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Abstract: Several therapeutic monoclonal antibodies approved by the FDA are available against the
PD-1/PD-L1 (programmed death 1/programmed death ligand 1) immune checkpoint axis, which
has been an unprecedented success in cancer treatment. However, existing therapeutics against
PD-L1, including small molecule inhibitors, have certain drawbacks such as high cost and drug
resistance that challenge the currently available anti-PD-L1 therapy. Therefore, this study presents
the screening of 32,552 compounds from the Natural Product Atlas database against PD-L1, in-
cluding three steps of structure-based virtual screening followed by binding free energy to refine
the ideal conformation of potent PD-L1 inhibitors. Subsequently, five natural compounds, i.e.,
Neoenactin B1, Actinofuranone I, Cosmosporin, Ganocapenoid A, and 3-[3-hydroxy-4-(3-methylbut-
2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, were collected based on the
ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling and binding free en-
ergy (>−60 kcal/mol) for further computational investigation in comparison to co-crystallized ligand,
i.e., JQT inhibitor. Based on interaction mapping, explicit 100 ns molecular dynamics simulation, and
end-point binding free energy calculations, the selected natural compounds were marked for substan-
tial stability with PD-L1 via intermolecular interactions (hydrogen and hydrophobic) with essential
residues in comparison to the JQT inhibitor. Collectively, the calculated results advocate the selected
natural compounds as the putative potent inhibitors of PD-L1 and, therefore, can be considered for
further development of PD-L1 immune checkpoint inhibitors in cancer immunotherapy.

Keywords: programmed death ligand 1; natural products; immunotherapy; Neoenactin B1;
molecular dynamics simulation

1. Introduction

Cancer is a severe concern faced by researchers worldwide due to the increase in
the number of patients and its capacity to shorten the human lifespan. The International
Agency for Research on Cancer (IARC) estimated ~19.3 million new cancer cases and
almost 10 million cancer deaths in their Global Cancer Statistics (GLOBOCAN) 2020 report,
in which one-half of the new cases and more than 58% of cancer deaths occurred in Asian
countries [1]. Although conventional treatment strategies, surgery, radiotherapies, and
chemotherapy have shown massive progress in treating cancer within the past centuries,
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cancer patients still endure problems during treatment due to the low efficacy and side
effects of conventional therapeutics [2–4]. For example, multidrug resistance in cancer,
which leads to the reduction in the efficacy rate of treatment and slows down the chances of
finding a cure, has been linked with several mechanisms, including enhanced drug efflux,
genetic mutations, tumor microenvironment (TEM), certain growth factors, and an increase
in the metabolic rate of xenobiotics [2,5–8]. Likewise, the efficacy of cancer radiotherapy,
which mainly targets tumor cells and minimally damages the normal cells, is based on
the acceptable dose tolerance capacity of the adjacent normal cells and associated with
post-therapy session side effects, such as skin peeling, blister formation, itching, fatigue,
soreness, dry mouth, and even hair loss [9]. Thus, with a profound understanding of the
disease and the drawbacks of the therapeutic strategies, an innovative approach is required
for cancer treatment, which mainly focuses on the specific target cells without damaging
the adjacent healthy cell [10].

In the tumor microenvironment (TEM), cancer cells power the activation of various
immune checkpoint pathways that trigger immune suppression. Thus, cancer immunother-
apy, which aims to stimulate the immune system’s ability to fight cancer, is in high demand
in cancer treatment [11–13]. The advantage of this therapy is that it can prevent metastasis
and recurrence of cancer cells and destroy primary cancer, marked as a standard treatment
for cancer patients [14]. Programmed cell death 1 (PD-1, also known as CD279) T cell
receptor and its ligands—programmed death ligand 1 (PD-L1 or B7-H1 or CD274) and
programmed death ligand 2 (PD-L2 or B7-DC or CD273)—are the prime immune check-
point pathway components, which are targeted for immune checkpoint inhibitory therapy
against cancer [13,15].

Programmed death ligand 1 (PD-L1) is a glycoprotein of 290 amino acids mainly
expressed on the surface of cardiac endothelium, placenta, pancreatic isles, immune cells,
epithelial cells, and tumor cells apart from T cells, B cells, and antigen-presenting cells
(APC) [16–18]. The various cancer cells express PD-L1 and utilize the PD-1/PD-L1 signaling
pathway as an escape route from the T cell autoimmunity to promote tumor growth [19].
For instance, the binding of PD-L1 to its receptor, i.e., PD-1, leads to suppression of T cell
migration, proliferation, and secretion of cytokines and hinders the ability of T cells to
destroy tumor cells [20]. Thus, the various inhibitors of PD-1 and PD-L1, which can reverse
T cell suppression and enhance the anti-tumor immune responses in cancer patients, have
been reported [20,21]. For example, atezolizumab, avelumab, and durvalumab monoclonal
antibodies (mAbs) are the FDA approved inhibitors that target PD-L1 to terminate the
tumor progression [20]. These therapeutics are highly effective to restore T cell-mediated
anti-tumor immunity and showed unprecedented success in cancer therapy [22]. However,
these therapeutics are associated with several insufficiencies; for instance, antibodies are
obstructed from invasion into tumors due to their large size [23], which may contribute to
a partial antagonizing effect on PD-1/PD-L1 signaling at the anticipated therapeutic site,
and resulting in suboptimal efficacy against tumors [24]. Additionally, these antibodies
have been reported for immune-related adverse events (irAEs), involving autoimmune
hepatitis, colitis, and pneumonitis [25,26]. An additional limitation of antibodies is the de-
velopment of resistance in tumors, durability, and high production costs, creating the need
of introducing new small molecules as potential inhibitors [5,27,28]. From this perspec-
tive, small-molecule based inhibitors are being researched to intervene in the PD-1/PD-L1
signaling pathway in a fight against cancer, recently reviewed elsewhere [29,30].

Recent reports have also studied the bioactive compounds derived from natural
resources to exhibit anti-cancer properties by suppressing the gene expression responsible
for tumor progression, making them easy to access and cost-effective [31–33]. For instance,

S-Allylcysteine, an organo-sulfur, and Silibinin (a natural compound derived from
Silybum marianum or milk thistle) are examples of natural compounds known to act as
potential PD-L1 inhibitors [34,35]. Even though targeting the interface of PD-1/PD-L1
by small molecule inhibitors is challenging due to its 3D geometry, i.e., large and flat
binding pockets, constant efforts have been added in the discovery of small molecules as
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PD-L1 inhibitors and reflected by the number of growing publications and patents [36,37].
However, none of the reported small molecules have progressed into clinical trials to
date [38]. Thus, finding natural products with the ability to inhibit PD-L1 can lead to
the development of a novel small molecule-based cancer immunotherapy. Additionally,
molecular docking simulations were recently applied to identify the potential terphenyl-
based small-molecule inhibitors against PD-L1 protein to disturb the PD-1/PD-L1 signaling
pathway [38]. Therefore, in this study, we have utilized the multi-step virtual screening
protocol linked with binding free energy and ADMET/pose filtering to identify the putative
natural compounds as PD-L1 inhibitors for cancer immunotherapy.

