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Abstract: The purpose of this pilot study was to explore whether polymorphisms in genes encoding
the catalytic (GCLC) and modifier (GCLM) subunits of glutamate-cysteine ligase, a rate-limiting
enzyme in glutathione synthesis, play a role in the development of ischemic stroke (IS) and the
extent of brain damage. A total of 1288 unrelated Russians, including 600 IS patients and 688 age-
and sex-matched healthy subjects, were enrolled for the study. Nine common single nucleotide
polymorphisms (SNPs) of the GCLC and GCLM genes were genotyped using the MassArray-4 system.
SNP rs2301022 of GCLM was strongly associated with a decreased risk of ischemic stroke regardless
of sex and age (OR = 0.39, 95%CI 0.24–0.62, p < 0.0001). Two common haplotypes of GCLM possessed
protective effects against ischemic stroke risk (p < 0.01), but exclusively in nonsmoker patients.
Infarct size was increased by polymorphisms rs636933 and rs761142 of GCLC. The mbmdr method
enabled identifying epistatic interactions of GCLC and GCLM gene polymorphisms with known IS
susceptibility genes that, along with environmental risk factors, jointly contribute to the disease risk
and brain infarct size. Understanding the impact of genes and environmental factors on glutathione
metabolism will allow the development of effective strategies for the treatment of ischemic stroke
and disease prevention.

Keywords: ischemic stroke; brain infarction; oxidative stress; glutathione; GCLC; GCLM; single
nucleotide polymorphism; gene–gene interactions; gene–environment interactions

1. Introduction

The stroke is the world’s fourth leading cause of long-term disability and death [1,2].
Ischemic stroke (IS) is the most common type of stroke attributed to either a thrombotic or
embolic event, causing a decrease in blood flow to the brain. Despite significant advances
in acute stroke management over recent decades, stroke-related morbidity and mortality
continue to be major public health concerns [3]. In this regard, there is a great deal of
interest in identifying new potential targets that may improve the quality of ischemic stroke
treatment and prevention.
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Ischemic stroke is a multifactorial disease determined by complex interactions between
genetic, epigenetic, and environmental factors such as cigarette smoking, air pollution,
sedentary lifestyle, and other factors [4,5]. Recent advances in omics techniques have con-
siderably improved our understanding of the molecular mechanisms underlying ischemic
stroke, discovered numerous genetic polymorphisms associated with disease susceptibility,
and identified novel therapeutic targets [4,6]. Despite notable success in this field of re-
search, the genetic contribution to some molecular mechanisms of cerebrovascular disease
remains poorly investigated. A disruption in redox homeostasis, a cellular reduction-
oxidation status, and resulted oxidative stress are recognized as major common conditions
underlying the pathogenesis of cardiometabolic, cardiovascular, and cerebrovascular dis-
orders [7–9]. A growing body of evidence indicates that oxidative stress, attributed to
excessive production of reactive oxygen species and/or poor antioxidant defense, con-
tributes to the multistep pathogenetic mechanisms of cerebrovascular disease, starting with
atherogenic changes in the carotid arteries such as endothelial dysfunction, macrophage re-
cruitment and adhesion, following atherosclerotic plaque progression and rupture through
intraplaque hemorrhage, neovascularization, and fibrous cap thickness—events ultimately
leading to artery occlusion and ischemic damage to the brain [9,10].

Glutathione (GSH), a tripeptide consisting of cysteine, glycine, and glutamate, is
the main antioxidant and most prevalent thiol-containing peptide regulating the cellular
redox homeostasis. GSH exerts numerous physiological functions such as cellular pro-
liferation, mitochondrial maintenance, autophagy, apoptosis, cell cycle regulation, signal
transduction, conjugation of xenobiotics, epigenetic regulation, DNA and protein synthe-
sis, protein folding, and glutathionylation of proteins [11,12]. It is important to note that
glutathione plays a key role in the protection of cells against oxidative damage attributed
to enhanced production of reactive oxygen species (ROS). ROS-associated depletion of
GSH contributes to endothelial dysfunction and atherosclerotic plaque rupture, followed
by arterial thrombosis [13,14], thereby leading to organ/tissue ischemia and necrosis. Thus,
a plethora of physiological functions makes glutathione a critical regulator of a variety of
metabolic processes in the cardiovascular and nervous systems, and the dysregulation in
GSH biosynthesis may have an etiological role in atherosclerosis, including in carotid arter-
ies. Despite the clear importance of glutathione in vasculature and brain metabolism [15,16],
existing data on the roles of genes encoding enzymes involved in glutathione metabolism
are surprisingly limited. A few studies have so far investigated the relationship between
genes encoding glutathione-metabolizing enzymes and the risk of ischemic stroke and
its outcomes. These genetic association studies have been focused on enzymes such as
glutathione S-transferases [17–21] and glutathione peroxidases [22,23] that use glutathione
as a substrate for the detoxification of foreign compounds and hydrogen peroxide, respec-
tively [19–21,23]. No studies have so far been undertaken to investigate the contribution of
polymorphic genes involved in glutathione biosynthesis to the development and severity
of ischemic stroke, although a deficiency of glutathione in IS patients has been reported by
several studies [24–26]. The purpose of this pilot study was to evaluate whether genetic
variation in glutamate-cysteine ligase, an enzyme that catalyzes the first and rate-limiting
step in the production of glutathione, contributes to the risk of ischemic stroke and brain
infarct size.

