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Abstract: In response to diabetes mellitus, skeletal muscle is negatively affected, as is evident by
reduced contractile force production, increased muscle fatigability, and increased levels of oxidative
stress biomarkers. Apocynin is a widely used NADPH oxidase inhibitor, with antioxidant and
anti-inflammatory potential. It has been effective for amelioration of a variety of disorders, including
diabetic complications. Therefore, the present study was conducted to evaluate the effects and
action mechanisms of apocynin in slow- and fast-twitch diabetic rat muscles. Male Wistar rats were
rendered diabetic by applying intraperitoneally a single dose of streptozotocin (45 mg/kg). Apocynin
treatment (3 mg/kg/day) was administered over 8 weeks. Fasting blood glucose (FBG), insulin
tolerance and body weight gain were measured. Both slow (soleus) and fast (extensor digitorum
longus, EDL) skeletal muscles were used for muscle function evaluation, oxidative stress markers,
and evaluating gene expression using qRT-PCR. Treatment with apocynin significantly reduced FBG
levels and enhanced insulin tolerance. Apocynin also prevented muscle contractile dysfunction in
EDL muscle but had no significant effect on this parameter in soleus muscles. However, in both
types of muscles, apocynin mitigated the oxidative stress by decreasing ROS levels and increasing
total glutathione levels and redox state. Concomitantly, apocynin also statistically enhanced Nrf-2
and GLU4 mRNA expression and downregulated NOX2, NOX4, and NF-κB mRNA. Collectively,
apocynin exhibits properties myoprotective in diabetic animals. These findings indicate that apocynin
predominantly acts as an antioxidant in fast-twitch and slow-twitch muscles but has differential
impact on contractile function.

Keywords: diabetes; skeletal muscle; NADPH oxidases; apocynin; oxidative stress

1. Introduction

Diabetes mellitus (DM) is a group of metabolic disorders that results from insuffi-
cient insulin secretion or inappropriate insulin signal transduction, which establishes a
state of hyperglycemia [1]. This disease has multisystemic manifestations. A common
complication of any diabetes form (Type 1 or Type 2) is a failure to preserve muscle mass
and function, a condition referred as diabetic myopathy [2,3]. Consequently, reduction
in muscle mass is usually associated with decrease in muscle strength and quality, lower
endurance, and contractile abnormalities resulting in muscle weakness, fatigue, and exer-
cise intolerance [4,5]. Moreover, because skeletal muscle is the most important tissue for
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insulin-stimulated glucose disposal, an impaired muscle metabolism has been linked to
mitochondrial dysfunction, inflammation, lipotoxicity, and insulin resistance [6].

Skeletal muscle is a heterogeneous tissue, due to the presence of two distinct popula-
tions of muscle fibers called “slow-twitch” (type I) and “fast-twitch” (type II), which display
marked differences in contraction physiology, metabolic activity, and genetics. The muscle
fiber-type composition can provide differential susceptibility to certain muscle diseases.
In this sense, the response to hyperglycemia stimuli and diabetes may differ considerably
from muscle to muscle with distinct fiber-type distribution [7]. Thus, illuminating the
fiber-type-specific effects may provide important insights for discovering novel therapeutic
strategies and delay complications from diabetes.

Oxidative stress represents a central factor linked to the pathogenesis of diabetic com-
plications. It is caused by an excessive production of reactive oxygen species (ROS) that the
antioxidative systems of cells cannot effectively counteract, which triggers a redox imbal-
ance [3,8]. Oxidative stress is a major upstream event for diabetes complications as well as
insulin resistance development due to inducing multiple pathophysiologic pathways [9].
Specifically in skeletal muscle, high levels of ROS wreak havoc within the tissue, leading to
alterations in insulin signaling, lipotoxicity, mitochondrial dysfunction, and activation of
inflammatory roads, promoting muscle dysfunction [10,11], as well as a modification of
expression of genes that participate in antioxidant and metabolic defense [8]. In skeletal
muscle, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) enzymes
are key producers of ROS and protagonists of redox homeostasis [12,13]. However, strong
evidence suggests that NOX-generated ROS are a major contributor to oxidative damage
in pathologic conditions, such as diabetes [14–16], and in muscle abnormalities in other
settings [11,17]. The family of NOX enzymes consists of 7 members, NOX1–NOX5 and
Duox1–2. Of those members, there are two isoforms of NOX present in skeletal muscle
(NOX2 and NOX4), associated with sarcoplasmic reticulum and sarcolemma [12,13]. These
NOX are specialized to produce certain kinds of ROS. While NOX2 produces •O2−, NOX4
directly forms hydrogen peroxide [13]. Studies of NOX enzymes have suggested connec-
tions between the increased NOX activity and expression of specific NOX members in
diabetes. For example, an upregulated expression and activity of NOX2 has been found in
diabetic hearts and is associated with several detrimental processes, including contractile
dysfunction and cell death [16]. On the other hand, there is also evidence that increased
NOX2 expression concomitant with ROS production contributes to skeletal muscle insulin
resistance induced by a high fat diet [11]. However, the exact role of NOX-derived ROS in
diabetes-induced muscle dysfunction remains unclear.