2. Methods
2.1. Receptor and Ligand Library Collection

The three-dimensional (3D) crystal structure of the human programmed death ligand
1 (PD-L1) co-crystallized with (2~[20],4~[20])-1-[[5-chloranyl-2-[(3-cyanophenyl)methoxy]-4-
[[3-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-methyl-phenyl]methoxy]phenyl]methyl]-4-oxidanyl-
pyrrolidine-2-carboxylic acid (JQT) inhibitor at 2.20 Å resolution was retrieved as receptor
from the RCSB Protein Data Bank (https://www.rcsb.org/, accessed on 10 December 2021;
PBD ID: 6R3K) [38]. Additionally, a total of 32,552 natural compounds were downloaded
as a ligand library from the Natural Product Atlas database (https://www.npatlas.org/,
accessed on 3 December 2021) [39] for multi-step structure-based virtual screening protocol
against PD-L1 receptor.

2.2. Multi-Step Virtual Screening and Pose Filtration

Multi-step virtual screening of the ligands against PD-L1 was performed using a
virtual screening workflow in the Schrödinger suite 2020-4 [40]. Initially, the pre-processing
of the PD-L1 protein as receptor was performed using the PRIME tool [41,42] and protein
preparation wizard [43] in the Maestro-Schrödinger suite 2020-4 [40]. Briefly, the co-
crystallized water molecules were removed from the protein structure, which may obstruct
the ligand interaction with the protein, while polar hydrogen atoms were added based on
the hybridization of carbon atoms followed by protein structure refinement under default
parameters using the Protein preparation wizard. Following, the key residues, viz. Phe19,
Ile54, Tyr56, Met115, Ile116, Ala121, Asp122, Tyr123, Lys124, and Arg125 of Chain A and Tyr56,
Gln66, Met115, Ile116, Ser117, Ala121, and Asp122 of chain B, in PD-L1 structure showing
interactions with the co-crystalized ligand, i.e., JQT inhibitor, were considered for docking
grid generation to perform the multi-step structure-based virtual screening under default
parameters using GLIDE v8.9 tool in the Maestro-Schrödinger suite 2020-4 [44].

Likewise, 32,552 natural compounds were prepared as ligands under default parame-
ters using LigPrep module tool in the Schrödinger suite 2020-4 [45]. Briefly, in the virtual
screening workflow tool, all the ligands were filtered for the ADME (absorption, distri-
bution, metabolism, and excretion) and drug-likeness criteria using the QikProp tool [46].
Following, the filtered ligands were virtually screened via three subsequent steps, including
(i) high throughput virtual screening (HTVS), (ii) standard precision (SP) screening, and
(iii) extra precision (XP) screening protocol, where only 10% of the top screened ligands
from the first step were considered in next successive step to collect the most potent ligands
against the PD-L1 protein. Finally, the post-process binding free energy calculations, based
on molecular mechanics generalized Born surface area (MM/GBSA) method, were per-
formed on the screened poses under default parameters with OPLS (Optimized Potentials
for Liquid Simulations)-3e force field in Prime MM/GBSA module of Maestro-Schrödinger
suite 2020-4 [40,42]. The binding free energy calculation was conducted on the screened
poses to distinguish the most suitable docked conformations of the natural compounds
with the PD-L1 protein for further computational analysis. The equations, used to cal-
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culate binding free energy and the associated energy dissociation components for each
protein–ligand system, are described in the mathematical Equations (1)–(3).

∆GBind = ∆GCom −
(
∆GRec + ∆GLig

)
= ∆H − T∆S ≈ ∆EMM + ∆Gsol − T∆S (1)

∆EMM = ∆EInt + ∆EEle + ∆EvdW (2)

∆GSol = ∆GPol + ∆ENonpol (3)

In the above-mentioned equations, ∆GBind and ∆GCom denote the binding free energy,
or Gibbs free energy, and the total free energy of a docked complex containing protein
and ligand, respectively. The sum of the protein and ligand in their free state is denoted
by the ∆GRec + ∆GLig. The ∆GBind can also be computed from enthalpy (∆H) and entropy
(−T∆S) for the whole system under consideration using the second law of thermodynam-
ics (Equation (1)). Here, in this study, the entropy contributing to the net ∆GBind was
not calculated for the protein–ligand complexes due to the unavailability of expensive
computational calculations. In addition, the entropy seems to have a low contribution to
the net ∆GBind for similar systems, as reported earlier [47–51]. Therefore, ∆GBind of the
protein–ligand complex is designated equivalent to ∆H only, which is expressed as the sum
of solvation free (∆GSol) and molecular mechanical (∆EMM) energy (Equation (2)). Usually,
∆EMM constitutes the intermolecular, electrostatic, and van der Waals interactions energies
represented as ∆EInt, ∆EEle, and ∆EvdW, respectively, whereas the ∆GSol constitutes polar
and non-polar energies represented as ∆GPol and ∆ENonpol, respectively, for the whole
system. Hence, the ∆GBind for each docked protein–ligand complex was calculated using
Prime MM/GBSA module under default parameters using the Prime MM/GBSA module
of Maestro-Schrödinger suite 2020-4, as reported earlier [52,53].

Moreover, the crystal structure of PD-L1 with JQT inhibitor in the protein crystal
structure was also docked in the protein pocket under similar conditions and used as
a reference complex for the comparative analysis with the docked complexes of PD-L1
with screened natural compounds. The intermolecular interaction analysis of the docked
complexes was extracted at 4 Å around the ligand in the binding pocket of the PD-L1
protein under default parameters of the Maestro-Schrödinger suite 2020-4. All 2D and 3D
images of both ligand and receptor were rendered using the free academic version of the
Maestro v12.6 tool of Schrödinger suite 2020-4 [54].