2. Materials and Methods
2.1. Study Participants and Clinical Examination

Written informed consent was obtained from each patient before enrollment in this
study. The study protocol was approved by the Ethical Review Committee of Kursk State
Medical University. A total of 1288 unrelated Russians, including 600 patients with a
diagnosis of acute ischemic stroke and 688 healthy subjects, were enrolled from Kursk
hospitals over two periods, such as between 2007 and 2013 [19,23] and between 2015 and
2017, as described previously [27]. Subjects for the control group were enrolled for the
same time periods and included healthy blood volunteers and also hospital-based patients
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with no history or clinical signs of cerebrovascular, cardiovascular, endocrine, or other
chronic diseases. Cerebral infarction was verified by qualified neurologists based on clinical
examination, CT, and/or MRI of the brain. The cerebral infarct volume was measured
by MRI and expressed in mm (the maximum diameter of the brain damage). We did not
include stroke patients in the study with a positive history of cardiac arrhythmias. Baseline,
clinical, and laboratory characteristics of the study participants are described in Table 1. The
control group was matched to the patient group for sex, age, and body mass index (p > 0.05).
Study participants completed a validated interviewer-administered questionnaire assessing
cigarette smoking, alcohol consumption, physical activity, life stress, dietary intake of fresh
fruits and vegetables, and other environmental risk factors, as described previously [28,29].
Information on smoking habits was obtained from all patients with ischemic stroke and
637 healthy subjects. Data on alcohol consumption were available from all IS patients and
251 healthy controls. Information on the intake of fresh fruits and vegetables was obtained
from 598 IS patients and 255 healthy controls. As can be seen from Table 1, the number
of smokers (ever/never) and alcohol abusers was higher among patients with ischemic
stroke than among healthy individuals. No difference in patients’ intake of fresh fruits and
vegetables was found between the case and control groups. As can be seen from Table 1,
plasma ROS concentrations were significantly higher in patients with ischemic stroke than
in healthy subjects (p = 0.004), whereas the levels of plasma GSSG were significantly lower
in IS patients than in controls (p = 0.008).

Table 1. Baseline, clinical, and laboratory characteristics of the study participants.

Baseline and Clinical Characteristics Controls
(n = 688)

IS Patients
(n = 600) p-Value

Age, M ± S.D. 60.8 ± 7.5 61.1 ± 9.8 0.59

Sex, n (%)
Males 366 (53.2) 330 (55.0)

0.52Females 322 (46.8) 270 (45.0)

BMI (kg/m2), M ± S.D. 24.6 ± 3.8 25.2 ± 4.2 0.11

Brain infarct size (mm in maximal diameter), Me (Q1–Q3) - 10.8 (5.0–23.9) -

Hypertension - 586 (97.7) -

Coronary artery disease - 49 (8.2) -

Diabetes mellitus - 52 (8.7) -

Smoking status * Ever 221 (32.8) 265 (44.2)
<0.0001Never 452 (67.2) 335 (55.8)

Alcohol intake *
Abuse 25 (10.0) 116 (19.3)

0.001Low/moderate 226 (90.0) 484 (80.7)

Fruits/vegetables intake * Low 100 (39.2) 283 (47.3)
0.29High/moderate 155 (60.8) 315 (52.7)

Oxidized glutathione (GSSG) in plasma (µmol/L), Me (Q1–Q3) * 1.93 (0.84–5.75) 1.31 (0.46–3.52) 0.008

Reactive oxygen species (ROS) in plasma (µmol/L), Me (Q1–Q3) * 2.47 (1.98–3.69) 3.41 (2.43–4.21) 0.004

M, mean; S.D., standard deviation; n, number; BMI, body mass index; Me, median; Q1–Q3 quartiles; * The number
of patients examined with these parameters is described in the Methods Section.

2.2. SNP Selection

For the study, nine common tagged single nucleotide polymorphisms (SNPs) within both
catalytic (rs12524494, rs17883901, rs606548, rs636933, rs648595, and rs761142 of GCLC) and mod-
ifier (rs2301022, rs3827715, and rs7517826 of GCLM) subunits constituting glutamate-cysteine
ligase were selected according to the functional properties of the polymorphisms and
linkage disequilibrium between them (HapMap data, European population). We aimed at
the best coverage of common functional SNPs per a gene: tagSNPs in each haplotype block
were selected according to the criteria of r2 ≥ 0.8 and MAF (minor allele frequency) > 5%.
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SNP selection was performed using the Candidate Gene SNP Selection (GenePipe) tool
available online at SNPinfo Web Server (https://snpinfo.niehs.nih.gov/snpinfo/selegene.
html (accessed on 12 March 2021)).

2.3. Genetic Analysis

Approximately 5 mL of venous blood was collected from the cubital vein of each par-
ticipant into EDTA-coated tubes and maintained at −20 ◦C until processed. Genomic DNA
was extracted from thawed blood samples by the standard procedure of phenol/chloroform
extraction and ethanol precipitation. To investigate whether SNPs in glutamate-cysteine
ligase genes interact with known susceptibility genes for ischemic stroke, we selected eight
SNPs that have previously shown strong associations with disease risk in several genome-
wide association studies in European populations, as described previously [27]. The SNPs
associated with ischemic stroke risk included rs2417957 of SLCO1B1, rs6511720 of LDLR,
rs4322086 of RASEF, rs12449964 of PEMT, rs12646447 of PITX2, rs899997 (LOC105370913),
rs11556924 of ZC3HC1, and rs783396 of AIM1. The MALDI-TOF mass spectrometry iPLEX
platform (Agena Bioscience, Inc., San Diego, CA, USA) was used for genotyping the SNPs.
Primer sequences used for genotyping are available upon request. To ensure quality control,
5% of DNA samples were genotyped in duplicates blinded to the case-control status. The
concordance rate was >99%. DNA analysis was carried out at the Research Institute for
Genetic and Molecular Epidemiology of Kursk State Medical University (Kursk, Russia).