Apocynin is a natural organic compound structurally related to vanillin found in
plant sources [18]. It has been proven to be an efficient NOX inhibitor in many cell
and animal models [19–21]. It has been widely used for research purposes and for its
therapeutic potential in a variety of disorders, such as diabetic complications [18]. It
was found that apocynin restores serum antioxidant enzyme activities catalase and SOD
in diabetic rats [22]. We recently reported that apocynin improved insulin sensitivity,
attenuating oxidative stress and preserving mitochondrial function in the heart muscle of
streptozotocin-induced diabetic rats (STZ) [21]. Regarding skeletal muscle, it was shown
that the chronic administration of apocynin into HFD-fed mice significantly ameliorated
the limited exercise capacity as well as mitochondrial dysfunction in skeletal muscle [10].
Additionally, the protective effect of apocynin was shown in diabetic nephropathy, diabetic
endothelial dysfunction, and diabetic cardiomyopathy [18]. Nevertheless, its utility in
myopathy diabetic remains to be determined. Thus, we hypothesize that apocynin could
mediate an attenuation of the muscle metabolic and functional defects found in diabetes.
The present work aimed to evaluate the effect of apocynin on muscle function, oxidative
stress markers, and the expression of genes that participate in the antioxidant and metabolic
response in the fast and slow muscles of STZ-induced diabetic rats.
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2. Materials and Methods
2.1. Animals

The experiments were carried out with male Wistar albino rats weighing 230–250 g
at the beginning of the experiments. The rats were kept in a specific pathogen-free envi-
ronment on a 12-h light–dark cycle and maintained in a temperature range (22 ± 2 ◦C).
Animals were provided a standard rat chow and water ad libitum. All experimental pro-
tocols and use of animals were performed in accordance with the Mexican regulations
for use and care of laboratory animals (NOM-062-ZOO-1999) and with prior approval
from the Institutional Committee for Use of Animals of the Universidad de Guanajuato
(Code-CIBIUG-P06-2021).

2.2. Experimental Design

The animals were randomly divided into the following groups: normoglycemic rats
(control), non-treated diabetic rats (diabetes), and diabetic rats treated with apocynin
(diabetes + apocynin); n = 6 in each group. Diabetes was induced by a single streptozotocin
(STZ) injection (45 mg/kg body weight) (Sigma-Aldrich, St Louis, MO, USA) that was
freshly dissolved in a citrate buffer (0.5 M, pH 4.5), and control rats (normoglycemic)
received a citrate buffer injection, intraperitoneally, instead of STZ. Treatment for eight
weeks with apocynin (Tocris Bioscience) started 1 week after STZ, by intraperitoneal
injection of 3 mg/kg/day. Animals in the control groups were managed similarly to those
in the apocynin-treated group. Variations in body weight and FBG were evaluated every
week. All groups were evaluated during the same period. Once treatment was complete,
the animals of all groups were fasted for 8 h and euthanized using cervical dislocation.
Skeletal muscle samples from EDL and soleus were immediately dissected from both the
left and right hind limbs in all animals. Isometric tension measurements were performed
using fresh muscles, and the remaining muscles were stored at −80 ◦C until processed by
the glutathione assay, to measure ROS levels and to evaluate mRNA expression levels by
real-time RT-qPCR.

2.3. Insulin Tolerance Test

At the end of experimental protocol, insulin tolerance test (ITT) was evaluated in all
groups. Rats were fasted for 10 h, and basal blood glucose concentration was determined
with blood from the tail tip using a glucometer (Accu-Chek Performa, Roche, Indianapolis,
IN, USA). Blood glucose levels were determined at 0, 30, 60, 90, and 120 min after an
intraperitoneal insulin injection (0.75U insulin/kg body weight). Blood glucose response
to ITT was calculated as area under the curve (AUC-ITT) of the blood glucose excursion
for 120 min after insulin injection and correlated with the corresponding fasting values
according to the mathematical TAI model [23].