2.3. Molecular Dynamic Simulation

The best-docked poses of PD-L1 with natural compounds were studied for their
dynamic stability and intermolecular interaction profiling as a function of 100 ns interval
under explicit solvent molecular dynamics (MD) simulation on a Linux environment over
HP Z2 Microtower workstation using the free academic version of Desmond v5.6 [55]
module in Maestro-Schrödinger suite 2018–4 [56]. Herein, each complex was placed in the
center of the orthorhombic grid box (10 Å × 10 Å× 10 Å) solvated with TIP4P (transferable
intermolecular potential 4 points) to collect maximum solvation effects of the natural
solvent. Additionally, the whole system was neutralized using the counter sodium and
chlorine ions while placed at 20 Å around the docked ligand within the binding pocket of the
PD-L1 protein. Moreover, 0.15 M salt was added to the system to mimic the physiological
conditions for the docked complex using the system building tool. Furthermore, the
complete system was subjected to 2000 steps and a 1.0 kcal/mol/Å convergence threshold
for the initial minimization using minimization tool. Eventually, the unrestrained 100 ns
MD simulation trajectories were generated for each complex under a normal temperature
and pressure (NPT) ensemble at 300 K with a 10 ps step size under default parameters with
Optimized Potentials for Liquid Simulations (OPLS)-2005 force field, and later produced
trajectories were analyzed using the simulation interaction diagram (SID) tool in free
academic Desmond v5.6 module with Maestro-Schrödinger suite 2018–4 interface [56].
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2.4. End-Point Binding Free Energy Calculation

The end-point binding free energy calculations were conducted on the complete
100 ns MD simulation trajectory of each docked complex under the OPLS-3e force field
using the Prime MM/GBSA module [40,42], as described earlier under section, ‘Multi-step
virtual screening and pose filtration’. Herein, snapshots collected at every 10 ps were
treated for the removal of explicit solvent and ions molecules, and computed binding
free energy for each complex is depicted as a function of 100 ns and as the mean with
standard error.

3. Result and Discussion
3.1. Virtual Screening and ADMET Analysis

Virtual screening techniques are commonly used in the drug discovery pipelines to
identify a ligand with considerable binding affinity with a receptor from the large com-
pound databases and evaluate the ligand binding energy in terms of scoring functions [57–59].
However, accuracy remains a major limitation contributed by the least conformational
sampling of ligand and reliability of approximate scoring functions implemented in virtual
screening applications. This may result in the collection of false-positive and false-negative
hits, which then require rigorous assessment before further computational analysis [59–61].
In this context, the refinement of the generated poses using binding free energy calcu-
lations have been demonstrated as an ideal method to distinguish the positive hits and
ranking of cognate ligands identified using virtual screening applications [62–64]. Notably,
MM/GBSA method has been reported to accurately assess the binding free energy between
protein and small-molecule ligands [47,65,66].

In this study, a total of 173,403 conformations were generated for the 32,552 natu-
ral compounds using the Ligprep tool and then processed through drug-likeness filters,
followed by three levels of structure-based virtual screening, i.e., HTVS, SP, and XP pro-
tocols. Furthermore, the selected poses were evaluated for the selection of the most ideal
docked conformation of natural compounds, with PD-L1 using post-docking MM/GBSA
method, resulting in an assortment of total 17 natural compounds against the PD-L1
protein. The collected natural compounds were noted for considerable ADMET proper-
ties (Supporting Information Table S1), and substantial docking scores (>−10 kcal/mol)
and binding free energy (>−40 kcal/mol) in the targeted binding pocket of the PD-L1
protein (Table 1). Thus, based on the highest binding free energy values, the top five
docked poses of PD-L1 with natural compounds, i.e., Neoenactin B1, Actinofuranone I,
Cosmosporin A, Ganocapenoid A, and 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-
hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, were marked with high potency and
selected for further intermolecular interaction analysis (Figure 1). Of note, Neoenactin B1,
isolated as the antifungal compound from Streptomyces olivoreticuli [67], and Actinofuranone
I, isolated from Streptomyces gramineus, were reported for anti-inflammatory properties [68].
Likewise, isolation of Cosmosporin A, Ganocapenoid A, and 3-[3-hydroxy-4-(3-methylbut-
2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, were reported from
the fungi Pseudocosmospora [69], Ganoderma capense [70], and Aspergillus terreus [71], respec-
tively, and these compounds are not reported for considerable biological activity.
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Table 1. Names and characteristics of the small molecules collected by structure based virtual
screening process against the PD-L1 receptor from the NP-Atlas database.

S. No. Title Compound Mol.
Formula Mol. wt. Origin

Docking
Score

(kcal/mol)

∆GBind
(kcal/mol)

