature subsets; and only 1 feature was in one feature subset. Features that appeared in
four, three, two and one feature subsets are listed in Table S4. The presence of mutations
in all four feature subsets indicated their importance to differentiate the clinical status of
patients. A detailed explanation of these important mutations can be found in Section 4.1.
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3.4. Classification Rules

It is known that DT is a white-box algorithm, which are always generally weaker than
most black-box classification algorithms, including KNN, RF and SVM used in this study.
However, as mentioned above, the optimal DT classifiers were better than the optimal
KNN/RF/SVM classifier of the investigated dataset. Further investigation into such DT
classifiers is helpful to reveal the relationship between mutation and the clinical status of
the patients with COVID-19.

Based on the features used in each optimal DT classifier, all samples were represented
by them. DT was applied on this dataset, producing a large tree from which several
classification rules could be constructed. Accordingly, four sets of classification rules were
obtained which included 125, 97, 89 and 126 rules. Table S5 contains a detailed description
of the rules. Each rule was made up of several conditions and one result. If a sample
satisfied the condition, it would be classified into the corresponding group (“mild” or
“severe”). Each condition involved one mutation feature and one threshold, most of which
were 0.5. This threshold indicated that the presence or absence of a set of mutations could
distinguish the clinical status of patients, which suggests the association of these features
and indicates that these mutations may serve as potential targets for future therapy. We
further investigated these similarity rules. A detailed discussion of these rules can be found
in Section 4.2.

4. Discussion

In this study, data related to COVID-19 were deeply investigated by several compu-
tational algorithms. Four sets of optimal mutation features and decision rules that were
strongly correlated with the severity of COVID-19 were identified. By combining features
in four subsets, 57 mutation features were obtained which were deemed to be COVID-19
severity-related. Except the feature of “age”, we classified the remaining 56 mutations into
distinct categories according to the genomic locations and protein functions. As shown in
Figure 8, mutations in both untranslated regions and gene regions were associated with
COVID-19 severity. The locations of some important spike protein mutations in the genome
are shown in Figure 9. The analysis of these mutational signatures and decision rules may
inform clinical evaluation and vaccine development.
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4.1. Features Associated with COVID-19 Severity

We observed that 15 features (i.e., V1176F, age, ORF3a:Q57H, RdRP:P323L, N:I292T,
nsp14:A320V, ORF6:I33T, SNP:C241T, nsp4:F308Y, nsp7:L71F, C361C*, D614G, nsp6:L37F,
N:S202N, and nsp14:I164ILV) were simultaneously present in the results of the four
groups involving age, S protein mutations, SNP mutations in the UTR, and mutations
in other proteins. Most of these mutations have been widely reported to be associated
with the pathogenicity of SARS-CoV-2, while some mutations have been less studied
(e.g., nsp14:A320V, ORF6:I33T, C361C*, and N:S202N).

Among the 15 most significant mutational features associated with COVID-19 severity,
V1176F is a classical mutational signature of the S protein and was originally identified in
the Gamma variant. Studies suggest that V1176F may enhance S protein flexibility and is
associated with higher patient mortality [51,52]. Another important S protein mutation
in our results was D614G, and previous studies have shown that the mutation of D614G
leads to the binding affinity of the virus to ACE2, thus increasing the efficiency of cell
entry and further enhancing the infectivity of the virus [53]. Although previous studies of
hospitalization outcomes have shown no significant association between D614G and disease
severity, our results show that it is important for post-COVID-19 severity prediction [54].
Another S protein mutation, C361C*, is also associated with COVID-19 severity, which has
not been investigated in depth in previous studies.

Numerous mutations in other encoded proteins have also been shown to correlate
with disease severity. For example, nsp4:F308Y and nsp6:L37F have been reported to be
associated with mild disease, while ORF3a:Q57H, RdRP:P323L, N:I292T, ORF6:I33T, and
nsp7:L71F are associated with severe disease [55]. N:S202N is a hot spot mutation in a
linker region which may be associated with enhanced RNA binding and altered serine
phosphorylation, and no evidence has shown that N:S202N is associated with disease
severity in COVID-19 patients. Our results also show that nsp14:A320V and nsp14:I164ILV
are associated with the disease severity, which has not been reported in previous studies.
Nsp14 is known to function in viral replication and transcription. Mutations in nsp14
may cause the alterations of viral functions, thus affecting virological properties and
disease severity.