2.4. Isometric Tension Measurements

EDL and soleus muscles isolated from a left hindlimb (n = 6 in each group) were
placed in a recording chamber for isometric tension measurements, with the proximal end
attached to the bottom of the chamber and the distal end to the hook of an optical transducer,
immersed in a physiological (Krebs-Ringer) solution (118 mM NaCl, 4.75 mM KCl, 1.18 mM
MgSO4, 24.8 mM NaHCO3, 1.18 mM KH2PO4, 10 mM glucose, and 2.54 mM CaCl2) and
carbogen gas (95% O2 and 5% CO2). The muscle was stretched to 1.3 times its resting length
and left to perfuse in the physiological solution for 10 min before recording the isometric
tension; the experiment was performed at a temperature of 25 ± 1 ◦C. For maximum and
total isometric twitch tension measurements, the recording chamber was connected to
an optical force transducer, which through an amplifier and an analog–digital interface
(World Precision Instruments, Sarasota, FL, USA) allowed acquiring the tension generated
by the muscle in a computer, using MDAC software (World precision instruments, Sarasota,
FL, USA). Muscles were activated by supramaximal stimulation via platinum electrodes
placed in a parallel direction to the muscle’s longitudinal axis. Two platinum electrodes
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were placed inside the recording chamber, which was connected to a stimulus isolation
unit and an electric stimulator (Grass). To apply the protocol to fatigue induction, the
muscle was repeatedly stimulated using an electric current to produce multiple isometric
contractions over a period of time by applying 100 V pulses, 300 ms in duration, at the
frequency of 45 Hz for soleus muscle and 50 Hz for EDL muscle; the electrical stimulation
was generated until the muscle was fatigued (~70% reduction in the initial strength). The
analyzed parameters were: (1) fatigue resistance measurement (time); (2) maximal tension
(from basal line to the amplitude peak); and (3) the total tension measured by obtaining the
area under the tension–time curve.

2.5. Measurement of Reactive Oxygen Species Levels

Levels of ROS were determined in muscle tissue by using the cell permeable fluo-
rescent probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) according to
Bravo-Sánchez et al. [21]. A total of 0.5 mg of protein was placed in 2 mL of buffer
containing 100 mM KCl, 10 mM HEPES, 3 mM KH2PO4, and 3 mM MgCl2 (pH 7.4) and
incubated with 12.5 µM of H2DCFDA for 15 min in an ice bath under constant shaking.
Changes in fluorescence were recorded at 0 and 60 min at extinction 485 nm and emission
520 nm wavelengths in a spectrofluorophotometer (Shimadzu RF-5301PC, Kyoto, Japan).

2.6. Determination of Glutathione Status

To determine the amount of glutathione present in EDL and soleus muscles, reduced
glutathione (GSH) and oxidized glutathione (GSSG) were measured by the method of
Rahman et al. [24].

2.7. Total RNA Extraction and Real-Time RT-qPCR for mRNA Expression Analyzes

Total RNA was isolated from muscle samples (EDL and soleus), which were immersed
and homogenized in TRIzol (TRI Reagent, Sigma Aldrich, Saint Louis, MO, USA), us-
ing the method described by Chomczynski and Sacchi [25], with minor modifications.
RNA quality and quantity were analyzed spectrophotometrically at optical densities at
260/280 ratio using the BioPhotometer (Eppendorf, Hamburg, Germany). Complementary
DNA (cDNA) was synthesized from 2 µg of RNA using a cDNA synthesis kit (QIAGEN,
Hilden, Germany), according to the manufacturer’s instructions. Quantitative reverse tran-
scription polymerase chain reactions (qRT-PCR) were performed on a QuantStudio 3 Real-
Time PCR System (Applied Biosystems, ThermoFischer, CA, USA), using the QuantiFast
SYBR Green PCR Kit (QIAGEN, Hilden, Germany). Primer sequences were designed using
information contained in the public data base in the Gene Bank of the National Center for
Biotechnology Information. The sequences of the PCR primers used are shown in Table 1.
The target genes expression was evaluated by the relative quantification method using
the comparative delta–delta cycle threshold (∆∆CT) method [26], with the endogenous
housekeeping gene 18s as an internal control.