2.4. Biochemical Investigations

Fasting venous blood samples were collected from 139 patients with ischemic stroke
and 58 healthy subjects in lithium heparin sterile tubes and immediately centrifuged at
1200× g using assay kits according to the manufacturer’s instructions (Cell Biolabs, San
Diego, CA, USA). Plasma samples were aliquoted and stored at −80 ◦C until further use.
Two alternative biochemical parameters reflecting redox homeostasis such as reactive
oxygen species (ROS) and oxidized glutathione (GSSG) levels were measured by Varioscan
Flash microplate reader (Thermo Fisher Scientific, Waltham, MA, USA) in all plasma
samples of IS patients and healthy subjects (GSSG levels were assessed in 91 patients with
IS and 44 controls), as described previously [30].

2.5. Statistical and Bioinformatics Analysis

Allele and genotype frequencies in the case and control groups were counted and
compared by the Fisher exact test to identify significant departures from Hardy–Weinberg
equilibrium. Allele, genotype, and haplotype frequencies in the study groups and their
associations with disease risk and brain infarct size were analyzed using the SNPStats
software (https://www.snpstats.net/start.htm (accessed on 14 April 2021)) [31]. Multiple
logistic regression analysis was performed to evaluate the associations of GCLC and GCLM
genotypes with the risk of ischemic events. Continuous variables were analyzed for normal
distribution by the Kolmogorov–Smirnov test. Since brain infarct size was not normally
distributed, it was presented as a median with an interquartile range (Q1–Q3). Linear
regression analysis was used to evaluate the association between SNPs and brain infarct size,
which was previously transformed to a normal variable through the procedure of inverse
transformation of ranks. All associations were adjusted for age and gender. Replication for
associations between SNPs and ischemic stroke was performed using genotype datasets
available from the Cardiovascular Cerebrovascular Disease Knowledge Portal (https://cd.
hugeamp.org (accessed on 25 March 2022)) and the Gene ATLAS database of UK Biobank
(http://geneatlas.roslin.ed.ac.uk (accessed on 26 March 2022)). Linkage disequilibrium
(LD) measures such as Lewontin’s D and D′ [32] were calculated with the LDpair Tool
(https://ldlink.nci.nih.gov (accessed on 16 April 2021)) using genotype data from the
1000 Genomes Project and GRCh37 human genome assembly.

The multifactor dimensionality reduction (MDR) method was used to investigate
gene–gene and gene–environment (GxE) interactions underlying susceptibility to ischemic

https://snpinfo.niehs.nih.gov/snpinfo/selegene.html
https://snpinfo.niehs.nih.gov/snpinfo/selegene.html
https://www.snpstats.net/start.htm
https://cd.hugeamp.org
https://cd.hugeamp.org
http://geneatlas.roslin.ed.ac.uk
https://ldlink.nci.nih.gov
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stroke and influencing brain infarct size [33]. MDR is a popular data-mining and model-
free bioinformatics approach developed to identify high-order interactions between genes
and environmental factors contributing to complex traits and multifactorial diseases. The
model-based multifactor dimensionality reduction method (mbmdr), an extension of the
MDR method implemented in a mbmdr package for R [34–36], was used to identify a set of
statistically significant GxG and GxE interactions instead of a single best model provided by
the traditional MDR analysis. The mbmdr analysis algorithm we used has been described
in detail previously [28]. Two-, three-, four- and five order GxG and GxE interaction models
were evaluated, and their statistical significance p-values (Pperm) were assessed for each
n-order model through a permutation procedure (1000 permutation tests). Then we counted
the number of n-models in which each attribute was involved, and the resultant value
was considered as a measure of the contribution of an attribute (a variable such as SNP
or risk factor) to the polygenic background, as estimated by the mbmdr method. This
methodology was described in detail recently [37]. Post hoc logistic regression was used to
assess the associations of pairwise genotype combinations between the lead SNPs involved
in the best 2-order mbmdr models of GxG interactions with the risk of ischemic stroke,
and the resulting p-values were corrected for multiple testing using the false discovery
rate (FDR).

Since the investigated SNPs are located in noncoding sequences, we carried out a com-
prehensive functional annotation of them using various bioinformatics methods. In partic-
ular, the SNP Function Prediction tool (FuncPred, https://snpinfo.niehs.nih.gov (accessed
on 2 April 2021)) [38] and the Regulome database (https://regulomedb.org (accessed on
3 April 2021)) annotating SNPs with known and predicted regulatory elements in the inter-
genic regions of the Homo sapiens genome [39] were used to assess the regulatory potential
of the polymorphisms. The following bioinformatics recourses were used for assessing the
impact of the SNPs on expression levels of GCLC and GCLM genes in blood, arteries, and
brain tissues: the GTEx (Genotype-Tissue Expression) project is a comprehensive public
resource for studying tissue-specific gene expression and regulation (https://gtexportal.org
(accessed on 4 April 2021)) [40]; eQTLGen is a database on the downstream consequences
of trait-related genetic variants (https://www.eqtlgen.org (accessed on 6 April 2021)) [41].
QTLbase curates and compiles genome-wide QTL (Quantitative Trait Loci) summary
statistics for many human molecular traits across over 70 tissue/cell types (http://www.
mulinlab.org/qtlbase (accessed on 6 April 2021)) [42]. The epigenetic regulation of SNPs
through histone marks, open chromatin DNAse, and CTCF binding sites was assessed
by the SNPnexus tools utilizing both ENCODE and Roadmap Epigenomics databases
(https://www.snp-nexus.org (accessed on 7 April 2021)) [43]. DNA methylation related to
the SNPs was assessed through the mQTL analysis provided by QTLbase [42]. Transcription
factor binding sites (TFBS) were in silico predicted by Ensembl Variant Effect Predictor [44],
Transfac database [45] tools provided by the SNPnexus database, and the atSNP search [46]
bioinformatics tools (http://atsnp.biostat.wisc.edu (accessed on 9 July 2021)).

