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Abstract: Extracellular vesicles (EVs) are small biological particles released into biofluids by every
cell. Based on their size, they are classified into small EVs (<100 nm or <200 nm) and medium
or large EVs (>200 nm). In recent years, EVs have garnered interest for their potential medical
applications, including disease diagnosis, cell-based biotherapies, targeted drug delivery systems,
and others. Currently, the long-term and short-term storage temperatures for biofluids and EVs
are −80 ◦C and 4 ◦C, respectively. The storage capacity of EVs can depend on their number, size,
function, temperature, duration, and freeze–thaw cycles. While these parameters are increasingly
studied, the effects of preservation and storage conditions of EVs on their integrity remain to be
understood. Knowledge gaps in these areas may ultimately impede the widespread applicability of
EVs. Therefore, this review summarizes the current knowledge on the effect of storage conditions
on EVs and their stability and critically explores prospective ways for improving long-term storage
conditions to ensure EV stability.

Keywords: extracellular vesicles (EVs); biotherapeutics; long-term storage; stability; temperature;
freeze-thaw cycle

1. Introduction

Extracellular vesicles (EVs) are nano-scaled particles derived from cells that aid cell-
to-cell communication [1,2]. Chargaff & West (1946) alleged the presence and possible
function of EVs while studying thromboplastin and platelet function [3]. The following
studies also confirmed that all eukaryotes and prokaryotes could produce EVs, and it was
considered that cells used these EVs as cargo transporters to transfer unwanted materials
outwards [4–10]. However, recent research has shown that EVs are crucial for intercellular
communication throughout normal and pathological development [11–15]; in fact, some of
them are involved in cancer progression [16–19], obesity and metabolic diseases [20–24],
inflammatory and autoimmune pathogenesis [25–27]. Nowadays, various studies revealed
that EVs are used in several clinical applications such as disease diagnosis and development
of vaccines, drug distribution, and extracellular vesicle (EV)-based therapies [17–19]. Elec-
tron microscopic imaging and nanoparticle tracking analysis (NTA) are the primary tools
for the characterization of the morphology and size of vesicles. However, the long-term
and broad-spectrum usage of EVs in clinical applications faces many obstacles. As such,
preservation of their characteristics and integrity during long-term storage is critical and
remains a challenging obstacle. This review summarizes the current understanding of the
impact of storage conditions on EVs and their stability. It also discusses potential methods
to improve long-term storage conditions to maintain EV stability.

1.1. Characteristics and Cargos of EV
1.1.1. EV Formation and Types

Every cell secretes lipid-bound vesicles into body fluids. Based on their physical size,
biogenesis, and cell surface antigens, these vesicles are classified into three major subtypes:
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apoptotic bodies, microvesicles (MVs), and exosomes [28]. Apoptotic bodies are EVs with
a subcellular membrane mainly released by dying cells. Their diameter ranges between
50 nm and 5 µm. They may also contain intact organelles, chromatin, glycosylated proteins,
proteins associated with the nucleus (histones), mitochondria (HSP60), Golgi apparatus
and endoplasmic reticulum constituents (GRP78) [29,30].

MVs are secreted by outward budding or pinching of the cell plasma membrane,
and their diameter ranges from 100 to 1000 nm. Actin, microtubules, molecular motors
(kinesins and myosins), and fusion machinery (Soluble N-ethylmaleimide-sensitive factor
Attachment Protein Receptor (SNARE) and tethering factors) are believed to be needed
for MVs formation. The quantity of generated MVs is dependent on the physiological
conditions and microenvironment of the donor cell. Exosomes are 30–150 nm-sized single-
membraned vesicles released by all cell types; they are secreted through endosomal activity
and are also known as intraluminal vesicles (ILVs). Early endosomes originate from the
inner budding of the cell plasma membrane, then mature into multi-vesicular bodies
(MVBs). Those MVBs participate in endocytic and trafficking activities within the cell.
Then, they are either destroyed in the lysosome or fused with the plasma membrane and
discharged into the extracellular space [29–35]. The biogenesis of EVs and their components
are shown in Figure 1. Due to the substantial overlap between these EV categories and
the lack of consensus on specific surface markers, the use of the terminology mentioned
above for EV classification is strongly discouraged. Therefore, the current guidelines
were introduced by ISEV in 2018; based on the new guidelines, EVs are classified into
three classes according to their physiological characteristics, i.e., (i) size—small EVs (sEVs)
(<100 nm or <200 nm in diameter), medium EVs (mEVs), or large EVs (lEVs) (>200 nm in
diameter)—or density—low: 1.1 to 1.2 g/mL, middle: 1.16 g/mL, or high: 1.24–1.28 g/mL—
(ii) biochemical composition (using cluster of differentiation (CD)-63+/CD81+ staining,
annexin V staining, etc.); (iii) cell of origin or conditions, including podocyte EVs, hypoxic
EVs, large oncosomes, and apoptotic bodies [36–39].