Table 1. PCR primer sequences.

Gene Forward Reverse

NOX2 5′-CAATTCACACCATTGCACATC-3′ 5′-CGAGTCACAGCCACATACAG-3′

NOX4 5′-TCCATCAAGCCAAGATTCTGAG-3′ 5′-GGTTTCCAGTCATCCA-TAGAG-3′

Nrf2 5′-CACATCCAGACAGACACCAGT-3′ 5′-CTACAAATG-GAATGTCTCTGC-3′

NF-κB 5′-ATGGCAGACGACGATCCTTTC-3′ 5′-TGTTGACAGTG-TATATCTGTTG-3′

GLUT4 5′-TCCATCAAGCCAAGATTCTGAG-3′ 5′-GGTTTCCAGTCATCCA-TAGAG-3′

18s 5′-GCAAATTACCCACTCCCGAC-3′ 5′-CCGCTCCCAAGA TCCAACTA-3′
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2.8. Statistical Analysis

All statistical tests were carried out by using GraphPad Prism™ software version 6
(GraphPad Software Inc., San Diego, CA, USA). One-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparison test were used to analyze the data. The results
were expressed as mean ± standard error of the mean (SEM), and the level of statistical
significance was set at * P < 0.05.

3. Results
3.1. Effect of Apocynin Treatment on Fasting Blood Glucose, Body Weight, and Insulin Tolerance
in Diabetes

First, we evaluated the potential effects of the NOX inhibitor apocynin on fasting
blood glucose levels (FBG) (Figure 1A). FBG levels were remarkably higher in the dia-
betes group (515.65 ± 20.14 mg/dL) compared to the control group (75.30 ± 2.07 mg/dL;
P < 0.001) (Figure 1A), thereby confirming the diabetic condition. After eight weeks of
apocynin treatment, FBG levels in the diabetes + apocynin group were significantly lower
than in the diabetes group, dropping by as much as 48% (P < 0.01), but they did not reach
normal values (P < 0.01). Regarding body weight (Figure 1B), a notable decrease in weight
gain (delta) was observed at the end of the experimental protocol in the diabetes group
(42.50 ± 7.07 g; P < 0.05) compared to the control group (112.40 ± 2.92 g; P < 0.05), which is
a hallmark feature of the pathology. However, intervention with apocynin prevented this
effect, based on an observed significant improvement in weight gain in the diabetes + apoc-
ynin group (91.00 ± 11.59 g; P < 0.01) compared to the diabetes group. Meanwhile, insulin
sensibility was assessed using the insulin tolerance test (ITT) performed at the end of the
8 weeks of apocynin administration. For the test, insulin was injected i.p., immediately
after measuring basal fasting blood glucose levels (t = 0), and we measured blood glucose
levels after 30, 60, and 120 min. Compared with the control group, the diabetes group
showed a significant decrease in insulin sensitivity (P < 0.05). Changes in glucose induced
by insulin injection were more evident and lasting in rats treated with apocynin (diabetes +
apocynin group) (P < 0.01; Figure 1C). In Figure 1D, the ITT-AUC (Area Under the Curve
for the ITT responses) was plotted for the three groups. Thus, apocynin also improved
insulin tolerance in diabetic rats, as shown by significant decreases in glucose levels and
the area under the ITT curve in the diabetes + apocynin group compared with the diabetes
group (P < 0.01) (Figure 1D).
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decline in force during fatiguing stimulation compared to the control group (Figure 2C, 
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EDL muscle than soleus muscle. 
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3.2. Effects of Apocynin on Contractile Properties and Fatigue of Slow-Twitch and
Fast-Twitch Muscles

To analyze the effect of apocynin on muscle function, isolated whole fast-twitch
EDL and slow-twitch soleus muscles were fatigued by repeated tetanic stimulation while
measuring contractile function. The time of resistance to fatigue was measured, as well
as the maximum and total tension generated by the two types of muscles of the different
experimental groups (Figure 2). Data indicated that muscle function from diabetic rats was
compromised, which was evidenced by the decreased total tension and peak tension in
EDL (Figure 2A) and soleus (Figure 2B) muscles and was accompanied by a markedly faster
decline in force during fatiguing stimulation compared to the control group (Figure 2C,D).
However, the treatment with apocynin in diabetic rats contributed to a significant increase
in the time of resistance to fatigue (54.48%; P < 0.05) and improved maximum (70.64%;
P < 0.05) and total (56.93%; P < 0.05) muscle tension compared to the diabetes group, but
no differences were observed in soleus muscle. These results show that apocynin improves
muscle function; however, the magnitude of effects was greater in EDL muscle than
soleus muscle.
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3.3. Apocynin Reduces the Levels of Reactive Oxygen Species in Fast and Slow Diabetic
Skeletal Muscles