1 NPA020827 Neoenactin B1 C20H38N2O5 386.531
Streptomyces

olivoreticuli subsp.
Neoenacticus

−10.36 −79.63

2 NPA027965 Actinofuranone I C23H36O7 424.533 Streptomyces
gramineus −10.92 −71.44

3 NPA026024 Cosmosporin A C22H34O4 362.508 Pseudocosmospora
sp. Bm-1-1 −10.28 −67.43

4 NPA026082 Ganocapenoid A C21H28O6 376.449 Ganoderma
capense −10.54 −66.92

5 NPA013736

3-[3-hydroxy-4-(3-
methylbut-2-

enyl)phenyl]-5-(4-
hydroxybenzyl)-4-

methyldihydrofuran-
2(3H)-one

C23H26O4 366.456 Aspergillus terreus −10.49 −64.78

6 NPA030364

4-carbglyceryl-3,3′-
dihydroxy-5,5′-

dimethyldiphenyl
ether

C18H20O7 348.352
Aspergillus

versicolor SCSIO
41502

−10.45 −60.21

7 NPA004673 Not named C19H16O3 292.334 Burkholderia
pseudomallei −10.50 −57.08

8 NPA020009 Sterin A C16H20O6 308.33 Stereum hirsutum −11.39 −55.39

9 NPA027779 Decarboxyunguidepside
A C19H20O5 328.364 Aspergillus unguis −10.39 −54.51

10 NPA025743 Premacrophorintriol-I C22H34O5 378.508 Trichoderma sp.
1212-03 −10.34 −54.42

11 NPA002619 4′ ′-Deoxy-5′-Desmethyl-
Terphenyllin C19H16O4 308.333 Aspergillus sp.

YXf3 −10.56 −54.41

12 NPA018153 Linieodolide A C17H30O6 330.42 Bacillus sp.
09ID194 −10.30 −53.94

13 NPA017629 5′-O-
desmethylterphenyllin C19H16O5 324.332 Aspergillus sp.

YXf3 −10.62 −53.87

14 NPA011065 Nocarbenzoxazole E C16H14N2O5 314.297
Nocardiopsis

lucentensis DSM
44048

−10.73 −53.37

15 NPA022801 Floricolin Q C18H14O5 310.306 Floricola striata −10.81 −52.11

16 NPA015571 Cylindrocarpol C23H34O5 390.519 Acremonium sp. −11.86 −49.25

17 NPA014938 Baciphelacin C22H34N2O6 422.52
Bacillus

thiaminolyticus
IFO 3967/B-1-7

−10.89 −40.41

18 JQT
inhibitor BDBM363278 C36H33ClN2O7 641.1 Synthetic −9.824 −63.98
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Figure 1. D structures and ADMET of selected natural compounds, i.e., (a,b) Neoenactin
B1, (c,d) Cosmosporin A, (e,f) 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-
4-methyldihydrofuran-2(3H)-one Cosmosporin A, (g,h) Actinofuranone I, (i,j) Ganocapenoid A,
and (k,l) JQT inhibitor as the reference ligand, selected for the computational analysis against the
PD-L1 protein.
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3.2. Docking Pose Validation and Interaction Analysis

Initially, the co-crystallized ligand, i.e., JQT inhibitor, was docked in the targeted
binding pocket of the PD-L1 protein followed by the selection of an ideal conformation
based on binding free energy (−63.98 kcal/mol) (Table 1). To validate the selected pose
of the reference complex, docked conformation of the JQT inhibitor was aligned to co-
crystallized conformation in the PD-L1 structure (PBD ID: 6R3K) using the Structure
superimpose tool in the Maestro-Schrödinger suite 2020.4 (Figure 2). Interestingly, docked
conformation showed absolute matching with 0.217 Å root mean square deviation (RMSD)
aligned on the native conformation of the JQT inhibitor in the crystal structure of the
PD-L1 protein. These results support the considered binding pocket in the identification of
putative natural compounds as inhibitors of PD-L1 protein; hence, the respective docked
poses were considered for further computational analysis.
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Figure 2. Alignment of crystal structure and docked poses of the JQT inhibitor in the binding pocket
of PD-L1 protein. Herein, (a) orange (crystal structure) and light blue (docked structure) colors
represent the protein while (b) dark blue (co-crystalized) and green (docked ligand) depict the 3D
structures of the JQT inhibitor.

The molecular interaction analysis for the protein–ligand docked complex is employed
to determine the effectiveness of the compound against a target in the structure-based drug
discovery approaches [72]. Thus, molecular docked poses of the selected five natural com-
pounds, i.e., Neoenactin B1, Actinofuranone I, Cosmosporin A, Ganocapenoid A, and 3-[3-
hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-
one, as putative inhibitors and the JQT inhibitor as the reference ligand were studied for
the residual interactions at 4 Å radius around the docked ligand in the binding pocket of
the PD-L1 protein (Table 2).

The analysis of docked PD-L1-Neoenactin B1 complex shows the formation of five
hydrogen bonds (H-bonds) with A:Tyr123, A:Lys124, B:Tyr56, and B:Asp61(2) residues;
PD-L1-Actinofuranone I complex also displays establishment of three H-bonds with
A:Asp122, B:Tyr56, and B:Asn63 residues; PD-L1-Cosmosporin A complex exhibits four
H-bonds formation with A:Asp122, A:Tyr123, A:Lys124, and B:Asp122 residues; PD-L1-
Ganocapenoid A complex depicts two H-bonds interaction with A:Ala121 and B:Ala121

residues; and PD-L1-3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-
methyldihydrofuran-2(3H)-one complex shows formation of two H-bonds with B:Ala122

and B:Met115 residues (Table 2, Figure 3).
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However, no H-bond formation was observed in the reference complex, i.e., PD-L1-JQT
inhibitor (Table 2, Supporting Information Figure S1). Additionally, only PD-L1-Neoenactin
B1 complex was noted for salt-bridge formation with B:Asp61 residue in comparison to PD-
L1-JQT inhibitor complex (A:Lys124). Moreover, PD-L1-Ganocapenoid A and PD-L1-3-[3-
hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3 H)-
one complexes exhibited π-π stacking interactions at A:Tyr56 residue in comparison to
PD-L1-JQT inhibitor complex, which showed both π-π stacking (B:Tyr56) and π-cation
stacking interactions (A:Lys124). Additionally, the docked natural compounds and the JQT
inhibitor in the binding pocket of PD-L1 were also observed for other residual interactions,
involving hydrophobic, polar, positive, and negative interactions (Table 2, Figure 3, Sup-
porting Information Figure S1). Notably, interacting residues with the natural compounds
were also noted in the interaction map of the reference complex (residues are highlighted
as ‘bold text’ in Table 1), indicating the natural compounds have relatively occupied the
same binding pocket as the reference ligand. Thereof, based on the binding energy profiles
(docking scores and binding free energy) in association with the observed intermolecular
interactions of the docked natural compounds against PD-L1-JQT inhibitor complex, the
docked natural compounds in the binding pocket of PD-L1 are suggested to have substan-
tial stability by comparison to the JQT inhibitor, and may contribute to inhibition of the
PD-1/PD-L1 signaling pathway, as reported for the JQT inhibitor [38].

Table 2. Intermolecular interaction profiles for the docked natural compounds conformation with
active residues in the binding pocket of the PD-L1 protein.

S.
No. Complex H-bond Hydrophobic Polar π-π/*π-

Cation
Salt

Bridge Positive Negative

1 PD-L1-Neoenactin
B1

A:Tyr123,
A:Lys124,
B:Tyr56,

B:Asp61(2)

A:Ile54, A:Tyr56, A:Met115,
A:Ile116, A:Ala121, A:Tyr123,
B:Ile54, B:Tyr56, B:Met115,
B:Ile116, B:Ala121, B:Tyr123

A:Ser117,
B:Asn63,
B:Gln66,
B:Ser117

- B:Asp61 A:Lys124,
B:Lys62

A:Asp122,
B:Glu58,
B:Asp61,
B:Asp122

2
PD-L1-

Actinofuranone
I

A:Asp122,
B:Tyr56,
B:Asn63

A:Ala18, A:Phe19, A:Ile54,
A:Val55, A:Tyr56, A:Met115,
A:Ile116, A:Ala121, A:Tyr123,

B:Ile54, B:Tyr56, B:Val68,
B:Val76, B:Met115, B:Ile116,

B:Ala121, B:Tyr123

A:Thr20,
A:Gln66,
A:Ser117,
B:Asn63,
B:Ser117

- - A:Lys124 A:Asp122,
B:Asp122

3
PD-L1-

Cosmosporin
A

A:Asp122,
A:Tyr123,
A:Lys124,
B:Asp122

A:Ile54, A:Tyr56, A:Met115,
A:Ile116, A:Ala121, A:Tyr123,
B:Ile54, B:Tyr56, B:Met115,
B:Ile116, B:Ala121, B:Tyr123