1.1.2. EV Membrane Components

EV membranes are composed of a lipid bilayer; some are composed of a single mem-
brane, and the surface contains glycan and polysaccharides [40]. The presence of a bioactive
cargo protecting by the lipid-bilayered membrane of EVs suggests that their molecular
content could serve several therapeutic applications and their surface molecules could
allow EVs to be used as biomarkers to identify different molecular subtypes [41]. However,
EVs are rich in lipids, including phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidylinositol, phosphatidic acid, cholesterol, ce-
ramide, sphingomyelin, glycolipids, as well as a few other lipids present in the plasma
membrane [42,43]. They contain lipid-metabolizing enzymes such as phospholipases D and
A2 [44]. CD-63, CD-81, major histocompatibility complex (MHC)-1, tetraspanins, growth
factor receptors, integrins (ITGs), heat shock proteins, and cell adhesion molecules are
membrane proteins that help to identify them [37,44–46]. Actin and tubulin (cytoskeleton
proteins), ESCRTs (endosomal sorting complexes required for transport) protein com-
plexes, ALIX (apoptosis-linked gene-2 interacting protein X), and tumor suppressor gene
(TSG)-101 protein (inner peripheral membrane proteins) are also involved in EV structural
formation [42].

In pathological conditions, affected cells release more EVs to communicate with
their surroundings; these EVs are more recipient-cell-specific molecules. For example,
hypoxia increases cellular communication through EV in cancer cells, mediated by hypoxia-
inducible factor (HIF)-1 [47]. Cell stress stimulation and calcium ionophores may also
promote vesicle release [2]. Similarly, ovarian cancer-derived EVs are uptaken by natural
killer cells, whereas T cells acquire very few [48]. EVs can bind to receptor cells, or their
endocytosed cargo may activate intracellular signaling cascades [49].
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Figure 1. Biogenesis of EVs and their components. Medium EVs (mEVs) or large EVs (lEVs) are 
produced when the plasma membrane begins to bud. mEVs/lEVs are (>200 nm), irregular in shape, 
and may include cytoplasmic components. Surface markers such as integrins, CD40, selectins, and 
proteins from the cell are present. Small EVs (sEVs) are derived from the endosomal trafficking 
pathway and so have a more consistent shape and size (<200). sEVs are more readily identified than 
mEVs/lEVs by cell surface markers such as CD9, CD63, and CD81, and may include mitochondrial 
DNA, messenger RNA, and microRNA. MVB: multi-vesicular bodies; CD: cluster of differentiation. 
This figure was created with BioRender.com, accessed on29 March 2022. 
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Figure 1. Biogenesis of EVs and their components. Medium EVs (mEVs) or large EVs (lEVs) are
produced when the plasma membrane begins to bud. mEVs/lEVs are (>200 nm), irregular in shape,
and may include cytoplasmic components. Surface markers such as integrins, CD40, selectins, and
proteins from the cell are present. Small EVs (sEVs) are derived from the endosomal trafficking
pathway and so have a more consistent shape and size (<200). sEVs are more readily identified than
mEVs/lEVs by cell surface markers such as CD9, CD63, and CD81, and may include mitochondrial
DNA, messenger RNA, and microRNA. MVB: multi-vesicular bodies; CD: cluster of differentiation.
This figure was created with BioRender.com, accessed on 29 March 2022.

1.1.3. EV Cargos

EVs carry genomic, mitochondrial deoxyribonucleic acids (DNAs), microRNA (miR),
and long non-coding ribonucleic acid (lncRNA). These ribonucleic acids (RNAs) can regu-
late gene expression in recipient cells [50]. Then, EV-DNAs represent the whole genomic
DNA of parental cells, including mutations [51]. The length of EV-RNAs is half that of
cellular RNAs. MicroRNAs and transfer RNAs make up around 15% of EV-RNA extracted
from serum. However, their mechanism of action in cells is unknown [52]. EVs also contain
tetraspanins, cytoskeletal proteins, heat shock proteins, integrins, and other proteins. These
components are mainly involved in the internalization and intracellular trafficking of EVs,
followed by intracellular signaling initiation or the release of biochemical messages [53].
EV types, surface markers, and cargos are listed in Table 1.
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Table 1. EV types, surface markers, and cargos.

Features Apoptotic Bodies MVs Exosomes

Shape Heterogeneous Heterogeneous Spherical

Size (nm) 50–5000 100–1000 30–150

Formation mechanism
Nuclear chromatin

condensation, followed by
membrane blebbing

Plasma membrane direct outward
budding and fission

Endosomal network fusion
with the plasma membrane

Release or response Apoptosis
Cell injury, proinflammatory

stimulants, hypoxia, oxidative
stress or shear stress

Cellular stress or
activation signals

Surface markers Apoptotic cell markers
Selectins, integrin, CD40, CD31+,
CD235a+, CD42b−, CD45, CD61+,

CD62E+, and CD144+,

Tetraspanins (CD9, CD63
CD81 and CD82)

Cargos and other markers
Intact chromatin, glycosylated
proteins, Caspase 3, histones,