3. Results
3.1. The Impact of the Studied Polymorphisms on the Risk of Ischemic Stroke and Brain Infarct Size

The genotype and allele frequencies of glutamate-cysteine ligase gene polymorphisms
in the study groups are presented in Table 2. Two SNPs, such as rs12524494 of GCLC and
rs2301022 of GCLM, showed a deviation from Hardy–Weinberg equilibrium in both study
groups (p < 0.01), whereas SNP rs648595 of GCLC showed a deviation from HWE only in
the IS patients (p < 0.001), as assessed by Fisher’s exact test. No departure from HWE was
found for other polymorphisms in either the case or control groups (p > 0.05).

The allele frequencies in the study patients were comparable with those reported
in other European populations, according to the data published in the 1000 Genomes
Project, Phase 3 (http://www.ensembl.org (accessed on 3 April 2021)). As shown in Table 2,
SNP rs2301022 of GCLM was found to be strongly associated with a decreased risk of
ischemic stroke even after adjustment for sex and age (p < 0.0001). In particular, genotype

https://snpinfo.niehs.nih.gov
https://regulomedb.org
https://gtexportal.org
https://www.eqtlgen.org
http://www.mulinlab.org/qtlbase
http://www.mulinlab.org/qtlbase
https://www.snp-nexus.org
http://atsnp.biostat.wisc.edu
http://www.ensembl.org
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rs2301022-T/T showed an association with a decreased risk of ischemic stroke (corOR = 0.36,
95%CI 0.23–0.57, p < 0.0001, recessive effect of SNP). In contrast, a heterozygous geno-
type rs2301022-C/T of GCLM was associated with an increased disease risk (corOR = 1.35,
95%CI 1.07–1.69, p = 0.01, overdominant effect of SNP). Moreover, an SNP rs648595 of the
GCLC gene showed an association with ischemic stroke risk but at a borderline statistical
level (p = 0.049) in a codominant genotypic model. Genotype rs648595-G/T of GCLC
was associated with an increased risk of ischemic stroke after adjustment for sex and age
(corOR = 1.28, 95%CI 1.03–1.60, p = 0.029, overdominant effect of SNP). No statistically
significant associations of other polymorphisms with disease risk were observed (p > 0.05).

Table 2. Association analysis of GCLC and GCLM gene polymorphisms with ischemic stroke risk.

Gene
(SNP ID)

Genotype, Allele
n (%)

p-Value corOR (95% CI) *Controls
(n = 688)

IS Patients
(n = 600)

GCLC
A > G

(rs12524494)

A/A 543 (93.6) 550 (93.4)
0.98

1.00
A/G 33 (5.7) 35 (5.9) 1.05 (0.64–1.72)
G/G 4 (0.7) 4 (0.7) 1.02 (0.25–4.10)

G 0.035 0.037 0.88 1.03 (0.67–1.59)

GCLC
G > A

(rs17883901)

G/G 585 (86.2) 493 (84.4)
0.30

1.00
G/A 90 (13.2) 83 (14.2) 1.10 (0.80–1.52)
A/A 4 (0.6) 8 (1.4) 2.38 (0.71–7.95)

A 0.072 0.085 0.24 1.19 (0.89–1.59)

GCLC
C > T

(rs606548)

C/C 625 (94) 496 (93.2)
0.88

1.00
C/T 38 (5.7) 34 (6.4) 1.12 (0.69–1.81)
T/T 2 (0.3) 2 (0.4) 1.26 (0.18–8.97)

T 0.032 0.036 0.58 1.14 (0.73–1.77)

GCLC
G > A

(rs636933)

G/G 421 (62.7) 370 (64.5)
0.79

1.00
G/A 216 (32.2) 178 (31) 0.94 (0.74–1.20)
A/A 34 (5.1) 26 (4.5) 0.87 (0.51–1.48)

A 0.212 0.200 0.49 0.93 (0.77–1.13)

GCLC
G > T

(rs648595)

G/G 124 (18.2) 82 (14.1)
0.049

1.00
G/T 335 (49.2) 323 (55.4) 1.20 (0.93–1.54)
T/T 222 (32.6) 178 (30.5) 0.91 (0.72–1.15)

T 0.572 0.582 0.60 1.04 (0.89–1.22)

GCLC
A > C

(rs761142)

A/A 388 (57.2) 331 (57.3)
0.92

1.00
A/C 255 (37.6) 220 (38.1) 1.01 (0.80–1.27)
C/C 35 (5.2) 27 (4.7) 0.90 (0.54–1.53)

C 0.240 0.237 0.88 0.99 (0.82–1.18)

GCLM
C > T

(rs2301022)

C/C 344 (51) 286 (51)
<0.0001

1.00
C/T 251 (37.2) 249 (44.4) 1.19 (0.94–1.51)
T/T 80 (11.8) 26 (4.6) 0.39 (0.24–0.62)

T 0.304 0.268 0.048 0.84 (0.70–1.00)

GCLM
T > C

(rs3827715)

T/T 348 (52.5) 293 (52.2)
0.31

1.00
T/C 258 (38.9) 232 (41.4) 1.07 (0.85–1.36)
C/C 57 (8.6) 36 (6.4) 0.76 (0.48–1.18)

C 0.281 0.271 0.60 0.95 (0.80–1.14)

GCLM
C > A

(rs7517826)

C/C 254 (38.7) 207 (37.2)
0.62

1.00
C/A 306 (46.6) 275 (49.4) 1.10 (0.86–1.41)
A/A 96 (14.6) 75 (13.5) 0.96 (0.67–1.37)

A 0.380 0.382 0.92 1.01 (0.86–1.19)

* Odds ratio adjusted for age and sex by multiple logistic regression analysis (codominant model).