A:Ser117,
B:Gln66

B:Ser117
- - A:Lys124

A:Asp122,
B:Asp61

B:Asp122

4
PD-L1-

Ganocapenoid
A

A:Ala121,
B:Ala121

A:Ile54, A:Tyr56, A:Val68,
A:Met115, A:Ile116,

A:Ala121, A:Tyr123, B:Ile54,
B:Tyr56, B:Val68, B:Met115,
B:Ile116, B:Ala121, B:Tyr123

A:Gln66,
A:Ser117,
B:Gln66,
B:Ser117

A:Tyr56 - - A:Asp122,
B:Asp122

5

PD-L1-3-[3-
hydroxy-4-(3-
methylbut-2-

enyl)phenyl]-5-(4-
hydroxybenzyl)-4-
methyldihydrofuran-

2(3H)-one

B:Ala122,
B:Met115

A:Ile54, A:Tyr56, A:Met115,
A:Ile116,

A:Ala121, A:Tyr123, B:Ile54,
B:Val55, B:Tyr56, B:Met115,
B:Ile116, B:Ala121, B:Tyr123

A:Gln66,
A:Ser117,
B:Gln66,
B:Ser117

A:Tyr56 - B:Lys124 A:Asp122,
B:Asp122

6 PD-L1-JQT
inhibitor -

A:Ala18, A:Phe19, A:Ile54,
A:Val55, A:Tyr56, A:Met115,
A:Ile116, A:Ala121 A:Tyr123,

B:Ile54, B:Tyr56, B:Val68,
B:Met115, B:Ile116, B:Ala121,

B:Tyr123

A:Thr20,
A:Gln66,
A:Ser117,
B:Asn63,
B:Gln66,
B:Ser117

A:Lys124,
B:Tyr56,

*A:Lys124
A:Lys124 A:Lys124,

A:Arg125

A:Asp122,
B:Asp61,
B:Asp122

Symbol asterisk (*) symbol represents the residues showing *π-Cation interactions. Residues in ‘bold text’ are the
same as exhibited by the JQT inhibitor.
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Figure 3. 3D and 2D poses of the selected natural compounds, i.e., (a,b) Neoenactin B1, (c,d) Actino-
furanone I, (e,f) Cosmosporin A, (g,h) Ganocapenoid A, and (i,j) PD-L1-3-[3-hydroxy-4-(3-methylbut-
2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, collected at 4 Å space around
the ligand within in the docked site of the PDL-1 protein. In 2D interaction maps, pink arrow (H-bond),
green line (π-π stacking, red-violet (salt bridge), red (negative), violet (positive), green (hydrophobic),
and blue (polar) color residues exhibits the interactions in the respective docked complexes.
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3.3. Molecular Dynamic Simulation Analysis

To predict the dynamic stability and intermolecular interactions as a function of 100
ns, classical MD simulation was performed on each docked PD-L1-natural compound, viz.
Neoenactin B1, Actinofuranone I, Cosmosporin A, Ganocapenoid A, and 3-[3-hydroxy-4-(3-
methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one complex,
and analyzed in comparison to the apo-PD-L1 protein and reference docked complex, i.e.,
PD-L1-JQT inhibitor complex, MD simulation trajectories.

Initially, the last poses of the 100 ns MD simulations were recovered and compared
with respective docked poses for molecular contacts analysis to assure the residence of the
docked natural compounds as ligand in the considered binding pocket of the PD-L1 protein
via constant or similar number of residual interactions and studied for conformational
changes in both proteins and ligands (Table 3, Figure 4). Notably, all the last poses of
the docked natural compounds with PD-L1 receptor after 100 ns MD simulation were
observed for consistent residual interactions in comparison to the respective docked poses,
supporting the stability of all the docked natural compounds in the binding pocket of PD-L1
receptor in comparison to the reference complex (Table 3). Moreover, 3D surface analysis of
the last poses from the 100 ns MD simulation reveals substantial conformational changes in
the protein structure docked with natural compounds against the PD-L1 protein docked
with the JQT inhibitor, suggesting the potential of docked natural compounds to signifi-
cantly disturb the native conformational of the PD-L1 protein (Figure 4). Furthermore, the
MD simulation trajectories of the respective docked complexes were statistically analyzed
in terms of root mean square deviation (RMSD), root mean square fluctuation (RMSF), and
protein–ligand interaction fraction mapping to understand the dynamic stability of the
docked complexes as a function of 100 ns MD simulation interval.

Table 3. Intermolecular interactions profiles for the extracted last poses from 100 ns MD simulation
trajectories at 4 Å distance around the docked conformations of ligands with PD-L1.

S.
No. Complex H-Bond Hydrophobic Polar π-π/*π-

Cation
Salt

Bridge Positive Negative

1 PD-L1-Neoenactin B1 B:Tyr56,
B:Asp61

A:Ile54, A:Val55, A:Tyr56,
A:Met115,

A:Ile116, A:Ala121, A:Tyr123,
B:Ile54, B:Tyr56, B:Val76,

B:Met115, B:Ile116, B:Ala121,
B:Tyr123

A:Ser117,
B:Asn63,
B:Gln66,
B:Ser117

- B:Asp61 B:Lys62
A:Asp122,
B:Asp61,
B:Asp122

2
PD-L1-

Actinofuranone
I

A:Asp122,
B:Tyr56

A:Ile54, A:Val55, A:Tyr56,
A:Met115, A:Ile116, A:Ala121,

A:Tyr123, B: Ile54, B:Tyr56,
B:Val68, B:Val76, B:Met115,
B:Ile116, B:Ala121, B:Tyr123

A:Ser117,
B:Asn63,
B:Ser117

- - A:Lys124,

A:Arg125

A:Asp122,
B:Glu58,
B:Asp122

3 PD-L1-Cosmosporin
A

A:Tyr123,
B:Asp122

A:Ile54, A:Tyr56, A:Met115,
A:Ile116, A:Ala121, A:Tyr123, B:
Ile54, B:Val55, B:Tyr56, B:Val68,