HSP60, and GRP78

Cytoskeletal proteins, heat shock
proteins, integrins, and proteins

containing post-translational
modifications, such as

glycosylation and
phosphorylation

ALIX, TSG-101, PODXL,
HSP70, and HSP90β

2. Current Storage Conditions

EVs can be isolated from several biofluids, such as bronchoalveolar lavage fluid
(BALF), seminal fluid, milk, urine, and blood. The storage of biofluids before the isolation
of EVs affects the segregation, content, and function of EVs. Before isolating EVs, biofluid
samples are frequently stored for short or long periods under various conditions, such
as refrigeration or freezing. Isolated EVs are resuspended in phosphate-buffered saline
(PBS); they are likely to be unstable at 4 ◦C, exhibiting a decrease in number and surface
markers expression or a change in size. On the other hand, isolated EVs should be stored
at −80 ◦C or lower. In addition, some articles recommend short-term storage ranging from
a few hours to a few days at 4 ◦C. These storage conditions are widely used in several
laboratories, most likely due to the widespread belief in EVs’ extreme stability and to
reports of EV degradation following repeated freeze–thaw cycles [36,54–59]. As a result,
no optimal conditions for storage have been determined, although a limited quantity of
relevant data is available. These factors explain why distinct EVs would experience various
modifications during storage, including physiological changes such as increased size and
vesicle fusion, which result in the production of multiple vesicles in diverse shapes or a
decrease in vesicle number, and functional changes such as in cargo expression. EVs may
undergo various degrees of change during storage, resulting in their size, shape, function,
and content loss. This review compiles data from multiple sources and outlines the impact
of storage on the physiological and functional aspects of EVs.

3. Biofluids and Extracellular Vesicles Characterization under Different
Storage Conditions

Three important factors that can frequently affect the physiological and biological
characteristics of EVs are (i) temperature, (ii) pH, and (iii) preservation techniques.

3.1. Impact of Temperature on Biofluids and EV during Storage
3.1.1. Impact on Yield, Morphology, and Integrity
Storage of BALF and Their EVs

The long-term storage of EV-containing BALF can significantly disrupt the surface,
morphological characteristics, and cargo proteins of BALF-EVs. It was shown that storing
BALF destabilizes its surface properties, morphological characteristics, and protein content.
The diameter of exosomes stored at 4 ◦C and−80 ◦C increased by 10% and 25%, respectively,
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compared to that of fresh exosomes. The proteomic content of the EVs was also lost due to
storage at 4 ◦C and −80 ◦C [55].

Storage of Urine, Sperm, and Their EVs

Zhou et al. (2006) demonstrated that storing urine with protease inhibitors inhibited
exosome-associated protein degradation (sodium–hydrogen exchanger 3 (NHE3), TSG101,
ALIX, and aquaporin 2 (AQP2)). Urine samples were stored at −80 ◦C for seven months,
and the expression of exosome-associated NHE3, TSG101, ALIX, and AQP2 proteins was
better preserved than in samples stored at −20 ◦C [60]. Human urine was collected and
stored at 4 ◦C and −80 ◦C for 24 h. Then, the expression of the TSG101, AQP2, angiotensin-
converting enzyme, and podocalyxin-like (PODXL) proteins was analyzed and compared
to that in fresh urine; the expression of the above markers was stable after storage [61].
Though EVs present in fresh urine samples may decrease their size within 2 h of collection,
the optimal storage of urine samples containing EV can be achieved by storing them at
−80 ◦C in a solution of 0.5 mM phenylmethylsulphonyl fluoride (PMSF) and 20 mM
leupeptin (final concentration 1:10) as a protease inhibitor for a week [56]. In contrast,
long-term freezing does not affect the protein and mRNA levels of CD63 and CD9. Briefly,
freezing sperm for two years at −80 ◦C had no discernible effect on the biological activity
of EVs, regardless of their size, structure, or concentration [57,58]. In another study, the
collected cell-free urine was stored in freezing conditions for one year; then, the EVs were
collected and compared with EVs collected from fresh urine. The concentration of EVs
isolated from the fresh urine sample was 109–1010/mL; this concentration decreased 2-fold
after a single freeze–thaw cycle. The diameter of EVs increased by 17% after storage.
However, there were no morphological changes observed after storage [59]. Overall, these
studies recommend that storage at −80 ◦C with protease inhibitors is suitable to preserve
EV-containing urine samples for long periods.

Storage of Milk and Their EVs

Munagala et al., 2016, discovered that EV-containing bovine milk stored at −80 ◦C for
several months without coagulation retained a high degree of activity [62]. Another study
reported that EV-containing bovine milk was stored at−80 ◦C for 28 days without affecting
the physiological characteristics of the EVs [63]. Unrefined human breast milk stored at 4
and −80 ◦C showed cell death and storage stress, which can affect the EV population and
a minor effect on the expression of the CD-63 and CD-9 EV markers [64]. EV-containing
bovine and human milk can be stored at −80 ◦C for 28 days with minimal physiological
characteristic loss.

Storage of Blood, Plasma, Serum, and Their EVs

Blood, serum, plasma, and platelets are vital fluids used for EV isolation. In contrast
to other biofluids, long-term storage and freeze–thaw cycles of serum do not affect EV
yield. For example, human serum EVs remained stable under various conditions, including
storage at room temperature (RT) for 24 h, at 4 ◦C for seven days, at −80 ◦C for one year,
and under certain repeated freeze–thaw cycles [65,66]. However, fresh plasma yielded
more and purer and EVs than stored plasma [65].