Table 3 shows the results of the association analysis between GCLC and GCLM haplo-
types and the risk of ischemic stroke. Nine and six common haplotypes with a frequency
greater than 1% were identified in the GCLC and GCLM genes, respectively.
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Table 3. Associations of GCLC and GCLM haplotypes with the risk of ischemic stroke.

H
ap

lo
ty

pe
s

SNPs Frequency

p-
V

al
ue

ad
jO

R
(9

5%
C

I)
2

rs
12

52
44

94

rs
63

69
33

rs
64

85
95

rs
76

11
42

rs
60

65
48

rs
17

88
39

01

H
ea

lt
hy

C
on

tr
ol

s

IS
Pa

ti
en

ts

GCLC Haplotype Frequencies (n = 1288)
H1 A G T A C G 0.5383 0.5388 - 1.00
H2 A A G C C G 0.1536 0.1583 0.87 1.02 (0.80–1.29)
H3 A G G A C G 0.1575 0.1432 0.45 0.91 (0.72–1.16)
H4 G G G C T G 0.0325 0.0369 0.63 1.11 (0.72–1.72)
H5 A G T A C A 0.0278 0.0394 0.17 1.42 (0.86–2.35)
H6 A A G C C A 0.0333 0.0222 0.25 0.72 (0.42–1.25)
H7 A A G A C G 0.0253 0.0162 0.28 0.73 (0.42–1.29)
H8 A G G C C G 0.0081 0.0152 0.024 3.37 (1.18–9.62)
H9 A G G A C A 0.0060 0.0180 0.19 1.75 (0.76–4.03)

Rare 1 * * * * * * 0.0176 0.0118 0.16 0.56 (0.25–1.27)
Global haplotype association p-value: 0.11

GCLM haplotype frequencies estimation (n = 1285)

H
ap

lo
ty

pe
s

rs
75

17
82

6

rs
38

27
71

5

rs
23

01
02

2

H
ea

lt
hy

C
on

tr
ol

s

IS
Pa

ti
en

ts

p-
V

al
ue

ad
jO

R
(9

5%
C

I)
2

H1 C T C 0.3536 0.3982 - 1.00
H2 A C C 0.2660 0.2497 0.097 0.83 (0.67–1.03)
H3 C T T 0.2692 0.2294 0.016 0.76 (0.61–0.95)
H4 A T C 0.0757 0.0835 0.86 0.97 (0.68–1.37)
H5 A C T 0.0194 0.0249 0.72 1.14 (0.55–2.36)
H6 A T T 0.0153 0.0123 0.48 0.71 (0.28–1.84)

Rare 1 * * * 0.0008 0.0020 0.52 2.29 (0.18–28.8)
Global haplotype association p-value: 0.27

1 Rare (frequency ≤ 0.01) haplotypes with a summarized frequency; 2 Odds ratio with 95% confidence intervals adjusted for sex and age. Statistically significant associations are bolded;
haplotypes significantly associated with IS risk are highlighted by gray.
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No significant differences in the haplotype distribution for the genes were found
between the groups (global haplotype association p > 0.05). However, haplotype H8 of
GCLC (A-G-G-C-C-G) was associated with an increased risk of ischemic stroke (corOR = 3.37,
95%CI 1.18–9.62, p = 0.024). In addition, haplotype H3 of GCLM (C-T-T) possessed a
protective effect against the risk of ischemic stroke (corOR = 0.76, 95%CI 0.61–0.95, p = 0.016).
The haplotype association analysis stratified by risk factors such as tobacco smoking, alcohol
consumption, physical activity, life stress, and dietary intake of fresh fruits and vegetables
showed that smoking status is a risk factor modifying the relationship between GCLM
haplotypes and ischemic stroke susceptibility (Table 4). It is found that nonsmoker carriers
of two common haplotypes such as A-C-C and C-T-T (each haplotype frequency greater
than 20%) of the GCLM gene possess a significantly decreased risk of ischemic stroke
(p < 0.005). Meanwhile, the protective effects of these haplotypes against disease risk were
not seen in tobacco smokers. Other environmental risk factors and genetic variants studied
did not have any statistically significant synergistic effects on the risk of ischemic stroke.

Table 4. Associations of GCLM haplotypes with ischemic stroke stratified by smoking status.

GCLM Haplotype Frequencies Estimation in NonSmokers (n = 785)

H
ap

lo
ty

pe
s

rs
75

17
82

6

rs
38

27
71

5

rs
23
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H
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hy
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p-
V
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5%
C

I)
2

H1 C T C 0.3266 0.4104 - 1.00
H2 A C C 0.2852 0.2447 0.0047 0.65 (0.49–0.88)
H3 C T T 0.2845 0.2095 3× 10−4 0.58 (0.43–0.78)
H4 A T C 0.0782 0.0897 0.59 0.89 (0.57–1.37)
H5 A C T 0.0212 0.0327 0.56 1.29 (0.56–2.96)
H6 A T T 0.0029 0.0095

0.30 2.77 (0.40–19.16)
Rare 1 * * * 0.0014 0.0035

Global haplotype association p-value: 0.0027

GCLM haplotype frequencies estimation in smokers (n = 485)
H1 C T C 0.4079 0.3842 - 1.00
H2 A C C 0.2307 0.2542 0.52 1.13 (0.78–1.64)
H3 C T T 0.2384 0.2531 0.46 1.15 (0.80–1.65)
H4 A T C 0.0678 0.0767 0.59 1.19 (0.64–2.23)
H5 A C T 0.0194 0.0170 0.89 1.11 (0.27–4.48)
H6 A T T 0.0358 0.0148 0.27 0.52 (0.16–1.64)

Global haplotype association p-value: 0.83
1 Rare (frequency ≤ 0.01) haplotypes with a summarized frequency; 2 Odds ratio with 95% confidence intervals
adjusted for sex and age. Statistically significant associations are bolded; haplotypes significantly associated with
IS risk are highlighted by gray.

