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Abstract: For a long time, skin was thought to be no more than the barrier of our body. However, in
the last few decades, studies into the idea of skin as an independent functional organ have gradually
deepened our understanding of skin and its functions. In this review, we gathered evidence that
presented skin as a “trinity” of neuro–endocrine–immune function. From a neuro perspective, skin
communicates through nerves and receptors, releasing neurotrophins and neuropeptides; from an
endocrine perspective, skin is able to receive and secrete most hormones and has the cutaneous
equivalent of the hypothalamic-pituitary-adrenal (HPA) axis; from an immune perspective, skin
is protected not only by its physical barrier, but also immune cells and molecules, which can also
cause inflammation. Together as an organ, skin works bidirectionally by operating peripheral
neuro–endocrine–immune function and being regulated by the central nervous system, endocrine
system and immune system at the same time, maintaining homeostasis. Additionally, to further
explain the “trinity” of cutaneous neuro–endocrine–immune function and how it works in disease
pathophysiology, a disease model of rosacea is presented.

Keywords: skin; neuro–endocrine–immune; homeostasis; rosacea

1. Introduction

The skin is the largest organ of the human body, protecting internal homeostasis from
the external environment. However, skin is not only a simple barrier, but also involved
in maintaining internal homeostasis through bidirectional communications between the
central nervous, endocrine and immune systems. As far back as 1998, the idea of a neuro–
immune–cutaneous–endocrine network was developed and initialized as “NICE” [1],
although the endocrine aspect was not elucidated in these early articles. Shifting our focus
to the present day, emerging evidence has gradually verified that the skin shares and
provides the same bioactive molecules as the body, especially the evidence of cutaneous
production and action of neuropeptides, hormones and cytokines, which will be discussed
in this review. This suggests the existence of cross-talk between the skin and the system,
and gives the skin a new identity of a neuro–endocrine–immune organ. In this review,
we gathered evidence that indicated skin functioning as a nervous, endocrine or immune
organ, connected with the central nervous, endocrine and immune systems. Furthermore,
a disease model of rosacea was used to further explain skin as a “trinity” of a neuro–
endocrine–immune organ and its participation in pathogenesis.

2. Neuro Function of Skin

The term “neurogenic inflammation” suggests the critical role of the cutaneous nervous
system in immune response and homeostasis. Chronic inflammatory skin diseases such
as atopic dermatitis (AD) and psoriasis can be aggravated by stress [2–6], which is a good
example of neurogenic inflammation. In this chapter, the basic cutaneous nervous system
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anatomy and communication between the cutaneous nervous and immune system will
be explained. On the other hand, the relationship between the cutaneous nervous and
endocrine system will be reviewed in the next chapter.

2.1. Anatomic Foundation of Cutaneous Nervous System

Skin is derived from ectoderm, like the nervous system, which makes it easier to
understand the diverse nervous function of skin. Skin is innervated with mostly sensory
nerves, classified into A-β, A-δ and C fibers according to their diameter, myelinization, and
velocity of conduction [7]. A-β fibers are highly myelinated, rapid conducting fibers and
innervating specialized mechanosensory end organs that include Meissner’s corpuscles,
Pacinian corpuscles, Merkel cells, and Ruffini corpuscles [8,9]. A-δ fibers are less myelinated
fibers with slower conduction velocity that give sensation to mechanical, heat nociception
and non-noxious cold thermal stimuli. C fibers are unmyelinated fibers with the lowest con-
ducting speed, precept thermal and chemical and mechanical stimuli [10–12]. Along these
fibers lies immune cells such as mast cells [13,14], dendritic cells [15,16], macrophages [17],
innate lymphoid cells [18] and γδT cells [19], forming neuroimmune cell units (NICUs) that
orchestrate skin homeostasis [20,21].