The short-term storage of human blood at RT or 4 ◦C resulted in an increase in
the expression of the surface markers CD9, CD63, and CD81 compared to long-term
freezing storage [67]. Human plasma was collected from healthy people and stored at
4 ◦C for 7 h and at −80 ◦C for 7 and 28 days. Storage at 4 ◦C did not affect the number of
endothelial microparticles present. However, storage at −80 ◦C enhanced the expression
of CD31+, CD42b−, and CD62E+ and decreased the expression of CD144+ [68]. Another
study reported that EV concentration decreased significantly in plasma stored at −80 ◦C
for 10–12 days compared to freshly isolated plasma samples. However, no significant
difference was observed in the average size of EVs between the samples [69]. Platelets
were frozen and cryopreserved for 24 h at −80 ◦C in 5–6% dimethyl sulfoxide (DMSO).
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More microvesicles were released, which a significant increase over the 24 h short-term
storage period, than from fresh platelets [70]. Storage of red blood cell at 4 ◦C for 50 days
increased the particle counts by 20-folds and increased protein expression [71]. However,
storage at −80 ◦C for 6 months of plasma before EV isolation and of isolated EVs was
associated with a decrease in particle concentration and an increase in protein content
and particle size. The freeze–thaw process also lowered the yield, increased particle size,
and triggered membrane breakdown and re-micellization [72]. Meanwhile, Jin et al., 2016
reported that serum-derived exosomes stored at RT showed significant changes in CD63,
TSG101, and DNA concentrations after 24 h. In addition, the increased stability of isolated
exosomes stored at 4 ◦C for seven days, without effects on CD63, TSG101, or nucleic acid
concentrations, was observed [65]. Based on these findings, EVs extracted from blood, and
their derivatives, can be stored at 4 ◦C for two weeks or frozen for two years.

Sokolova et al. (2011) stated that the maintenance of EVs’ integrity and size highly
depend on the storage conditions [73]. The storage of EVs at 4 ◦C for 24 h decreased their
population, while the physical and functional characteristics of EVs were preserved for
28 days at −80 ◦C [74]. A single freeze–thaw cycle and storage in frozen conditions such as
at −20, −80, and −196 ◦C did affect the concentration, diameter, and the expression of the
surface markers CD235a+ and CD61+ of human plasma-derived EVs for up to one year.
At the same time, lactadherin+ expression in EVs increased sevenfold compared to that in
fresh plasma samples [59]. Deville et al. (2021) revealed no differences in number between
freshly isolated EVs and EVs stored at 4 or −80 ◦C for up to one month [75]. These studies
showed that the particle concentration and size distribution and the concentrations of
erythrocyte and platelet EVs in plasma were relatively stable following a single freeze–thaw
cycle and storage for up to one year. However, the average size of the exosomes increased
after four days of storage at 4 ◦C. Freeze–thaw cycles significantly decreased exosome
concentration, quality, and protein level [55].

Storage of Saliva

Yuana et al. (2015) collected saliva from healthy humans and stored it in frozen
conditions at −20, −80, and −196 ◦C for one year. Then, EVs were isolated. Compared to
EVs isolated from fresh samples, the diameter of these EVs increased by 17%, and their
concentration decreased 3-fold after a single freeze–thaw cycle and storage. Nevertheless,
there no morphological changes were observed [59]. Human saliva was stored at 4 ◦C
for 7 days; after that, the total protein, dipeptidyl peptidase IV activity, morphology, and
expression of exosomes’ surface markers (CD9, ALIX, and TSG101) were stable, but minor
evidence of degradation of certain proteins was also found after storage [76].

Storage of EVs from Cell Culture Media

Lee et al. (2016) demonstrated that exosomes stored for 10 days at RT had reduced
expression of the exosomal marker CD-63 but not of CD-9, RNA, and proteins, as well
as no reduction in the population, compared to exosomes preserved at 4 ◦C and −70 ◦C
and fresh exosomes. Exosome uptake efficiency and biodistribution were significantly
decreased after storage at 4 ◦C and −20 ◦C [77]. However, exosomes stored at −80 ◦C
for 14 days maintained their biodistribution expression [78]. Park et al. (2018) explained
that the size, number of EVs, surface protein expression (CD-63 and -81), and functional
stability remained constant at −70 ◦C after 25 days [79]. Nevertheless, Richter et al. (2019)
reported that EV storage at −80 ◦C for 14 days altered the morphology and particle size
and increased particle aggregation [80]. Cheng et al. (2019) observed no changes in the
concentration of exosomes and exosomal markers (ALIX, TSG101, and heat shock protein
(HSP)-70) expression after 24 h of storage at 4 ◦C [81]. These studies proved that −80 ◦C is
the optimal temperature for long-term EV storage (up to 28 days). Long-term or short-term
storage under frozen conditions or refrigeration of biofluids or EVs slightly affects EVs’
morphological characteristics and surface marker expression.
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3.1.2. Impact on Functional Activities and Cargos Expression

EVs storage at −80 ◦C for 14 days decreased the glucuronidase activity [80]. Human
blood serum was incubated at RT for up to 24 h before isolating EVs. Then, exosomal
miRNA expression was compared to that of freshly isolated EVs. It was found that miR-21
and miR-142-3p expression was reduced compared to freshly prepared EVs [82]. At the
same time, another study reported that after storage of human blood serum at 4 and−70 ◦C
for long periods, the expression of miRNAs such as miR-21, miR-200b, and miR-205 in
isolated exosomes was stable for up to 96 h at 4 ◦C and 28 days at −70 ◦C [83]. Another
study confirmed that the Ct values of exosomal lethal (let)-7a and miR-142-3p were stable
after storing human blood plasma at 25 ◦C for 48 h [84]. In addition, Ge et al. (2014) isolated
exosomes from plasma and kept them in the freezer for two years, then showing stable
exosomal miRNA, with no detectable changes. Nonetheless, two weeks of storage at 4 ◦C
may decrease exosomal miRNA levels [85]. In contrast, Baddela et al. (2016) stored buffalo
milk at 4 ◦C for 24 h before exosome isolation. The expression of exosomal miR-21 was
two-fold lower than that in fresh milk exosomes [86].