The majority of investigated SNPs were in linkage disequilibrium with each other
to various degrees, and there were differences in the D-values between the Russian pop-
ulation and other populations. Tables 5 and 6 show the linkage disequilibrium values
between SNPs in the GCLC and GCLM genes, respectively. As can be seen from Table 5,
D-values between polymorphisms rs636933 and rs12524494 were negative in the stud-
ied Russian population and positive in both the European and mixed populations of
the 1000 Genomes Project. The principal interpopulation differences in the D-values
were observed in SNP pairs of the GCLC gene such as rs12524494-rs648595, rs636933-
rs761142, rs636933-rs606548, rs648595-rs761142, rs648595-rs606548, rs761142-rs17883901,
and rs606548-rs17883901 (Table 5). Interpopulation differences regarding D-values were
also found between SNPs of the GCLM gene. In particular, SNP rs2301022 was in a negative
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LD with polymorphisms rs7517826 and rs3827715 in the Russian population, whereas
LD-values between these SNPs were positive in the European populations (Table 6).

Table 5. Linkage disequilibrium measures between SNPs of the GCLC gene in the Russian population
and populations of the 1000 Genomes Project.
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Through a multiple linear regression with adjustment for sex and age, we analyzed
the impact of glutamate-cysteine ligase genotypes and haplotypes on the normalized brain
infarct size. As can be seen from Figure 1, the carriage of genotypes rs636933 G/A-A/A of
GCLC, in comparison with the G/G genotype, was associated with a statistically significant
increase in the size of brain infarction by 196.36 mm (p = 0.0089, dominant effect of SNP).
The rs761142 A/C-C/C genotypes of the GCLC gene were also characterized by a significant

https://ldlink.nci.nih.gov
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effect on brain infarct volume compared to the A/A genotype (p = 0.015, dominant effect of
SNP). Figure 2 summarizes the impact of GCLC and GCLM genotypes (A) and haplotypes
(B) on infarct size in the brains of patients with ischemic stroke. Common haplotype
H2 of GCLC (A-A-G-C-C-G) was found to be associated with an increased size of brain
infarction (p = 0.02). Haplotype H6 of GCLM (A-T-T) showed a strong impact on the
size of the damaged brain in patients with ischemic stroke: carriage of this haplotype
increased the volume of brain damage by 27 mm more than carriage of the common H1
haplotype (p = 0.0005). Other haplotypes of the GCLC and GCLM genes had no effect on
brain infarct size.
Table 6. Linkage disequilibrium measures between SNPs of the GCLM gene in the Russian population
and populations of the 1000 Genomes Project.
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Figure 1. Impact of GCLC genotypes on brain infarct size in patients with ischemic stroke: Red arrows
indicate the effects of SNPs on the size of brain infarction as assessed by computed tomography (the
maximal diameter of brain damage measured by CT and expressed in mm with 95% confidence
intervals). The values show an increase in the volume of brain damage in carriers of the assessed
genotypes in comparison with the reference genotype. Histograms reflect the influence of genotypes
on the normalized level of GCLC gene expression in the brain (basal ganglia of the caudal region):
data obtained from the GTEx portal (https://www.gtexportal.org (accessed on 2 April 2021)).

https://ldlink.nci.nih.gov
https://www.gtexportal.org
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Figure 2. Impact of GCLC and GCLM genotypes (A) and haplotypes (B) on brain infarct size in patients
with ischemic stroke (linear regression analysis of normalized values of infarct size): (A) Histograms
represent median values of infarct size (mm) in ischemic stroke patients with various GCLC (blue
color) and GCLM (violet color) genotypes. Significant impact of the polymorphisms on infarct lesion
size is indicated by red arrows. (B) Histograms represent changes in infarct lesion size (mm) in the
carriers of various GCLC (blue color) and GCLM (violet color) haplotypes relative to the H1 haplotype.
Significant impact of the haplotypes on brain infarct size is indicated by red arrows.

3.2. Replication Analysis for SNP-Disease Associations in Independent Populations

A replication study for SNP-ischemic stroke associations in independent population cohorts
was carried out using large-scale genotype datasets available at the Cerebrovascular Knowledge
Portal and the UK biobank. The following stroke phenotypes of the Cerebrovascular Knowl-
edge Portal were analyzed for the replication analysis: “large artery atherosclerosis” (TOAST
classification) and “all ischemic stroke”. Moreover, stroke-related phenotypes such as “transient
cerebral ischaemic attacks and related syndromes” and “stroke, not specified as haemorrhage
or infarction” were used for the replication analysis in the UK Biobank cohort. Table 7 shows
associations between the GCLC and GCLM polymorphisms and the analyzed ischemic stroke
phenotypes. The association between SNP rs2301022 of GCLM and the risk of ischemic stroke
(large artery atherosclerosis) was replicated (p = 0.03) in the Spanish cohort (the VHIR FMT
dataset: 515 cases and 316 controls). However, the polymorphism was negatively associated with
stroke risk in the Russian population and positively in Hispanics. As we found in the present
study, the carriers of allele rs761142-C of the GCLC gene had a larger infarct size than those with
the alternative allele. Interestingly, the allele rs761142-C was found to be associated with an
increased risk of large artery atherosclerosis (p = 0.04) in the mixed population cohort (MEGAS-
TROKE GWAS dataset). Interestingly, polymorphisms of GCLC and GCLM genes that did not
show associations with ischemic stroke risk in our population were found to be associated with
disease risk in other populations. In particular, SNPs such as rs12524494 (p = 0.006) and rs606548
(p = 0.036) of the GCLC gene were associated with the risk of large artery atherosclerosis in the
MEGASTROKE GWAS dataset, including European populations with sample sizes of 190,513
and 189,632 subjects, respectively. In addition, polymorphism rs17883901 of GCLC showed a
significant association with ischemic stroke (p = 0.023) in the Spanish population (VHIR FMT
2018). In the Spanish population, polymorphisms rs3827715 (p = 0.02) and rs7517826 (p = 0.026)
of the GCLM gene were found to be associated with an increased risk of ischemic stroke.
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Table 7. Replication analysis for associations of GCLC and GCLM gene polymorphisms with ischemic stroke in independent cohorts.