Age is also an important affecting factor of disease progression, and the infection
rate of COVID-19 and the risk of serious disease increase with rising age [56,57]. Another
important mutation with a small proportion is SNP:C241T in the UTR region. It is often
accompanied with RdRP:P323L or D614G variants, and no studies have directly shown
that SNP:C241T is associated with the severity of COVID-19 [58].
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By combining existing studies, we found that 15 features are important for identifying
the severity of COVID-19. This deduction not only demonstrates the reliability of our
study, but also suggests that some under-appreciated mutations (e.g., C361C*, N:S202N,
nsp14:A320V, nsp14:I164ILV, and SNP:C241T) may be associated with COVID-19 severity.

4.2. Decision Rules Related to the Severity of COVID-19 Infections

The four sets of decision rules (Table S5) were also similar, and we further analyzed
the rules with higher passed counts to classify the severity of COVID-19 for most samples
according to different mutations.

Our decision rules often involved a combination of multiple criteria, but we found that
a combination of two genes (i.e., RdRP:P323L and V1176F) could partly determine cases
of severe COVID-19 disease, and that the decision rules related to the results of the four
groups of algorithms. This finding is consistent with that of existing studies; specifically,
RdRP:P323L and V1176F are associated with poorer clinical presentation [52,55].

We also found that RdRP:P323L is often accompanied by ORF3a:Q57H, D614G,
SNP:C241T, nsp2:T85I, and other mutations in severe COVID-19 patients. D614G is a
hotspot mutation that appeared as early as the Alpha variant, and although the D614G mu-
tation does not directly correlate with disease severity, other COVID-19 variants containing
this mutation may accelerate infection due to the ability to facilitate viral entry into cells
and further aggravate the disease [54,59]. ORF3a:Q57H and nsp2:T85I first appeared in the
Beta variants and our results suggest that they may be associated with severe outcomes
of SARS-CoV-2 infection [60]. Studies have shown that SNP:C241T mutation is associated
with lower viral replication efficiency [61] and it can be observed in our results that mild
patients with SNP:C241T mutation tend to be combined with less other severe mutation
features (e.g., nsp2:T85I, ORF3a:Q57H, and V1176F), which suggests that this gene mutation
may be indirectly associated with mild COVID-19.

In our results, some COVID-19 mutations associated with mild disease were also
found, such as nsp14:I164ILV, ORF8:L84S, nsp4:F308Y, nsp6:L37F, ORF3a:G196V, N:P13L,
nsp4:M324I, and N:G204R. These mutations tend to be present in low-risk patients with
different combinations, and some have been reported to be associated with mild disease or
disease transmissibility [55,60].

4.3. Comparsion of the Previous Study

In Nagy et al.’s study [15], a computation analysis was also conducted on similar
datasets. However, there were several differences between our study and theirs. The main
differences were as follows.

(1) The mutation features analyzed in our study were generated by a different platform.
As different platforms have different advantages and disadvantages, analyzing muta-
tion features obtained from different platforms can uncover novel mutations that are
highly correlated with the clinical status of patients with COVID-19;

(2) More machine learning algorithms were used in this study than in Nagy et al.’s study.
We used five feature analysis methods (Boruta, LASSO, LightGBM, MCFS and mRMR)
and four classification algorithms (DT, KNN, RF and SVM). With these algorithms,
each mutation feature was fully evaluated. The final mutation features were selected
by multiple feature analysis methods, increasing the reliability of the results;

(3) In this study, we not only discovered mutation features related to the clinical status of
the patients with COVID-19 but also established rules to indicate more complicated
mutation patterns of the clinical status of the patients with COVID-19. These patterns
always included multiple mutation features, suggesting the relationships between a
combination of mutation features and the clinical status of patients with COVID-19.
Such form can be deemed an extension of single mutation biomarkers, and was not
involved in Nagy et al.’s study;
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(4) Biological analysis was performed in our study, increasing the reliability of the results.
In Nagy et al.’s study, the important mutation features were only listed and were
not analyzed.

These differences indicate that the new findings reported in this study can provide
novel insights to investigate the relationships between mutation and the clinical status of
patients with COVID-19.

5. Conclusions

In this research, we utilized sophisticated and widely used computational approaches
in relation to genome-wide mutation data to explore important mutations used to dis-
tinguish clinical status in COVID-19 patients. In short, our results demonstrated a set
of mutations associated with SARS-CoV-2 severity, which could help rapidly identify
SARS-CoV-2 infections carrying mutations associated with severe outcomes and guide the
development of SARS-CoV-2 vaccines. We also suggested some effective classifiers for
predicting COVID-19 patients’ clinical status; these were trained with a vast quantity of
data and performed well in classification. The quantitative decision rules in the optimal DT
classifier provided direct clues to distinguish between different patient clinical states.

Supplementary Materials: The following supporting information can be downloaded at: https:
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sorting algorithms, Table S5: Classification rules generated by the optimal DT model based on four
ranking algorithms.
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