Madison et al. (2015) demonstrated that EVs isolated from human seminal fluid play
an essential role in human immunodeficiency virus (HIV)-1 transformation. However,
30 years of prolonged freezing of seminal fluid at −80 ◦C before isolation of EVs decreased
the capability of EVs to inhibit HIV-1 infection in cells via a decline of acetylcholine-esterase
(AChE) activity. However, the small sample size of this study limits the interpretation of
the observed results and the conclusion of this study. A larger sample size is necessary to
overcome these constraints and make conclusions about the exosome phenotypes and their
relationship to AChE, CD63, CD9, and HIV-1 [57]. This study proved that the long-term
storage of EV-containing seminal fluid at −80 ◦C is possible, with minimal activity loss. It
was shown that long-term storage, from 28 days to 12 years, at RT or−80 ◦C and two freeze–
thaw cycles did not significantly degrade EV-associated RNAs [83,85,87]. At the same time,
another study found that annexinV+ EV expression was stable in plasma samples following
a single freeze–thaw cycle, but it was decreased in samples stored at −80 ◦C. After seven
years of −80 ◦C storage, protein and nucleic acid aggregation occurred [88,89].

3.2. Impact of pH

Some studies also confirmed that pH could affect EVs’ characteristics and preserva-
tion. Nakase et al. (2021) demonstrated that a low pH (pH 5) in cell culture affected EV
production by increasing their protein content and zeta potential. Interestingly, a low
pH also increased EVs uptake into recipient cells [90]. Storing exosomes in acidic (pH 4)
or alkaline (pH10) conditions increased the aggregation of exosomes as well as exosome
uptake by cells when compared to storage at pH 7 [81]. Zhao et al. (2017) reported that
incubating exosome-associated proteins for 30 min at RT at an acidic pH < 7 inhibited
their degradation and increased the yield of exosomes in a conditioned medium or urine.
Another study investigated the impact of acidic conditions on EV functions and discovered
that massive exosome-associated doxorubicin was released more rapidly at pH 5 than at
pH 7.4 [91]. Macrophage-derived EVs are degraded by 90% in an acidic environment [92].
Overall, acidic conditions were found to increase exosome release and uptake.

3.3. Impact of Preservation Techniques

The major preservation techniques include cryopreservation, freeze–drying, and spray–
drying and are involved in EVs storage [93].

Cryopreservation is based on the use of low temperatures to maintain EVs function.
Different cryoprotectants are used to protect EV effectiveness at low temperature. Two
types of cryoprotectants are available, i.e., penetrating cryoprotectants and non-penetrating
cryoprotectants. Penetrating cryoprotectants (e.g., glycerol, DMSO, and ethylene glycol)
can enter the cell and preserve it during the freezing process [94]. Tegegn et al., 2016,
demonstrated that platelet samples stored in frozen conditions using 6% DMSO as a
cryoprotectant produced more EVs and retained their procoagulant activity when compared
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to platelets stored at RT [95]. Besides being added after EVs isolation, 10% DMSO can
be added to cryopreserved samples before EVs isolation to counteract the decline of EV
RNA [96]. Non-penetrating cryoprotectants (e.g., sucrose, mannose, and trehalose) can form
hydrogen bonds with water, reducing the damage to EVs [94]. According to Gelibter et al.,
2022, after six months of storage at −80 ◦C, there was no significant reduction in EV
concentrations when EVs were stored with or without various cryoprotectants such as
trehalose 25 mM, DMSO 6 and 10%, glycerol 30%, protease inhibitors, and sodium azide at
4 ◦C or after lyophilized with trehalose [72]. However, different cell-derived EVs showed
other features after storage.

Freeze–drying is a two-step method that includes sublimation and desorption. Freeze–
drying is an emerging technique for preserving EVs, and 4 ◦C is the optimal storage
temperature for freeze–dried EVs [97,98]. When EVs produced from cerebrospinal fluid
(CSF) were lyophilized and held at RT for seven days, EV number decreased by 37–43%.
In addition, this reduction was related to a decrease in the abundance of representative
miRNAs. By contrast, the number and shape of EVs remained virtually constant in these
conditions. In this context, total RNA and representative miRNA levels were stable for up
to seven days. A single cycle of freezing and thawing had no discernible influence on the
number of EVs, their shape, RNA content, or miRNA levels. However, after two freezing
and thawing cycles, these characteristics gradually declined [99].