2.2. Neuroimmune Interactions of Skin

The cutaneous nervous system and immune system have a responsibility in common:
sensing. Whether recognizing pathogens through immune cells or precepting noxious
stimuli via sensory nerves, these two “sensing” systems of the skin work synergistically
against environmental challenges.

Upon sensing stimuli, especially noxious ones, the cutaneous nervous system tends
to communicate with the immune system via neurotrophins (NTs) and neuropeptides
(NPs), causing subsequent cascading effects known as “neuroimmune interactions” [22–25].
NTs belong to a family of growth factors that control the development, maintenance, and
apoptosis of neurons and regulate skin homeostasis; for example, the stimulation of mast
cell degranulation and cytokine release [26]. NPs, such as substance P (SP), calcitonin gene-
related protein (CGRP) and hundreds of other types, are secreted by cutaneous nerves [27].
SP induces mast cell degranulation and the release of histamine and vascular endothelial
growth factor (VEGF), subsequently causing proinflammatory effects, hypervasculariza-
tion and infiltration of inflammatory cells [28,29]. CGRP is involved in vasodilation and
neurogenic inflammation [30].

However, neuroimmune reaction of the skin is bidirectional. The cutaneous nervous
system also takes orders from the immune system through cytokines. Immune cells sense
pathogenic events though a set of receptors, recognizing pathogen-associated molecu-
lar patterns (PAMPs) such as LPS and CpG, and damage-associated molecular patterns
(DAMPs); for instance, HMGB1, S100 proteins and heat-shock proteins [31–33]. Such
pattern-recognition receptors (PRRs) such as Toll-like receptors (TLRs) and IL-1R, after
binding with PAMPs and DAMPs, lead to inflammatory and immune responses through
signaling to nuclear factor kB (NF-kB) [34], inducing the expression of proinflammatory
cytokines such as IL-1, -6, -31, IFN-I and TNF-α [35,36]. With cytokine serving as ligands
and activators of sensory nerves [37], downstream neuro effects take place. For example,
IL-6 induces the expression of nerve growth factor (NGF) and NT-3, 4, and 5 [38,39], while
IL-31 exerts its pruritic effects [40].

2.3. Skin-CNS Connection

The cutaneous nervous system, as part of the peripheral nervous system, sends and
receives messages from the central nervous system (CNS), which can be elucidated using
the model of pruritus. Itch receptors on neuropeptide-containing free nerve endings
can be directly set off by histamine and other pruritogens, or indirectly by cytokine-
induced histamine release [41]. Once an action potential is set off, it travels through the
dorsal root ganglia onto the spinal cord, eventually to the somatosensory cortex in the
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brain. Conversely, CNS also participate in the modulation and inhibition of peripheral
pruritis via periaqueductal grey matter (PAG) of the mid-brain [42,43]. Additionally,
psychological stress can aggravate pruritus [44,45], which is another solid evidence of
skin–CNS connection.

3. Endocrine Function of Skin
3.1. Skin as Endocrine End Organ

Skin is the target of several hormones and expresses a number of endocrine recep-
tors. For example, glucocorticoids (GCs) and mineralocorticoids (MCs) interfere with the
epidermal development and homeostasis through GC receptor (GR/NR3C1) and miner-
alocorticoid receptor (MR/NR3C2), both of which are members of the nuclear receptor
(NR) subclass NR3C and are present in all skin compartments [46]. Like GCs and MCs,
thyroid hormones (THs) also participate in epidermal development and homeostasis via
nuclear thyroid hormone receptors (TRs) TRα and TRβ, expressed in epidermal and dermal
cells [47]. Androgen receptors in sebaceous glands and hair follicles regulate sebum secre-
tion and hair growth [48]; insulin receptor and insulin-like growth factor 1 (IGF-1) receptor
in keratinocytes (KCs) modify cutaneous development and metabolism [49]. In conclusion,
various kinds of hormones bring their biological effects into skin through binding with
cutaneous endocrine receptors. Therefore, when the systemic endocrine function is com-
promised, cutaneous homeostasis will also be influenced. There are abundant supporting
clinical findings such as the correlation between acanthosis nigricans, acrochordon and
metabolic syndrome in patients with lichen planus [50]; the connection between alopecia
areata, vitiligo and autoimmune thyroid disease [51]; and the relationship between acne,
hypertrichosis and insulin resistance [52].