Gene, Effective Allele Stroke Phenotype p-Value Beta/Odds Ratio Dataset Sample Size

GCLC
rs12524494-G

TOAST large artery
atherosclerosis

0.006 N 2.9874 MEGASTROKE GWAS 230, 076
0.049 N 3.0648 MEGASTROKE GWAS (EUR) 190, 513
0.26 N 1.4612 CADISP 2015 9, 326
0.92 H 0.9674 VHIR FMT 2018 783

All ischemic stroke

0.38 N 2.7532 MEGASTROKE GWAS 481, 992
0.13 N 2.8174 MEGASTROKE GWAS (EUR) 404, 881
0.09 N 1.2628 CADISP 2015 9, 814
0.70 H 0.9140 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.136 N 1.10 UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.0017 H 0.745 UK BIOBANK 452, 264

GCLC
rs17883901-A

TOAST large artery
atherosclerosis

0.16 N 2.8613 MEGASTROKE GWAS 227, 794
0.23 N 2.8871 MEGASTROKE GWAS (EUR) 192, 425
0.08 N 1.7191 CADISP 2015 9, 326
0.06 N 2.1453 VHIR FMT 2018 783

All ischemic stroke

0.09 N 2.7946 MEGASTROKE GWAS 475, 907
0.74 N 2.7366 MEGASTROKE GWAS (EUR) 403, 224
0.23 N 1.1652 CADISP 2015 9, 814
0.023 N 1.6958 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.25 N 1.06 (G) UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.09 H 0.882 (G) UK BIOBANK 452, 264
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Table 7. Cont.

Gene, Effective Allele Stroke Phenotype p-Value Beta/Odds Ratio Dataset Sample Size

GCLC
rs606548-T

TOAST large artery
atherosclerosis

0.055 N 2.8984 MEGASTROKE GWAS 229, 842
0.036 N 3.1030 MEGASTROKE GWAS (EUR) 189, 632
0.10 N 1.7444 CADISP 2015 9, 326
0.39 H 0.7489 VHIR FMT 2018 783

All ischemic stroke

0.35 N 2.7541 MEGASTROKE GWAS 472, 735
0.012 N 2.8929 MEGASTROKE GWAS (EUR) 395, 530
0.039 N 1.3340 CADISP 2015 9, 814
0.42 H 0.8337 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.34 N 1.06 UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.002 H 0.746 UK BIOBANK 452, 264

* GCLC
rs636933-A

TOAST large artery
atherosclerosis

0.31 N 2.7857 MEGASTROKE GWAS 241, 607
0.37 N 2.7900 MEGASTROKE GWAS (EUR) 203, 144
0.33 H 0.8116 CADISP 2015 9, 326
0.89 N 1.0272 VHIR FMT 2018 783

All ischemic stroke

0.70 N 2.7077 MEGASTROKE GWAS 509, 234
0.38 N 2.6911 MEGASTROKE GWAS (EUR) 432, 044
0.29 H 0.9216 CADISP 2015 9, 814
0.24 N 1.1540 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.53 N 1.02 (G) UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.51 H 0.97 (G) UK BIOBANK 452, 264
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Table 7. Cont.

Gene, Effective Allele Stroke Phenotype p-Value Beta/Odds Ratio Dataset Sample Size

* GCLC
rs648595-T

TOAST large artery
atherosclerosis

0.06 N 2.8283 MEGASTROKE GWAS 241, 442
0.23 N 2.8026 MEGASTROKE GWAS (EUR) 201, 232
0.61 N 1.0952 CADISP 2015 9, 326
0.08 H 0.7558 VHIR FMT 2018 783

All ischemic stroke

0.46 N 2.7358 MEGASTROKE GWAS 500, 913
0.33 N 2.7455 MEGASTROKE GWAS (EUR) 423, 708
0.93 N 1.0056 CADISP 2015 9, 814
0.73 N 1.0362 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.93 N 1.00 (G) UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.80 N 1.01 (G) UK BIOBANK 452, 264

* GCLC
rs761142-C

TOAST large artery
atherosclerosis

0.04 N 2.8442 MEGASTROKE GWAS 240, 561
0.14 N 2.8359 MEGASTROKE GWAS (EUR) 200, 351
0.77 H 0.9415 CADISP 2015 9, 326
0.78 H 0.9510 VHIR FMT 2018 783

All ischemic stroke

0.63 N 2.7064 MEGASTROKE GWAS 499, 208
0.65 N 2.7042 MEGASTROKE GWAS (EUR) 422, 020
0.89 H 0.9899 CADISP 2015 9, 814
0.27 N 1.1348 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.89 N 1.00 UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.48 H 0.97 UK BIOBANK 452, 264
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Table 7. Cont.