EVs were isolated from mesenchymal stem cells (MSC), HUVEC, and A549 cells.
Collected EVs were stored at −80 ◦C, 4 ◦C, RT, or lyophilized for 2 and 14 days. After two
days of storage, lyophilization did not affect the size of EVs. However, the concentration of
A549 EVs decreased, while the concentration of MSC EVs remained constant. Storage for
14 days did not change MSC EV yield, but the particle size non-significantly increased after
lyophilization. When HUVEC EVs were lyophilized, the particle number non-significantly
decreased after 14 days of storage, while the size of the particles was not affected. The size
of A549 EVs did not change significantly during lyophilization. However, the particles’
concentration decreased [100]. He-La cells EVs were lyophilized, and the particle size was
not altered, as it remained in the range from 76.7 ± 22.5 to 85.9 ± 38.7. The zeta potential
was almost the same, −10 mV, before and after lyophilization. It affected the cytosolic
release efficacy of the EV content after cellular uptake. Therefore, lyophilization did not
affect the structure and characteristics of EVs. However, it affected their function [101].
Richter et al. (2019) demonstrated that after storage of HUVEC-derived EVs at 4 ◦C,−80 ◦C
and lyophilization with 4% trehalose for seven days, the mean size of the particles increased
slightly, while glucuronidase activity and the percentage of particle recovery decreased.
Compared to storage at 4 ◦C and −80 ◦C, freeze–drying with trehalose resulted in the
least amount of loss of HUVEC-EV characteristics [80]. EVs from human adipose-derived
stem cells were lyophilized with trehalose or trehalose/polyvinylpyrrolidone 40 (PVP40)
as lyoprotectants. After 24 h, there was no significant alteration in particle number, size,
and function [102]. Generally, freeze–drying is a cost-effective method for storing EVs at
RT, not or slightly affecting their morphology or cargos. It could also be used to increase
the lifespan of EVs.

Spray–drying is a single-step method that is easier than freeze–drying; it can be used
with various agents and allows adjusting the size of the products. The EV solution is
first atomized, and the heated gas powders these droplets; these are fully automated
processes. The rate of EV solution feed, atomization pressure, and outlet temperature
affect the EVs and their cargo stability. Additionally, residual moisture may increase the
chemical instability by lowering the glass transition temperature of the solid particle state.
Additional research is required to apply this technique to the production of EV-based
therapeutics [103]. Tables 2 and 3 summarize the storage conditions and their impact on
EV-containing biofluids and isolated EVs.
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Table 2. Summary of the impact of storage conditions on EV-containing biofluids.

Source Type of EVs Storage Tempera-
ture/pH/Cryopreserves Duration Freeze-Thaw

Cycles Physical Changes Functional Changes References

BALF EV −80 ◦C 4 days -
Disruption in the surface and
morphological characteristics

and ↓ total protein content
- [55]

Serum

MP −80 ◦C 1 week and 1 year 1 Microparticle counts are stable - [66]

EV RT 24 h - - ↓miR-21 and miR-142-3p [82]

EV 4 and −70 ◦C 96 h and 28 days - - miR-21, miR-200b, and miR-205
expression was stable [83]

Blood exosomes
RT, 4 ◦C,

−20 ◦C, −80 ◦C
and −160 ◦C

Days and Months - -

The stable expression in signals under
storage at RT and 4 ◦C for

long-term storage.
↓ signal intensities for long-term storage

[67]

Plasma

Microparticles 4 ◦C and −80 ◦C 7 h, 7 and 28 days -
↑ expression of CD31+, CD42b-

and CD62E+
↓ expression of CD144+

- [68]

EV −80 ◦C 10–12 days - ↓ EV concentration
No changes in EV size - [69]

EV −80 ◦C 6 months -
↓ Particle concentration
↑ Total protein content and

particle size
- [72]

EV −80 ◦C 12 months 1 -
↓ level of AnnV+ before thaw; and ↑

level of AnnV+ after a single
freeze-thaw cycle

[88]

Exosomes
RT 0–48 h - - Ct value of exosomal let-7a and

miR-142-3p were stable [84]

−80 ◦C 7 years - - ↑ Amount of total protein and
protein/nucleic acid aggregation [89]
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Table 2. Cont.

Source Type of EVs Storage Tempera-
ture/pH/Cryopreserves Duration Freeze-Thaw

Cycles Physical Changes Functional Changes References

Platelets

MV −80 ◦C 24 h - ↑MV secretion - [70]

EV

pathogen reduction
technology (PRT) treatment

with Mirasol®(vitamin
B2plus UVB light)

2 and 7 days - ↑151 proteins, including EV markers [103]

EVs Frozen with 6% DMSO - ↑ EV production Procoagulant activity was stable [95]

RBC EV 4 ◦C 50 days - ↑ 20-folds Particle counts - [71]

Milk

EV 4 ◦C and
−80 ◦C 2–8 weeks - - No changes in CD63 and

CD9 expression [64]

Exosomes −80 ◦C
4 week - ↑ contamination by

stress-induced exosomes
-

[63]

6 month - [62]

EV 4 ◦C 24 h - - ↓ 2-fold-miR-21 expression [86]

Urine Exosomes

−20 ◦C &
−80 ◦C with PI 1 week - ↓ EV associated

protein expression - [60]

4 ◦C and −80 ◦C 24 h -
Stable expression of TSG101,

AQP2, angiotensin-converting
enzyme, and PODXL

- [61]

RT, 4 ◦C and −80 ◦C 2 h–7 days - ↓ EV yield - [56]

Semen Exosomes −80 ◦C 2 and 30 years - Size, structure, or
concentration are stable

↓ Amount of protein, AChE, and
anti-HIV activities on long-term

freezing. But total RNA level is stable
[57,58]

Saliva

EV −80 ◦C 1 year 1

↓ 2-fold EV concentration,
↑ 17% in size,

Morphological characteristics
are stable.

- [59]

Exosomes 4 ◦C 7 days -

No changes in total protein,
dipeptidyl peptidase IV

activity, morphology, and
surface markers (CD9, ALIX,

and TSG101)

Degradation in some
functional proteins [76]
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Table 2. Cont.