3.2. Skin as Endocrine Initiating Organ

Hormones are synthesized in skin mainly through two ways: activation of circulating
hormone precursors and de novo synthesis. Examples of the former way include the
activation of cortisol and corticosterone through local 11β-hydroxysteroid dehydrogenase
(11β-HSD) [53] and the intracellular T4 conversion into T3 via iodothyronine deiodinase en-
zymes D1 and D2 [47]. Both GCs and THs are essential for skin homeostasis, GCs downregu-
late inflammation [54] while THs enhance skin susceptibility to inflammation [55]. Another
well-known example of hormone activation is the conversion of dehydroepiandrosterone
(DHEA) to androstenedione, then to testosterone through isotypes of 17β-hydroxysteroid
dehydrogenase (17β-HSD) in skin. Further conversion of testosterone into its most potent
form, 5α-dihydrotestosterone (5α-DHT), is completed by 5α-reductase in skin [56].

Other than in traditional endocrine organs, de novo synthesis of hormones also takes
place in skin. The most studied example is the equivalent of hypothalamic-pituitary-adrenal
(HPA) axis in skin. The traditional adaptive responses to systemic stress are regulated by the
HPA axis. Activation of the traditional HPA axis begins with the pituitary production of the
corticotropin-releasing hormone (CRH) following stimulation by corticotrophin-releasing
factor (CRF) secreted from the hypothalamus. Then, CRH receptor type 1 in the anterior
pituitary is activated and induces the cleavage of proopiomelanocortin (POMC) into the
adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH) and
β-endorphin (β-END) [57]. ACTH stimulates the adrenal cortex to secret GCs, which
responds to stressors and suppresses the HPA axis through negative feedback [57].

When stressors come to the skin, KCs produce hormonal products, similar to that pro-
duced in systemic stressful events such as CRH, POMC, β-END, ACTH and α-MSH [58].
Moreover, enzymes of corticosteroid synthesis such as CYP11A1, 3β-HSD, CPY17A1,
CYP21A2 and CYP11B1 are expressed in KCs and thus produce corticosterone and cor-
tisol [59,60], which further proves the existence of the skin HPA axis. In an IMQ-treated
mouse model whose KC-derived CYP11B1 was knocked out, local homeostasis was im-
paired and psoriasiform inflammation was exacerbated. Furthermore, even non-IMQ-
treated mice presented psoriasiform inflammation after CYP11B1 knock out, showing the



Life 2022, 12, 725 4 of 11

homeostasis stabilizing effect of KC-derived GC and the importance of the whole skin
equivalent of the HPA axis [54].

Apart from the well-known GCs, vitamin D and its analogs are known as secos-
teroids, which is synthesized from the skin. In KCs of the basal layer of epidermis, 7-
dehydrocholesterol (7-DHC) is converted to vitamin D3 under UVB light, then released
into system to further undergo biological activation in the hepatocytes and kidneys [61].
Numerous skin functions are regulated by vitamin D and its receptor, including coreg-
ulation in epidermal proliferation and differentiation [62], regulation of the hair follicle
cycle [63], promotion of innate immunity [64], and suppression of tumor formation and
inflammation [65]. Vitamin D disturbance is often seen in skin diseases, such as low vitamin
D status in psoriasis [66] and chronic urticaria patients [67], and elevated vitamin D level
in rosacea patients [68].