B:Met115, B:Ile116, B:Ala121,
B:Tyr123

A:Ser117,
B:Gln66,B:Ser117 - - A:Lys124,

A:Arg125

A:Asp122,
B:Glu58,
B:Asp122

4 PD-L1-Ganocapenoid
A

A:Tyr56,
B:Gln66

A:Ile54, A:Tyr56, A:Val76,
A:Met115,

A:Ala121, A:Tyr123, B:Ile54,
B:Val55, B:Tyr56, B:Val68,

B:Val76, B:Met115, B:Ile116,
B:Ala121, B:Tyr123

A:Asn63,
A:Gln66,
B:Gln66,
B:Ser117

- - B:Arg113
A:Glu58,

A:Asp122,
B:Asp122

5

PD-L1-3-[3-hydroxy-
4-(3-methylbut-2-
enyl)phenyl]-5-(4-
hydroxybenzyl)-4-

methyldihydrofuran-
2(3H)-one

B:Met115

A:Ile54, A:Tyr56, A:Met115,
A:Ile116,

A:Ala121, A:Tyr123, B:Ile54,
B:Val55, B:Tyr56, B:Val68,

B:Met115, B:Ile116, B:Ala121,
B:Tyr123

A:Gln66,
A:Ser117,
B:Gln66,
B:Ser117

A:Tyr56

B:Tyr123 - - A:Asp122,
B:Asp122

6 PD-L1-JQT inhibitor -

A:Ile54, A:Tyr56, A:Met115,
A:Ile116, A:Ala121, A:Tyr123,

B:Ile54, B:Tyr56, B:Val68,
B:Val76, B:Met115, B:Ile116,

B:Ala121, B:Tyr123

A:Thr20,
A:Gln66,

A:Ser117,B:Gln66,
B:Ser117

B:Tyr56,
*A:Arg125 A:Lys124 A:Lys124,

A:Arg125
A:Asp122,
B:Asp122

Symbol asterisk (*) symbol represents the residues showing *π-Cation interactions. Residues in ‘bold text’ are the
same as exhibited by the docked complex.
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Figure 4. Representation of the 3D surface conformational changes in the last poses, i.e., (a) PD-L1-
Neoenactin B1, (b) PD-L1-Actinofuranone I, (c) PD-L1-Cosmosporin A, (d) PD-L1-Ganocapenoid A,
(e) PD-L1-3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-
2(3H)-one, and (f) JPD-L1-JQT inhibitor, extracted from the 100 ns MD simulation trajectories in
comparison to the respective docked poses.
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3.4. RMSD and RMSF Analysis

Initially, RMSD values were computed from the respective docked poses of PD-L1-
natural compounds as a function of 100 ns simulation interval and analyzed in com-
parison to the RMSD values of apo-protein and PD-L1-JQT inhibitor complex (Figure 5,
Supporting Information Figure S2). In all the docked complexes of PD-L1 with natural
compounds, substantial deviations (>3.5 Å) were observed in the protein throughout
100 ns MD simulation, except in PD-L1-Ganocapenoid A complex, where equilibrium in
the protein RMSD (~4 Å) was noted after 40 ns until the end of the 100 ns MD simulation,
while PD-L1 protein exhibited higher deviations (>4.8 Å) in PD-L1-Neoenactin B1 and PD-
L1-Actinofuranone I docked complexes during the simulation interval. However, PD-L1
docked with the JQT inhibitor showed high deviation (~4 Å) within the first 10 ns interval
followed by a state of global minima (~3 Å) until the end of simulation, while apo-PD-L1
receptor was also noted for consistent deviations (<4.2 Å) on several occasions without
a state of equilibrium during the MD simulation interval. These observations suggested
that, unlike the JQT inhibitors, docked natural compounds, particularly Neoenactin B1 and
Actinofuranone I, may promote the strong global conformational changes in the PD-L1
protein. These observations were further supported by the calculated RMSF values (>2.5 Å)
for the docked PD-L1 with Neoenactin B1 and Actinofuranone I natural compounds in
comparison to apo-protein (<2.5 Å) and protein docked with the JQT inhibitor (<2.5 Å)
(Supporting Information Figures S2 and S3).
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Figure 5. RMSD plots for the PD-L1-natural compounds, i.e., (a) Neoenactin B1, (b) Actinofuranone
I, (c) Cosmosporin A, (d) Ganocapenoid A, (e) 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-
hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (f) PD-L1-JQT inhibitor complexes as function
of 100 ns simulation interval. Herein, protein RMSD values were extracted in terms of alpha carbon
atoms while ligand RMSD values were computed as the protein-fit ligand for all the docked complexes
from their respective 100 ns MD simulation trajectories.
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Likewise, protein-fit ligand RMSD analysis indicated substantial global minima
(<3 Å) for all the docked natural compounds throughout the 100 ns MD simulation inter-
val, except for the Cosmosporin A and 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-
hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one compounds, which showed <2 Å RMSD
as observed for the JQT inhibitor (<2 Å) (Figure 5). Moreover, computed ligand RMSF also
reveals the acceptable values (<3 Å) for all the docked natural compounds with PD-L1
against the JQT inhibitor (Supporting Information Figure S4), suggesting the substantial
stability of the docked ligand with the protein. Collectively, RMSD and RMSF analysis of
the docked complexes suggested the considerable stability of the docked ligands with the
protein, while docked natural compounds were noted to induce substantial conformational
changes in the PD-L1 protein structure that may results in the inhibition of PD-L1 protein
with its receptor in the PD-1/PL-1 pathway.

3.5. Protein–Ligand Interaction Mapping

To further access the stability of the docked complexes in terms of intermolecular
interactions as a function of simulation interval, protein–ligand contact maps, including
H-bonding, hydrophobic interactions, ionic interactions, and water bridge formation, were
extracted from the respective 100 ns MD simulation trajectories (Figure 6). Notably, all
the docked natural compounds showed considerable molecular contacts with the active
residues in the binding pocket of the PD-L1 protein during the simulation interval in
comparison to the reference complex, i.e., PD-L1-JQT inhibitor; the interacting residues
were also noted in the initially docked poses (Table 2).

In the PDL1-Neoenactin B1 complex (Figure 5a), B:Asp61 (which formed two H-bonds
in docked complex) exhibited substantial H-bond formation for ~100% of the interaction
fraction, while B:Tyr56 (which formed single H-bond in docked complex) and A:Tyr123

(noted for both H-bond and hydrophobic interactions in docked complex) were noted for
hydrophobic interactions with docked ligands for ~20% of the total interaction fraction
during the simulation interval. Additionally, B:Glu58 (which depicted negative residual
interaction in docked complex) showed ~50% and ~15% of total interaction fractions
in water bridge formation and ionic bond formations, respectively, during the 100 ns
simulation interval.