Source Type of EVs Storage Tempera-
ture/pH/Cryopreserves Duration Freeze-Thaw

Cycles Physical Changes Functional Changes References

A431 cells
(Culture
media)

EVs pH 5, 6 and 7 (cell
culture condition) 24 h

pH 5 cell culture condition
increases its protein content

and zeta potential.
↑ EV uptake into recipient cells [90]

HEK293T
cells

(Culture
media)

EV RT, 4 ◦C, −20 ◦C and −80 ◦C 10 days -

↓ CD63 expression under
storage at RT and 4 ◦C.

More stable in protein and
RNA expression under storage

at frozen condition

Exosome uptake efficiency and
biodistribution were significantly

decreased when stored at 4 ◦C
and −20 ◦C

[77]

Exosomes 60 ◦C, 37 ◦C, 4 ◦C, −20 ◦C,
and −80 ◦C at pH 4, 7, or 10 1 day 2

No changes occur in ALIX,
HSP70, and TSG101 at 4 ◦C.
↓ Exosome numbers in pH 4

and 10.

↑ Cellular uptake of exosomes at pH4
and 10.

↓ Cellular uptake under stored at 4 ◦C
[81]

HUVEC
(Culture
media)

EV 37.4, −20, and −70 ◦C 25 days - ↓ particle number and ↑ size
on 37.4, and −20 ◦C

↓ CD-63 and -81 expression under
storage at 37 ◦C.

↓ Functional stability on 37 and −20 ◦C
[79]

THP-1
(Culture
media)

EV 4 ◦C and −80 ◦C 1 week, 2 weeks,
or 1 month - Stable EV concentration on

all temperature - [75]

b.
End.3 cells

(Culture
media)

Exosomes 4 ◦C, −20 ◦C, and −80 ◦C 0–28 days 1–5

↓ particle number and ↑ size
under all storage conditions.
↓ Number of exosomes for all

freezing conditions

↓ Amount of protein, RNA, and uptake
efficiency at 4 ◦C. [78]

CSF EVs Lyophilized and held at RT 7 days 2 ↓37–43% in EV number. The
shape of the EV is not stable ↓miRNAs abundance [99]

↑—Increased; ↓—Decreased; A431 cells—Cellosaurus cell line; AchE—acetylcholine-esterase; ALIX—Apoptosis-linked gene 2–interacting protein X; AQP— Aquaporin 2; BALF—
Bronchoalveolar lavage fluid; b. End.3—Brain endothelial-3 cells; CD—Cluster differentiation; CSF—cerebrospinal fluid; DNA—Deoxyribonucleic acid; EV—Extracellular vesicle;
HEK293T—Human embryonic kidney 293 cells; HIV—Human immunodeficiency virus; HUVEC—Human umbilical vein endothelial cells; MP—Microparticle; miR—MicroRNA; MV—
Microvesicle; PODXL—Podocalyxin-like protein; PI—Protease Inhibitor; RT—Room temperature; PRT—pathogen reduction technology; RBC—Red blood cells; RNA—Ribonucleic Acid;
THP-1—human leukemia monocytic cell line; TSG—Tumor susceptibility gene and UVB—Ultraviolet B.
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Table 3. Summary of the impact of storage conditions on isolated EVs.

Source Type of
EVs

Storage
Temperature/

pH/Cryopreserves
Duration Freeze-Thaw

Cycles Physical Changes Functional Changes References

BALF Exosomes 4 ◦C, and −80 ◦C 4 days - ↑ Size of exosome ↓ protein concentration [55]

Plasma EV 4 ◦C, −20 ◦C &
−80 ◦C 2 weeks–2 years - -

↓ RNA or protein expression,
storage at 4 ◦C for 2 weeks.

No changes in RNA or protein
expression storage at −80 ◦C

[85]

Serum EV RT and 4 ◦C 6 h–1 week 1, 3, and 5 -

No changes occur in CD63,
TSG101, expression, and DNA
concentration at RT storage for

24 h; and 4 ◦C for 1 week.
↓ DNA concentration due to

freeze-thaw cycles but no changes
in CD63 and TSG101 expression

[65]

He-La cells
(Culture media) EV Lyophilization 48 h - Particle size and zeta potential stable - [101]

MSC (Culture media) EV −80 ◦C, 4 ◦C, RT,
or lyophilized 2–14 days -

↑ Particle size by −80 ◦C, 4 ◦C, RT
↑ Particle size non-significantly

by lyophilization
-

[100]

A549 cells
(Culture media) EV −80 ◦C, 4 ◦C, RT,

or lyophilized 2–14 days - ↓ Particle concentration and
Particle size stable after lyophilization -

HUVEC
(Culture media) EV −80 ◦C, 4 ◦C, RT,

or lyophilized 2–14 days - ↓ Particle concentration
non-significantly after lyophilization -

HUVEC
(Culture media) EV

4 ◦C, −80 ◦C and
lyophilized with

4% trehalose
14 days -

↑ size
and % of particle recovery under

all storage
↓ Glucuronidase activity [80]

Human
Adipose-Derived Stem
Cells (Culture media)

EV
lyophilized with

trehalose or
trehalose/PVP40

24 h - Particle number and size are stable - [102]

Plasma EV −80 ◦C 6 months 2
↓ Particle concentration
↑ Total protein content and

particle size
- [73]
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Table 3. Cont.