4. Immune Function of Skin
4.1. Barrier and Immune Cells Undernease

Unlike intestinal and pulmonary mucosa, which only have one single layer of epithelial
barrier, the skin barrier acts as “bricks and mortar”—keratinocytes (KCs) as “bricks” and
intercellular matrix as “mortar”. Such a firm and tight structure forms the physical barrier
and protects internal organs from external hazards [69]. Other than being components
of a physical barrier, KCs themselves have innate immune features and the ability to
induce adapted immune response. As the first sensors and immune sentinels of pathogen
invasion, KCs can recognize nonspecific external stimuli such as microbial ligands, UV
rays and chemicals via receptors such as TLRs, TNF-α receptor 1 (TNFR1) and IL-1R [70].
Responding to stimuli, KCs produce various cytokines, chemokines, growth factors and
antimicrobial peptides (AMPs), leading to either direct neutralization of the pathogen or
indirect activation of other specific immune responses [71].

Underneath the barrier lies various immune cells, such as Langerhans cells (LCs),
dendritic cells (DCs), mast cells (MCs), B and T lymphocytes, together with skin cells
that constitute skin-associated lymphoid tissue (SALT) [72]. Under a steady state, these
immune cells surveillance skin homeostasis and help maintain a balanced metabolism and
barrier integrity [73–75]. When homeostasis is broken, SALT elicits it effect by recognizing
the pathogen, modulating the cascade of the local immune responses and participating
in the pathophysiology of autoimmune and hypersensitivity disorders [76]. The term
inducible SALT (iSALT) was further created to describe the skin immune cell complex
under the elicitation phase, which does not present under steady homeostasis [77]. The
iSALT provides an antigen presentation site in the skin, which is critical for elicitation of
adaptive immunity such as T cell activation [16].

4.2. Systemic Association with Cutaneous Immue System

Skin-derived immune cells not only modulate local immune response but are also
involved in systemic inflammation through cytokine release and cell migration. For exam-
ple, KCs can produce a plethora of cytokines such as IL-1, -6, -7, -8, -10, -12, -15, -18, -20,
and TNF-α, causing proinflammatory and anti-inflammatory effects [78]. Immune cells
including LCs [79], DCs [80], MCs [81], and T lymphocytes [82] are found able to migrate
from skin to draining lymph nodes, further affecting systemic immune response.

γδT cells, which are the key pathogenic cells of psoriasis, have been suggested to be a
potential candidate contributing to the development of psoriatic cardiovascular disease [83].
In a psoriasis mouse model, γδT cells in the skin migrate to the draining lymph nodes and
re-appear when the skin is exposed to imiquimod (IMQ) again. The migration relies on the
CCR6-CCL20 pathway, meanwhile CCL20 is found upregulated in hypertension damaged
vessel walls and the plaque of atherosclerosis [84]. This suggests the migration of γδT cells
may contribute to psoriatic cardiovascular disease, pointing out the potential reason of
“psoriatic march” [83]. Other than γδT cells and CCL20, a common concept of psoriatic
march believes that the release of excessive proinflammatory cytokines such as TNF-α
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and IL-1 in psoriasis causes chronic low-grade systemic inflammation, leading to insulin
resistance, visceral adiposity, hypertension and dyslipidemia, and, finally, the development
of type 2 diabetes and cardiovascular disease [85].

Besides psoriatic march, another much-discussed cutaneous inflammation that can
cause systemic impact is the case of “atopic march”. When the skin barrier is impaired
due to inflammation in AD, allergens are exposed to cutaneous immune cells, which
induces sensitization and promotes the development of specific T and B cell responses,
causing subsequent allergic disease [86]. Cutaneous DCs and other immune cells migrate
to draining lymph nodes and induce differentiation of naive T cells into allergen-specific
TH2 cells [87]. These TH2 cells can exert immune effects, systemically affecting the lungs,
esophagus, and gastrointestinal tract, causing systemic allergic disease [86].

