
Factors that can influence ST-based classification 
First, we describe the characteristics and composition of the data utilized for comparison 

between programs regarding ST-based classification in the narrow-scope approach (utilization of 
fewer phylogenetic diverse pathogen datasets). The frequency of genomes utilized per species 
and across programs is shown on Figure S2A-D. The frequency of S. enterica genomes was higher 
than other species because an equal sample of ~600 genomes was taken from 20 representative 
zoonotic serovars (Figure S3A-D). An assessment of the proportion of the most dominant STs 
across species (proportion ≥ 2% - Figure S4A-D) or serovars of S. enterica (proportion ≥ 15% - 
Figure S3N) initially revealed a similar ST-based distribution across programs. Furthermore, 
genome-intrinsic and -extrinsic factors that could potentially impact the mlst vs. stringMLST 
algorithmic comparison and performance were a priori determined in the analysis. Among the 
genome-intrinsic factors considered across species were the number of contigs per genome 
(Figure S5A), the total number of nucleotides per genome (Figure S5B), GC% content per genome 
(Figure S5C), and the distribution and composition of dinucleotides per species (Figure S5D and 
Figure S2E-F). Similarly, the distribution of the genome-intrinsic factors was analyzed across all 
twenty serovars of S. enterica (Figure S3G-L). A correlogram (pairwise correlation analysis) was 
also used to assess the bivariate correlation (Pearson’s correlation coefficient) across genome-
intrinsic variables, for either all four bacterial species (Figure S2G) or serovars across S. enterica 
(Figure S3M). At large, the differences observed in the distribution of genomic-intrinsic variables 
were species driven, with a strong uniformity found across serovars of S. enterica. 

As for the genome-extrinsic variables, the total count of unique STs (for species - Figure S5E) 
and unique number of alleles across all seven loci (for species - Figure S5F), and across all batches 
were selected as factors that could influence the comparative analysis between mlst and 
stringMLST. Similarly, the genome-extrinsic variables were analyzed across all twenty serovars 
of S. enterica (Figure S3E-F). Of note, ST database/scheme size differences (number of STs and 
alleles) may directly influence the number of miscalls since it is expected that the larger the 
database is, the more likely STs are to be classified, or to find a match, and not be miscalled Error! 
Reference source not found.. Considering the differences in genome-intrinsic and -extrinsic 
variable distribution across species, such factors were further utilized for assessing their 
statistical contribution in the accuracy of ST-based classification between mlst and stringMLST. 
 

Assessing the contribution of genome-intrinsic and –extrinsic variables 
In order to assess the statistical association and contribution of each genomic-intrinsic and -

extrinsic variable onto the accuracy of mlst vs. stringMLST on ST calls (narrow-scope analysis 
since it only included four bacterial species, C. jejuni, S. aureus, L. monocytogenes, and S. enterica), 
the following dependent variables (outcomes) were used in the PERMANOVA models: 1) ST 
richness (Figure S6A); 2) Simpson’s D index of ST diversity (Figure S6B); and 3) Proportion of 
non-classified STs (Figure S6C). Additionally, the standard deviation of the proportion of non-
classified STs was measured as an auxiliary metric for accuracy (Figure S6D). At the species level, 
a multivariate model approach was used to examine the interaction of species and program (mlst 
vs. stringMLST), whereas all remaining analyses were done using univariate models containing 
each genome-intrinsic and -extrinsic variable for all three outcomes (Figures S7A-L, S8A-K, S9A-
L). 

For each variable, the significance and strength of association were assessed by jointly 
examining the p-value (p < 0.05) and R-squared, respectively. For both ST richness (Figure S6A) 
and the Simpson’s D index of diversity (Figure S6B), the difference between species explained 
most of the variation with ~98.3% and ~99%, respectively. As expected, based on the phylogenetic 
divergence of the four chosen pathogens, differences across species could largely be explained by 



genome-intrinsic variables associated with genome composition, such as: GC% content (p 
~0.0009, R-squared ~44%) for ST richness, and the number of contigs per genome (p ~0.0009, R-
squared ~39.5%) for the Simpson’s D index of diversity (Figure S6A-B). Notably, for both ST 
richness and the Simpson’s D index of diversity most of the differences between species could be 
explained by variation in genome composition (Figure S6A-B). Not surprisingly, co-linearity was 
observed between ST richness and the Simpson’s D index of diversity across species (Figure 
S6A). In the case of the proportion of non-classified STs (ST miscalls) (Figure S6C), most of the 
variation was explained by inter-species differences (p ~0.0009, R- squared ~33%), with the 
number of contigs per genome being the most important genome-intrinsic contributing factor (p 
~0.0009, R- squared ~27%). As for the k-mer length parameter used by stringMLST, results for ST 
richness and the Simpson’s D index of diversity were uniform across all lengths (Figure S6A-B). 
However, when examining the proportion of miscalls (Figure S6C) and the standard deviation of 
that proportion (Figure S6D), the data pointed toward the optimal k-mer length being between 35 
and 65 across all four species due to the intrinsic variance within the S. enterica data (narrow 
scope analysis). Specifically, this k-mer length range was defined based on two criteria: i) 
minimization of the proportion of miscalls; and ii) less variation (standard deviation) around the 
average of ST-based miscalls. Of note, mlst demonstrated the highest proportion of miscalls and 
standard deviation of that proportion for both L. monocytogenes and C. jejuni (Figure S6C-D), and 
the k-mer length 10 for stringMLST yielded very low accuracy and null results for ST richness 
and Simpson’s D index of diversity (Figure S6A-D). Differences between species across ST 
richness, Simpson’s D index of diversity, and proportion of ST miscalls along with all genome-
intrinsic and -extrinsic variables across programs (mlst vs. stringMLST) were further examined 
here (Figures S10A-D, S11A-O). In general, differences in ST-based calls across programs were 
largely influenced by the bacterial species dataset. 

Given the complexity and diversity of the S. enterica population structure Error! Reference 
source not found., the stringMLST performance was analyzed across twenty zoonotic serovars 
(Figure S3O-R), and resulted in a significant and predominant contribution of the “serovar 
groupings” across all outcomes and PERMANOVA models (Figures S12A-L, S13A-K, S14A-L): 
ST richness (p ~0.0009, R-squared ~75.4%), Simpson’s D index of diversity (p ~0.0009, R-squared 
~88%), and proportion of ST miscalls (p ~0.0009, R- squared ~35.4%). By assessing the distribution 
of the model outcomes, along with PERMANOVA model results and bivariate association 
between dependent and explanatory variables (Figure S15A-R), the results recapitulated the 
species-level results with the optimal k-mer length for stringMLST being around 35 and 65, but 
also revealed the need to consider difference across S. enterica serovars prior to implementation. 
Combined, these accuracy-based results suggest that: i) stringMLST minimizes the ST miscalls 
compared to mlst in a species-specific fashion, and by consequence the optimal k-mer length for 
stringMLST ranged from 35 to 65 overall; ii) the performance and accuracy of stringMLST can 
vary across species and serovars of S. enterica allowing for data-driven fine-tunning of the k-mer 
length; and iii) the use of sequence platform with longer reads, which would maximize the 
number of contigs per genome, could directly alter both mlst and stringMLST accuracy in ST calls 
across species. 
 