Source Type of
EVs

Storage
Temperature/

pH/Cryopreserves
Duration Freeze-Thaw

Cycles Physical Changes Functional Changes References

Plasma EV

−80 ◦C with
trehalose 25 mM,
DMSO 6 and 10%,
glycerol 30%, PI

and sodium azide
at 4 ◦C or

lyophilization
with trehalose

6 months - stable EV concentrations - [72]

Neutrophilic
granulocytes EV 4 ◦C 24 h - No changes in physiological

characteristics
No changes in functional

characteristics [74]

Conditioned
media/Urine Exosomes pH < 7 at RT 30 min - ↑Yield and ↓ Degradation ↑ Exosome-associated doxorubicin

at pH 5 [91]

↑—Increased; ↓—Decreased; ALIX—Apoptosis-linked gene 2–interacting protein X; b.End.3 cells—Brain endothelial-3 cells; BALF—Bronchoalveolar lavage fluid; CD—Cluster
differentiation; EV—Extracellular vesicle; HEK 293 cells—Human embryonic kidney 293 cells; HSP—Heat shock protein; HUVEC—Human umbilical vein endothelial cells; MSC—
Mesenchymal stem cells; MV—Microvesicle; PI—Protease Inhibitor; RT—Room temperature; RNA—Ribonucleic Acid; and TSG—Tumor susceptibility gene.
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Some researchers warned that isolated EVs could be adsorb onto tube walls, which
would decrease EV concentration. Using Eppendorf Protein LoBind tubes or adding bovine
serum albumin or Tween-20 to block the wall can decrease the loss [104,105]. Hermida-
Nogueira et al. (2020) found that seven days following a pathogen reduction technology
(PRT) + Mirasol® (vitamin B2 with ultraviolet B light), 151 proteins, including EV markers
and regulatory proteins released by platelets, were upregulated compared to their levels
after two days of storage [106]. Sources of EVs, storage conditions, and their impact are
presented in Figure 2.
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Figure 2. Impact of storage conditions on EVs. Various EV storage conditions and their potential
effects on EV integrity. Biological sources or freshly isolated EVs are suspended in PBS with or
without cryopreservants. Then, they are stored in specific conditions. The prolonged storage at
low temperature induces mechanical damage, resulting in a loss in membrane integrity, leakage
of EV cargo (RNA, protein, and lipids), and detachment of EV surface molecules (receptors and
markers) due to the formation of tiny ice crystals within as well as around the EVs; Acidic or alkaline
conditions reduce the number of EVs. Preservation methods also change the physiological properties
of EVs and facilitate their product recovery. This figure was created with BioRender.com.

4. Prospects

EV productivity and storage condition improvement are essential to promote basic
research and therapeutic applications. Consequently, determining optimal EV storage
conditions is necessary for storing, transporting, and maintaining EV quality, preserving
EV functions, and enhancing therapeutic outcomes. Currently, EVs can be stored at 4 ◦C
without freeze–thaw cycles for short times (a day or a few weeks), and a temperature of
−80 ◦C is recommended with a few freeze–thaw cycles for long-term (months or years)
storage [36,38,54]. During frozen storage, high concentrations of EVs can promote vesicle
interactions and promote damage. Sometimes, differential centrifugation also causes
particle aggregation. Exploring the optimal storage conditions of EVs from a temperature
perspective is not sufficient because ice crystal formation is also related to the cooling rate.
In addition, Freeze–thaw cycles may also damage EVs, which are fragile when suspended
in phosphate-buffered saline. However, prolonged storage at freezing temperatures and
repeated freeze–thaw processes may affect the EVs’ characteristics. Detailed research is
required; adding some exogenous compounds can potentially overcome this difficulty
and protect EVs’ characteristics. These substances are referred to as “cryo-preservative
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agents (CPA).” Additionally, CPA aid in achieving optimal EV dehydration by increasing
viscosity, regulating ice nucleation kinetics, and promoting extracellular ice growth during
temperature reduction.

A nonreducing natural disaccharide has been approved by the FDA for use as a CPA
to store a variety of proteins and cellular products [107]. Moreover, trehalose is less water-
soluble than sucrose (except at temperatures above 80 ◦C), has high water retention capacity,
and its anhydrous forms rapidly reclaim moisture to form the dihydrate [108–110]. When
stored at RT, trehalose inhibits exosome aggregation and exhibits the same pharmacokinetic
profiles in mice [98]. In another study, mannitol was shown to protect exosomes during
lyophilization and storage at −20 ◦C [111]. Freeze–drying is a cost-effective method for
storing EVs at RT, with no effects on their morphology or materials. Carried out with a CPA
concentration of less than 0.1 M and a cooling rate of around 1 ◦C/min. Apart from CPAs,
additional cryopreservation methods are vitrification or slow cooling cryopreservation.
On the other hand, introducing programmed cooling into EV cryopreservation may be an
excellent strategy to improve the integrity and functions of EVs [42,103,112,113].

5. Conclusions

According to current evidence, one of the most common short-term storage temper-
atures for EVs is 4 ◦C, Also, −80 ◦C is the best for long term storage of EV containing
biofluids and isolated EVs. However, these storage conditions have a significant impact on
the integrity and functions of EVs; they are also expensive and cause difficulties in EV trans-
port. Further investigations are required to optimize the current storage conditions and
develop advanced techniques for preserving the quality, integrity, and functions of EVs.
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