To explore whether apocynin has influence on ROS production, ROS levels in EDL
muscle (Figure 3A) and soleus muscle (Figure 3B) of the different experimental groups
were measured. As shown in Figure 3, we observed ROS accumulation in both muscles
in response to diabetes compared to the control group, observing a higher level of ROS in
soleus muscle than in EDL muscle (74.86% and 65.75%, respectively) under this condition
(Figure 3A, B). In line with its NOX inhibitor role, the effect of apocynin was a significantly
lower ROS generation (diabetes + apocynin group) in both EDL and soleus muscles (65.02%
and 53.01%, respectively) compared to the diabetes group. Together, these results suggest
that apocynin modulates diabetes-induced ROS production in both types of skeletal muscle.
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Figure 3. Effect of apocynin on levels of reactive oxygen species (ROS) in both EDL (A) and soleus
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dard error from 6 rats per group. * P < 0.05 vs. C group. # P < 0.05 vs. D group.

3.4. Apocynin Improved Glutathione Redox Status in Fast and Slow Skeletal Muscle in
Diabetic Rats

To determine whether lower ROS levels caused by apocynin in diabetic rat muscles
were parallel to oxidative status changes, the glutathione defense system was evaluated
in the EDL (Figure 4A,B) and soleus muscles (Figure 4C,D). Reduced concentrations of
total glutathione (TGSH) were observed in EDL (Figure 4A) and soleus muscles (Figure 4C)
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from the diabetes group (60.83% and 49.94%, respectively), compared to control rats
(P < 0.05). The redox status of glutathione (GSH/GSSG ratio) also changed considerably
in diabetic rats when compared to the control group, and the GSH/GSSG ratio in EDL
(Figure 4B) and soleus muscles (Figure 4D) of the diabetes group was significantly lower, at
85.15% and 93.70%, respectively. However, the total GSH levels in EDL (Figure 4A) and
soleus muscles (Figure 4C) were significantly increased (59.87% and 44.55%, respectively)
(P < 0.05) in the diabetes + apocynin group when compared to the diabetes group. Consis-
tently, apocynin also improved the redox status, with a significantly higher GSH/GSSG
ratio in EDL (78.38%; P < 0.05) and soleus muscle (96.73%) in the diabetes + apocynin group
compared to the diabetes group (Figure 4B,D); these parameters were similar to control
levels in both muscles.
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3.5. Effects of Apocynin on NOX2 and NOX4 Expression in Fast- and Slow-Twitch Skeletal
Muscle in Diabetic Rats

The expression of mRNA of NOX2 and NOX4 enzymes in fast- (EDL) and slow (soleus)-
twitch skeletal muscle was quantified by RT-qPCR (Figure 5). As shown in Figure 5A,
NOX2 mRNA levels were upregulated in both muscles from the diabetes group, whereas
NOX4 only was higher in EDL muscle (Figure 5B) compared to control rats, while in soleus
muscle remained unchanged compared to all groups (Figure 5B). As expected, treatment
with apocynin reduced the level of expression of NOX2 in both muscles (Figure 5A), and
a lower-level expression of NOX4 was detected in EDL muscle compared to the diabetes
group (Figure 5B).
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Figure 5. Effect of apocynin on mRNA expression levels of NOX2 (A) and NOX4 (B) in both EDL
and soleus muscle. C = control group; D = diabetic group; DA = diabetes + apocynin group. Data
are presented as the mean ± SEM (n = 6 per group). * P < 0.05 vs. C group. # P < 0.05 vs. D group.
P < 0.05 in EDL vs. soleus muscle.