Likewise, in the PDL1-Actinofuranone I complex (Figure 5b), A:Asp122 (which showed
both H-bond and negative residual interaction in docked complex) residue contributed
in ~90% of the interaction fraction for H-bond formation, in addition to water bridge
formation (~60% interaction fraction) during the 100 ns simulation interval. Moreover,
A:Tyr56 (which exhibited both H-bond and hydrophobic interaction in docked complex) and
A:Tyr123 (which displayed hydrophobic interaction in docked complex) showed ~30% of
the interaction fraction in hydrophobic interactions, A:Arg125 (observed for intermolecular
interaction during MD simulation only) exhibited water bridge formation (~50% interaction
fraction), and B:Tyr56 (which showed both H-bond and hydrophobic interaction in docked
complex) formed H-bond (~70% of the interaction fraction) during total simulation interval.

Additionally, protein–ligand contact analysis of the PDL1-Cosmosporin A complex
showed substantial contribution of A:Tyr56, B:Tyr56, and B:Ala121 (all three residues also
showed hydrophobic interactions in docked complex) in hydrophobic interaction (~50% of
the interaction fraction); A:Tyr123 (which displayed H-bond and hydrophobic interactions in
docked complex) and B:Asp122 (which displayed H-bond formation in docked pose) noted
~90% and ~85% of interaction fraction in H-bond formation, respectively; and A:Arg125

(observed for interaction during MD simulation only) presented water bridge formation
(~55% of the interaction fraction) during the 100 ns MD simulation interval (Figure 5c).
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Figure 6. Protein–ligand interactions mapping PD-L1 and selected natural compounds, i.e.,
(a) Neoenactin B1, (b) Actinofuranone I, (c) Cosmosporin A, (d) Ganocapenoid A, (e) 3-[3-hydroxy-
4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (f) JQT
inhibitor, fit on protein were extracted from 100 ns MD simulation trajectories of respective
docked complexes.
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Furthermore, analysis of the PD-L1-Ganocapenoid A complex showed substantial
contribution of A:Tyr56 (noted for π-π stacking interaction in docked complex) and A:Gln66

(distinguished for polar interaction in docked complex) in H-bond formation for ~65%
and ~55% interaction fraction, respectively; B:Asp73 (detected for interaction during MD
simulation only) exhibits water bridge formation (~55% interaction fraction), and B:Tyr123

(which displayed hydrophobic interaction in docked pose) was noted for hydrophobic
interactions (~85% interaction fraction) during the total simulation interval (Figure 5d).

Whilst analysis of protein–ligand mapping of the PD-L1-3-[3-hydroxy-4-(3-methylbut-
2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one complex showed
the significant contribution of A:Tyr56 (which showed both hydrophobic and π-π stacking
interaction in docked complex) and B:Tyr56 (which presented hydrophobic interaction
in docked complex) in hydrophobic interaction for ~70% interaction fraction, B:Tyr123

(which displayed hydrophobic interaction in docked pose) also demonstrated hydrophobic
interaction (~45% interaction fraction); B:Met115 (which displayed H-bond formation in
docked pose) contributed in H-bond formation (~45% interaction fraction), and B:Asp122

(which showed both H-bond and negative residual interaction in docked complex) revealed
water bridge formation (~40% interaction fraction) during the 100 ns MD simulation interval
(Figure 5e).

The protein–ligand mapping of the PD-L1 protein with its native ligand, i.e., the
JQT inhibitor, as reference complex substantially demonstrated ionic interaction (~45%
interaction fraction) via A:Asp122 (which displayed negative residual interaction in docked
complex), hydrophobic interaction (~100% interaction fraction) via B:Tyr56 (which dis-
played hydrophobic interaction in docked pose), hydrophobic interaction (~80% interaction
fraction) via A:Tyr123 (which exhibited hydrophobic interaction in docked complex), H-
bond formation (80% interaction fraction) via A:Arg125 (which showed positive residual
interaction in docked pose), and water bridge formation (20% interaction fraction) via
A:Lys124 (which showed π-cation stacking, salt bridge, and positive residual interaction in
docked pose) residues as a function of the 100 ns simulation interval (Figure 5f).

Additionally, molecular contact formation between the receptor and docked natural
compounds were also logged at ~30% of the total simulation interval, indicating substantial
contribution of H-bonding and hydrophobic interactions in comparison to the reference
complex (Supporting Information Figure S5). Altogether, collected interaction profiles as a
function of simulation interval indicate a substantial contribution of H-bonds and hydropho-
bic interactions in the dynamic stability of PD-L1-natural compounds complexes during
the 100 ns MD simulations. Hence, based on 100 ns MD simulation trajectories analysis,
the selected docked complexes can be arranged in order of stability, i.e., PDL1-Neoenactin
B1, PDL1-Cosmosporin A, PDL1-Actinofuranone I, PDL1-Ganocapenoid A, and PDL1-3-[3-
hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4 hydroxybenzyl)methyldihydrofuran an-2(3H)-
one, in comparison to the reference complex, viz. PD-L1-JQT inhibitor.

3.6. End-Point Binding Free Energy Analysis

In addition, to understand the macromolecular system at atomic level, the application
of MD simulation is also helpful to decipher the hidden or undetected states of system
under consideration [73–75]. Thus, as end-point free energy methods [76–78], MD sim-
ulations in combination with binding free energy methods have been comprehensively
used in structure-based drug design to determine the thermodynamic properties of the
macromolecular system, including stability, affinity, and free energy decomposition analy-
sis [75]. Therefore, the most well-known end-point free energy MM/GBSA method, which
provides an ideal balance between accuracy and computational efficiency, was utilized
on the complete 100 ns MD simulation trajectories to calculate the end-point binding free
energy for each PD-L1-ligand complex (Supporting Information Table S2, Figure 7).

Initially, calculated binding free energy for the complete 100 ns simulation trajectories
of the docked PD-L1 with natural compounds were analyzed in comparison to the reference
complex. Although PD-L1-natural compounds showed prominent binding free energy
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between −60 to −90 kcal/mol against PD-L1-JQT inhibitor (−90 to −130 kcal/mol), some
conformations also exhibited higher energy >−90 kcal/mol during the simulation interval.
As expected, these conformations represent the most stable poses of the ligand compounds
with the PD-L1 protein (Figure 7). These observations suggested that docked natural
compounds may exhibit higher binding affinities than the predicted binding affinities using
MM/GBSA method.