In contrast to the two inflammatory skin marches mentioned above, systemic immune
cells can also act on skin through chemotaxis and homing, showing bidirectional charac-
teristics between the systemic and cutaneous immune system. In steady homeostasis, T
cells patrol peripheral tissues such as skin to facilitate swift immune responses against
pathogens. Once homeostasis is imbalanced, chemokines are expressed during immune
response to combine with chemokine receptors on T cells, thus chemotaxis and homing
take place [88]. Such a process participates in the pathogenesis of AD [89], psoriasis [90],
alopecia areata [91], vitiligo [92], rosacea [93] and cutaneous T cell lymphoma (CTCL) [94].

5. Rosacea as a Disease Model of the Trinity of Skin

To further explain skin as a neuro–endocrine–immune organ, a clinical related disease
model is required. One well-studied example, psoriasis, is driven by innate immune cells,
adaptive immune cells, keratinocytes and their production of cytokines. Once stressed
environmentally or psychologically, activated HPA axis and secreted neuropeptides may
exacerbate the progression of psoriasis, where neuro–endocrine–immune functions meet
together. Since the neuro–endocrine–immune connection of psoriasis is so well-discussed
elsewhere [95–97], the details will not be described in this review. Instead, we will focus on
another inflammatory dermatosis: rosacea.

Although the exact pathogenesis of rosacea still remains unclear, rosacea is a common
disorder with a pathogenesis that involves immune dysfunction, neurovascular dysregu-
lation and stress hormones that can be a good illustration of the trinity of the skin. Like
many other inflammatory skin diseases, rosacea starts with the sensing of external physi-
cal, chemical and biological stimulations by the cutaneous nervous and immune system.
Sensory neuron density is increased in rosacea [98], while immune cells such as mast cells
have been found in increased numbers in rosacea-affected skin [99].

Physical stimuli such as temperature changes and chemical stimuli such as spices
can activate sensory nerves through the transient receptor potential (TRP) family of cation
channels [100]. Once TRP ion channels are activated, vasoactive neuropeptides such
as SP, CGRP and vasoactive intestinal peptide (VIP) are released, resulting in enhanced
skin blood flow and telangiectasia [23,98]. SP can further induce mast cell degranulation,
causing increased levels of proinflammatory cytokines such as IL1, IL2, IL6 and TNF-a,
chemokines such as CCL2, CCL5, CXCL8, CXCL9 and CXCL10 [101], leading to neurogenic
inflammation in rosacea.

On the other hand, biological stimuli, namely PAMPs produced by staphylococcus, de-
modex or other pathogens, and DAMPs caused by damages, are sensed by TLRs, inducing
conserved anti-pathogen signaling pathways, including the production of antimicrobial
peptides (AMPs) such as cathelicidin and proinflammatory cytokines and chemokines [102].
Cathelicidin is further cleaved into LL-37, its active peptide form, by kallikrein 5 (KLK5),
causing leukocyte chemotaxis, activation of NF-kB and promotion of angiogenesis [103,104],
resulting in morphologic changes in rosacea, such as telangiectasia, facial erythema, papules
and pustules.

CRH also plays a critical role in rosacea pathogenesis. When skin is stressed by exter-
nal physical, chemical and biological stimuli, or by systemic psychological and physical
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stress, CRH is either released from the pituitary or expressed in the skin [105]. Even a phys-
iological dose of UVB radiation can increase CRH synthesis significantly in KCs, sebocytes
and fibroblasts [106]. CRH acts as the central coordinator for neuro–endocrine–immune
responses, causes degranulation of mast cells and notable increases in vascular permeability,
regulates IL18 secretion in KCs and IL6, IL8 production in sebocytes, which mediate MAP
kinase (MAPK) and NF-kB, and may lead to inflammation and facial erythema [107]. In
addition, CRH might also increase the expression of TLRs [108] and activate cannabinoid
and vanilloid pathways [109].