3.6. Effect of Apocynin on Gene Expression of Nrf2, NF-ҡβ, and GLUT4 in the Fast and Slow
Muscles of Rats with Diabetes

As shown in Figure 6, in diabetic rats, the mRNA expression levels of Nrf-2 (Figure 6A)
and GLUT4 (Figure 6C) were statistically downregulated in EDL (73.09% and 83.39%,
respectively; P < 0.01) and soleus muscle (57.26% and 70.51%, respectively; P < 0.05)
compared to the control group, while treatment with apocynin significantly enhanced Nrf2
and GLUT4 expressions in both EDL (75.66%) and soleus muscles (69.54%) compared to
the diabetes group. Interestingly, GLUT4 mRNA levels were higher in soleus muscle than
in EDL in the diabetes + apocynin group. However, marked differences between EDL
and soleus were found in mRNA levels of NF-ҡβ (Figure 6B); it was upregulated only in
soleus muscle from the diabetes group, exhibiting 67.37% (P < 0.01) compared to those from
the control group. Meanwhile, in apocynin-treated diabetic rats, NF-ҡβ was prominently
downregulated in soleus muscles. Oppositely, there was no difference in mRNA expression
of NF-ҡβ in EDL muscle compared to all groups (Figure 6B).
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* P < 0.05 vs. C group. # P < 0.05 vs. D group. Nuclear factor erythroid 2-related factor 2 (Nrf2),
Nuclear factor-kappa B (NF-κB), glucose transporter 4 (GLUT4). P < 0.05 in EDL vs. soleus muscle.

4. Discussion

Diabetic myopathy is a complication of diabetes characterized by impairments of
structural, functional, and metabolic capacities in skeletal muscle, and ROS overproduc-
tion and oxidative stress have an essential role in this condition [2,27]. Advances in the
comprehension of diabetes have led to the search for new tools that are aimed at pre-
cisely deciphering and targeting ROS-triggered pathways to prevent oxidative damage
and its impact to skeletal muscle tissues; accordingly, in this study we investigated the
effect of apocynin, an inhibitor of NADPH oxidase [28]. The results of the current study
demonstrate that treatment with apocynin alleviates negative diabetic effects in fast and
slow skeletal muscles. Additionally, our data suggest a key role of apocynin treatment
of Nrf2 and NF-κβ expression in the regulation of diabetes-induced oxidative stress in
skeletal muscle.

STZ can mimic the metabolic features of DM, with symptoms that resemble the natural
disease process [29]. The present study shows that levels of fasting blood glucose and
insulin resistance were significantly increased in rats with STZ-induced diabetes. The
diabetogenic properties of STZ are due to the selective destruction of β-cells and insulin
deficiency, which lead to hyperglycemia. In this condition, the insulin deficiency leads to
proteins being degraded to provide amino acids for gluconeogenesis, resulting in the loss
of muscle mass and weight loss [29], which can explain the decline and low body weight
gain in diabetic animals compared to healthy rats. Interestingly, these critical biomarkers
were attenuated in animals treated with apocynin in comparison to untreated diabetic
animals (Figure 1). Results of the present study reinforce the beneficial effects of apocynin
in improving glucose metabolism [21,30]. It has been demonstrated that inhibition of
renal gluconeogenesis is involved in apocynin hypoglycemic action in diabetic rabbits [30].
Similar findings have shown that apocynin significantly reduced hyperglycemia, hyperinsu-
linemia, and dyslipidemia by improving insulin sensitivity in high-fat-diet (HFD)-induced
obese mice as well [31]. Additionally, apocynin treatment for 8 weeks prevented β-cell
apoptosis and ameliorated insulin deficiency in rats with accumulation of plasma advanced
oxidation protein products, controlling the advance of diabetes [32]. Thus, these findings
suggest that apocynin has antidiabetic activity.