Furthermore, average binding free energy values for each simulated complex were
computed along with energy decomposition components to assess the favorable and unfa-
vorable energy terms to the net biding free energy of the system and compared with the
respective energy terms computed on docked poses (Figure 7). Interestingly, all the PD-
L1-natural compound complexes showed significant increment in the binding free energy
(>−80 kcal/mol) in comparison to the respective docked poses (>−60 kcal/mol), except
PD-L1-Neoenactin B1 complex (−73.55 ± 7.62 kcal/mol). Similarly, PD-L1-JQT inhibitor also
showed considerable hike in the binding free energy (−112.91± 8.33 kcal/mol) after the MD simu-
lation against docked pose (−96.7 kcal/mol). Among the PD-L1 natural compounds, PD-L1-3-[3-
hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4hydroxybenzyl)methyldihydrofuran-2(3H)-one docked
complex (−87.21± 4.11 kcal/mol) and PD-L1-Neoenactin B1 complex (−73.55 ± 7.62 kcal/mol)
were marked for the highest and lowest end-point binding free energy, respectively, af-
ter the 100 ns MD simulation (Figure 7), whereas the end-point binding free energy of
the docked complex PD-L1-Actinofuranone I was −81.07 ± 6.41 kcal/mol, followed by
−83.96 ± 4.51 kcal/mol for PD-L1-Cosmosporin A, and −84.56 ± 6.36 kcal/mol for PD-
L1-Ganocapenoid A (Figure 7).

Furthermore, the computation of dissociation energy components for each complex be-
fore and after MD simulation revealed the favorable contribution of ∆GBind Lipo (Lipophilic)
and ∆GBind vdW (Van der Waals interaction) energies to the net stability of docked complexes,
whereas ∆GBind Solv GB (Generalized Born electrostatic solvation energy) substantially con-
tributed to the instability of the respective docked complexes (Figure 7). Notably, after
the 100 ns MD simulation, a decrement in the ∆GBind Solv GB was noted and no substantial
difference was observed in the ∆GBind Lipo energy terms. Similar energy dissociation com-
ponents were previously noted to contribute to the stability of the docked complexes of the
PD-L1 protein [79,80]. Furthermore, reduction in net ligand strain energy was also noted
following 100 ns MD simulation in each complex in comparison to the respective docked
poses, suggesting the favorable contribution to the protein–ligand complex stability after
100 ns MD simulation (Figure 7). Hence, from the comparative binding free energy analysis
of docked poses and MD simulation trajectories values, natural compounds are endorsed
as potential hit candidates in comparison to the reference compounds, i.e., JQT inhibitor,
for the development of PD-L1 inhibitors for cancer immunotherapy.



Life 2022, 12, 659 18 of 22Life 2021, 11, x FOR PEER REVIEW 17 of 22 
 

 

 

Figure 7. Binding free energy and individual dissociation energy components calculation performed 

for PD-L1 and selected natural compounds, i.e., (a,b) Neoenactin B1 (c,d) Actinofuranone I (e,f) 

Cosmosporin A, (g,h) Ganocapenoid A (i,j) 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hy-

droxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (k,l) JQT inhibitor before and after 100 ns MD 

simulation. 

Figure 7. Binding free energy and individual dissociation energy components calculation per-
formed for PD-L1 and selected natural compounds, i.e., (a,b) Neoenactin B1 (c,d) Actinofuranone
I (e,f) Cosmosporin A, (g,h) Ganocapenoid A (i,j) 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-
5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (k,l) JQT inhibitor before and after
100 ns MD simulation.
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4. Conclusions

Programmed death ligand-1 (PD-L1) is a potential target for the suppression of
cancer progression. The development of anti-cancer compounds using natural com-
pounds by inhibiting the PD-L1 protein can be a turning point in the field of cancer
immunotherapy. In this study, five natural products, i.e., Neoenactin B1, Actinofuranone
I, Cosmosporin A, Ganocapenoid A, and 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-
(4hydroxybenzyl)methyldihydrofuran-2(3H)-one, are identified as potential candidates for
the PD-L1 protein inhibition, with substantial drug-likeness, docking energy (>−10 kcal/mol),
and MM/GBSA binding free energy (>−60 kcal/mol). In addition, the intermolecular in-
teraction profiling of the docked poses and 100 ns molecular dynamic simulation trajectory
analysis promotes the substantial contribution of H-bonding and hydrophobic interac-
tions in the stability of docked natural compounds with the PD-L1 protein. Furthermore,
calculated net binding free energy on each simulation trajectory supports the stability of
the docked complexes in comparison to the reference complex and advocates the selected
natural compounds as potent candidates for the development of PD-L1 inhibitors. Overall,
the computational investigation of the natural compounds as PD-L1 inhibitors provides a
positive endorsement for the selected natural compounds in the eventual designing and
development of an effective small molecule-based anti-PD-L1 agent, which may provide
PD-L1 inhibition at low concentration, to disturb the PD-1/PD-L1 signaling pathway for
the cancer immunotherapy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/life12050659/s1, Table S1: ADMET prediction for the
screened five natural compounds as PD-L1 inhibitor, Table S2: Calculated net binding free energy
for the selected docked poses of PD-L1-natural compounds snap shots from the last 10 ns interval
of 100 ns MD simulation, Figure S1: (a) 3D and (b) 2D interaction poses of the reference com-
plex, i.e., PD-L1-JQT inhibitor. In 2D interaction maps, green line (π-π stacking), red line (π-cation
stacking), red-violet line (salt-bridge), red color residues (negative), violet color residues (positive),
green color residues (hydrophobic), and blue color residues (polar) exhibits the intermolecular
interactions at a radius of 4 Å around the ligand in the respective docked complexes, Figure S2:
(a) RMSD and (b) RMSF plots for the apo-PD-L1 receptor extracted from 100 ns MD simulation,
Figure S3: RMSF plot generated for the PD-L1 docked with selected natural compounds, i.e., (a)
Neoenactin B1, (b) Actinofuranone I, (c) Cosmosporin A, (d) Ganocapenoid A, (e) 3-[3-hydroxy-
4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (f) JQT
inhibitor, Figure S4: RMSF plot of the selected compounds; (a) Neoenactin B1, (b) Actinofuranone
I, (c) Cosmosporin A, (d) Ganocapenoid A, (e) 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-
hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (f) JQT inhibitor, Figure S5: Schematic rep-
resentation for interaction profile of PDL1 and selected natural compounds, i.e., (a) Neoenactin B1
(b) Actinofuranone I (c) Cosmosporin A, (d) Ganocapenoid A (e) 3-[3-hydroxy-4-(3-methylbut-2-
enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, and (f) PD-L1-JQT inhibitor,
extracted at 30% of total 100 ns MD simulation interval.
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