To summarize, in the rosacea model of the neuro–endocrine–immune trinity of skin,
the pathogenesis is started with extrinsic or intrinsic stress and stimuli, undergoes the
regulation and participation of cutaneous and systemic nervous, endocrine and immune
system, and results in inflammation and morphologic changes (Figure 1).
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Figure 1. Rosacea disease model of cutaneous neuro–endocrine–immune system. The TLRs rep-
resent the sentinel of cutaneous immune system. The CRH represents the action of cutaneous
endocrine system. The TRPV/TRPA represents the sentinel of cutaneous nervous system. The parts
belongs to cutaneous nervous, endocrine and immune system are colored in blue, red and yellow,
respectively. The combination of disruption of the cutaneous neuro–endocrine–immune system
results in the final clinical manifestation of rosacea. Abbreviations: CGRP: calcitonin gene-related
protein; CRH: corticotropin releasing hormone; DAMPs: damage-associated molecular patterns;
KLK5: kallikrein 5; SP: substance P; TLRs: Toll-like receptors; TRPV/TRPA: transient receptor poten-
tial vanilloid/transient receptor potential ankyrin; UV: ultraviolet; VIP: vasoactive intestinal peptide.

6. Discussion

To conclude this review, a brief outline of the skin as a neuro–endocrine–immune
organ and its function involved in maintaining homeostasis is made below (Figure 2).
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Figure 2. Skin as a “trinity” of a neuro–endocrine–immune organ. In this illustration, skin is divided
into cutaneous nervous, endocrine and immune system. Cutaneous nervous system senses extrinsic
stimuli via sensory nerves and receptors, communicates with CNS and provides NPs, NTs which can
stimulate immune cells [23]. Cutaneous immune system is composed of innate immune cells, adaptive
immune cells and KCs. It senses PAMPs and DAMPs through PRRs on KCs and innate immune
cells [110], participates in inflammation and communicate with systemic immune system through
cytokines, immune cell migrating and homing. Cutaneous endocrine system, especially the de novo
hormone synthesis “plant”, KCs, is able to synthesize GCs [59] and vitamin D [61], regulate local and
systemic homeostasis. Endocrine receptors*: including glucocorticoid receptors, mineralocorticoid
receptor, thyroid hormone receptors, insulin receptors and insulin-like growth factor 1 (IGF-1)
receptors, etc. Abbreviations: ACTH: adrenocorticotropic hormone; ARs: androgen receptors;
CNS: central nervous system; DAMPs: damage-associated molecular patterns; DC: dendritic cell;
GCs: glucocorticoids; KC: keratinocyte; LC: Langerhans cell; MC: mast cell; NPs: neuropeptides;
NTs: neurotrophins; PAMPs: pathogen-associated molecular patterns; PRR: pattern-recognition
receptors; SALT: skin-associated lymphoid tissue; SP: substance P, VD3: vitamin D3; 7-DHC: 7-
dehydrocholesterol.

It might be noted that the word “neuro–endocrine–immune” is ended with “immune”
in this review, different to most articles where “neuro-immuno-endocrine” is used in-
stead [37,111]. This is because, most of the time, the cutaneous immune system plays the
final role in pathogenesis through inflammation, and also has the ability to sense pathogens
and initiate a defensive reaction itself.

There is plenty of evidence supporting the concept that skin is a neuro–endocrine–
immune organ, including but not limited to the neuroanatomy of skin, the production of
neurotrophins and neuropeptides, the cutaneous equivalent of HPA axis, and the SALT
with its production of cytokines and chemokines. All three aspects of functions together as
a trinity keeps the skin in a steady state. Any disruption to the skin could result in a fall in
local homeostasis, further influencing systemic homeostasis such as psoriatic march and
atopic march. Hence, maintaining the integrity of the skin barrier and keeping it under
homeostasis is critical. Further research on the neuro–endocrine–immune function of the
skin might provide new perspectives on the pathogenesis of skin diseases in view of a
bigger picture and give a rise to new therapeutic options.
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