Given that insulin exerts anabolic effects for muscle cells, insufficiency of insulin
action and prolonged hyperglycemia result in muscle wasting, altered metabolic capacity,
and reductions in muscle function [3]. In this study, muscle dysfunction was evidenced
by reduced contractile force and increased fatigability in EDL and soleus muscles, which
represent two muscle types that are different in their metabolic and contractile properties
(i.e., fast/glycolytic and slow/oxidative, respectively) [33]. These alterations often are
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accompanied by mitochondrial dysfunction and ultimately lead to exercise intolerance in
diabetes [10]. Moreover, there is evidence linking a disrupted muscle insulin signaling
to excess ROS production and elevated markers of oxidative stress, which are significant
metabolic abnormalities implicated in muscle fatigue and reduced contractile force [3],
as observed in EDL and soleus muscles in our study. In parallel, GSSG levels markedly
increased, with a significant decline in the GSH/GSSG ratio, and a concomitant decrease
in levels of total GSH both in EDL and soleus muscles, which is indicative of an oxidative
state [34] and believed to account for proteins dysfunction required for proper muscle
contraction, by altering the redox status in muscle cells [35]. However, this study has shown
that treatment with apocynin can prevent consequences of diabetic myopathy. In our results,
apocynin improved the muscle function in EDL muscle by increasing muscle tension and
promoting resistance to fatigue in the diabetic rats treated with this agent; however, these
parameters remained unchanged in the soleus muscle. Consistent with previous reports,
chronic administration of apocynin into HFD-fed mice improved exercise intolerance and
ameliorated mitochondrial dysfunction in skeletal muscle, which are significant metabolic
alterations implicated in diabetic muscle as well [36]. Moreover, research in vitro and
in vivo studies have reported significant effects of apocynin against diabetic complications
through its ability to limit ROS production and due to its antioxidative effects [18,28].
In this work, despite the differential effects of apocynin on contractile function between
EDL and soleus muscles, apocynin significantly reduced ROS levels and promoted both
enhancement of GSH levels and consequently the elevation of GSH/GSSG ratio in both
types of muscles compared to the diabetic group, indicating that apocynin effectively boosts
antioxidant capacity and ROS detoxification in muscle cells, as it has been confirmed in
other tissues under this condition [18,21,22].

Expression and activation of NOX proteins particularly increases under conditions
of acute and chronic stress, such as hyperglycemia, leading to a critical increase in NOX-
derived ROS, causing oxidative stress and cellular damage [14]. Skeletal muscle is known
to express two of the NOX isoforms, NOX2 and NOX4. NOX2 and its regulatory subunits
and NOX4 are present in the sarcolemma, sarcoplasmic reticulum, and T tubules of muscle
fibers. Furthermore, NOX activity and expression differ according to the skeletal muscle
fiber type, as well as antioxidant defense [37]. In the present report, we have shown that
diabetes was able to increase the mRNA expression levels of NOX2 in both types of muscles
and NOX4 only in the EDL fibers. In addition, NOX2 expression was higher in soleus when
compared to EDL. Consistent with the involvement of NOX2, an upregulated expression
and activity of NOX2 has been found in diabetic hearts and is associated with several
detrimental processes, including contractile dysfunction and cell death [16]. Likewise,
reports suggest that NOX2 mediates skeletal muscle insulin resistance induced by a high fat
diet [11]. In contrast, downregulation of NOX2 in C2C12 cells prevented insulin resistance
induced by high glucose or palmitate [11]. Similarly, studies by Bechara et al. [17] showed
that muscle atrophy in rats with heart failure is associated with increased NOX2 mRNA,
suggesting that this is the main isoform responsible for increased NOX activity under
different conditions in skeletal muscle. Nevertheless, our results suggest that both NOX2
and NOX4 appear to be involved in diabetic muscles. Interestingly, all these alterations
have been mitigated by apocynin. Apocynin’s action for NOX has been supported by
studies reporting that it prevented translocation of the p47phox subunit to the plasma
membrane, thus causing inhibition of NOX enzyme. Therefore, apocynin is extensively
used to reveal the role of this enzyme in cell and experimental models [18–20]. In this
work, markedly, apocynin modulated the mRNA expression of these NOXs as well. We
showed that mRNA levels of NOX2 and NOX4 in the apocynin-treated diabetic group were
downregulated and recover to control levels in both muscle types. Based on these facts,
our findings point out the potential role of NOX enzymes in skeletal muscle impairment in
diabetes, as is seen with other diabetes complications [14,16,18]. Moreover, these findings
suggest that fast-twitch muscle is more sensitive to the unstable redox environment linked
with diabetes at the transcriptional level of NOX enzymes compared to slow-twitch muscle.
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On the other hand, both Nrf2 and NF-κB are key pathways regulating the fine balance
of cellular redox status and responses to stress and inflammation in this disease [38,39].
Our study showed that Nrf2 mRNA expression levels were prominently downregulated in
both types of muscles from diabetic animals compared to healthy animals. Concomitantly,
we found that the expression of NF-κB in response to enhanced ROS production resulted
in differential alteration in a muscle-specific manner; NF-κB was upregulated in soleus
muscles of diabetic rats, remaining unchanged in the diabetic EDL muscle when compared
to the control group. Despite these differences, the expression of these genes in response to
increased ROS levels may have physiological and molecular implications for controlling
redox homeostasis [38]. The negative effect of Nrf2 downregulation may amplify inflamma-
tory responses by inducing the expression of NF-κB, IL-1ß, and TNF-α [40] along with an
increased oxidative and nitrosative stress [38,39]. In this context, NF-κB is a transcription
factor that regulates expression of many kinds of cytokines and inflammatory proteins
in oxidative environments, and the increased NF-κB signaling decreases insulin action
and promotes insulin resistance in the liver and whole body [41]. In line with this fact,
Nrf2 deletion may lead to hepatic insulin resistance by activation of NF-κB pathway [42].
In skeletal muscle, activation of NF-κB transcriptional activity apparently serves a dual
function by inducing both fast-twitch fiber atrophy and slow-twitch fiber degeneration [43].
Meanwhile, the ability to scavenge ROS and handle oxidative stress is dramatically re-
duced in the muscles of Nrf2 KO animals [44]. Nrf2, is a master transcriptional factor of
antioxidative defense systems, and accumulated evidence has suggested that activation
and upregulated expression of Nrf2 may have therapeutic potential in diabetes complica-
tions [39,45]. Interestingly, our study showed that apocynin can upregulate and restore
the balance in expression levels of Nrf2 due the pathological changes in diabetic muscles.
Likewise, protective effects of apocynin have been attributed to the activation of Nrf2 by re-
ducing the level of proinflammatory cytokines in an experimental murine colitis model [46].
In addition, NF-κB inhibition seems to be responsible for protective activity of apocynin,
as there was reduction in mRNA expression of NF-κB in soleus muscle after apocynin
treatment, approaching the control group. These findings are in agreement with previous
reports in which it has been already reported that apocynin may exert other effects beside
its ability to inhibit NOX [41]. Furthermore, our result is in accord with a study conducted
by Pan and Quian, who used apocynin in a rat model of cerebral infarction and found
that apocynin treatment significantly decreased NF-κB mRNA expression [47]. Therefore,
this finding may suggest that the suppression of Nrf2 expression and increased expression
of NF-κB are involved in the pathogenesis of diabetic myopathy, and NOX could be an
upstream mediator of these changes.

Additionally, studies in C2C12 skeletal muscle cells in examining NF-κB inhibition
coincide with significantly elevated levels of GLUT4, resulting in increased glucose up-
take [48]. Thus, the intent of the present study was to determine whether these metabolically
induced alterations by diabetes in skeletal muscle may be regulated at least in part at the
level of transcription of the GLUT4 gene. The possibility that muscles GLUT4 protein may
be subject to regulation at the transcriptional level was suggested by Garvey et al. [49],
who reported a significant decrease in GLUT4 mRNA in the quadriceps muscles of rats
with STZ-induced diabetes. Similarly, the GLUT4 mRNA expression was significantly
decreased in EDL as well as soleus muscles. Interestingly, these changes were prevented by
apocynin as well; it increased GLUT4 mRNA expression in soleus muscle and, to a smaller
extent, EDL muscle in diabetic rats treated with apocynin. In fact, we found that the mRNA
levels of GLUT4 in soleus muscle recovered to control levels. Hence, these data provide
evidence that GLUT4 expression in skeletal muscle is subject to regulation by apocynin in a
muscle-type-specific manner.

Based on all the results presented in this study, our findings point out the potential role
of NOX enzymes in diabetic myopathy. To our knowledge, this is the first study conducted
to verify the effectiveness of apocynin in treating hyperglycemia-induced oxidative stress
and skeletal muscle dysfunction in an animal model of diabetes. Apocynin’s protective
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effects are significant for glucose metabolism and skeletal muscle function through improv-
ing antioxidant status and reduction of oxidative stress metabolites. Moreover, these data
suggest that apocynin prevents muscle damage by regulating NF-κB and Nrf2 pathways.

5. Conclusions

In summary, the present work exhibits the antidiabetic, antioxidant, and myoprotective
benefits of apocynin in controlling diabetes in slow- and fast-twitch muscles. The results
suggest that the protective effect of apocynin may be partly attributed to the inhibition of
NOX-induced oxidative stress and improvement of homeostasis redox. Effects of apocynin
may be closely related to attenuation of upregulation of NF-κB signaling and upregulation
of Nrf2 and GLUT4 expression in skeletal muscle. This research reinforces the beneficial
potential of antioxidants in preventing diabetic complications in skeletal muscle.
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