Gene, Effective Allele Stroke Phenotype p-Value Beta/Odds Ratio Dataset Sample Size

* GCLM
rs2301022-T

TOAST large artery
atherosclerosis

0.99 N 2.7172 MEGASTROKE GWAS 242, 987
0.74 N 2.6948 MEGASTROKE GWAS (EUR) 203, 144
0.96 N 1.0106 CADISP 2015 9, 326
0.03 N 1.4255 VHIR FMT 2018 783

All ischemic stroke

0.73 N 2.7099 MEGASTROKE GWAS 511, 623
0.19 N 2.6808 MEGASTROKE GWAS (EUR) 434, 418
0.07 N 1.1338 CADISP 2015 9, 814
0.07 N 1.2157 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.08 N 1.05 (C) UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.12 H 0.93 (C) UK BIOBANK 452, 264

GCLM
rs3827715-C

TOAST large artery
atherosclerosis

0.49 N 2.7639 MEGASTROKE GWAS 242, 987
0.74 N 2.7441 MEGASTROKE GWAS (EUR) 203, 144
0.79 N 1.0540 CADISP 2015 9, 326
0.15 N 1.2955 VHIR FMT 2018 783

All ischemic stroke

0.55 N 2.7341 MEGASTROKE GWAS 511, 561
0.97 N 2.7169 MEGASTROKE GWAS (EUR) 434, 418
0.45 N 1.0572 CADISP 2015 9, 814
0.02 N 1.3013 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.26 N 1.03 UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.32 N 1.05 UK BIOBANK 452, 264
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Table 7. Cont.

Gene, Effective Allele Stroke Phenotype p-Value Beta/Odds Ratio Dataset Sample Size

GCLM
rs7517826-A

TOAST large artery
atherosclerosis

0.88 N 2.7091 MEGASTROKE GWAS 241, 442
0.45 N 2.6655 MEGASTROKE GWAS (EUR) 201, 232
0.65 N 1.0871 CADISP 2015 9, 326
0.06 N 1.3540 VHIR FMT 2018 783

All ischemic stroke

0.59 N 2.7053 MEGASTROKE GWAS 503, 288
0.61 N 2.7040 MEGASTROKE GWAS (EUR) 426, 083
0.98 H 0.9982 CADISP 2015 9, 814
0.026 N 1.2603 VHIR FMT 2018 783

Transient cerebral ischemic
attacks and related syndromes 0.019 N 1.07 UK BIOBANK 452, 264

Stroke, not specified as
hemorrhage or infarction 0.67 N 1.02 UK BIOBANK 452, 264

Genomic data obtained at the Cerebrovascular Disease Knowledge Portal (https://cd.hugeamp.org (accessed on 26 March 2022)). p-values reached significance level (p ≤ 0.05) are
bolded. *—SNPs that showed associations with ischemic stroke or brain infarct size in the present study. N Ndepicts an increased value, H Hdepicts a decreased value

https://cd.hugeamp.org
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3.3. Gene–Gene and Gene–Environment Interactions, Ischemic Stroke Risk, and Brain InfarctSize

Since ischemic stroke is a multifactorial disorder, it is important to unravel the nature
of complex gene–gene and gene–environment interactions that determine a polygenic
susceptibility to disease. Following this aim, the model-based multifactor dimensionality
reduction method (mbmdr) was applied to the dataset to identify a set of high-order GxG
and GxE interactions underlying disease susceptibility and influencing the severity of brain
damage. The mbmdr analysis was performed on a dataset including, besides GCLC and
GCLM SNPs, information on smoking habits, alcohol consumption, and fruit and vegetable
intake (environmental risk factors of stroke), as well as genotypes of eight SNPs associated
with disease risk as a result of genome-wide association studies in European populations
(GWAS loci), as we described previously [27].

Summary statistics for all mbmdr-models and the best mbmdr-models (include the 25%
of models with the lowest permutation p-values) associated with IS susceptibility are shown
in Supplementary Tables S1 and S2, respectively. Figure 3A represents diagrams with the
number of mbmdr-models per SNP/risk factor associated with the risk of ischemic stroke. In
total, 75 two-order, 492 three-order, 1999 four-order, and 8541 five-order SNP-SNP and SNP-
risk factor interactions models were found to be significantly (Pperm < 0.05) associated with
the risk of ischemic stroke. Notably, polymorphisms of GCLC and GCLM were presented
in 38% of two-order models, 43% of three-order models, 44% of four-order models, and
45% of five-order models obtained by the mbmdr analysis. For comparison, SNPs that
are known to be strongly (p < 5 × 10−8) associated with ischemic stroke (i.e., GWAS loci)
were presented in 35% of two-order models, 37% of three-order models, 39% of four-order
models, and 40% of five-order mbmdr-models. In contrast, a percentage of these models
(42% of two-order, 40% of three-order, 41% of four-order, and 50% of five-order models)
exceeded that for glutamate cysteine ligase SNPs (34% of two-order, 34% of three-order,
42% of four-order, and 38% of five-order models) among the best models with the lowest
permutation p-values. These data show that the GWAS loci are more strongly linked to the
risk of ischemic stroke than the GCLC and GCLM gene polymorphisms.

Table 8 shows the best n-order gene–gene and gene–environment interactions significantly
associated with the risk of ischemic stroke (only the top four models per order are shown).
Notably, a significant number of the best mbmdr-models comprised polymorphisms of GCLC
and GCLM genes. This was especially noticeable among the five-order mbmdr-models shown in
Table 8. In addition, GxE interactions, including risk factors such as smoking, alcohol abuse, and
low vegetable and fruit intake, may point out a trigger role of the environmental factors in the
development of ischemic stroke in individuals with unfavorable genotype combinations of the
studied SNPs. Interestingly, a large portion of the mbmdr-models associated with disease risk
represent interactions between GWAS loci and glutamate-cysteine ligase SNPs, suggesting the
involvement of both groups of genes in the polygenic mechanisms of ischemic stroke. Another
important finding was that the percentage of models comprising GCLC/GCLM genetic variants,
and GWAS loci increased progressively as model complexity increased (from two-order to five-
order interaction models), while the percentage of mbmdr-models containing environmental risk
factors decreased dramatically.

A post hoc analysis of associations between pairwise genotype combinations (diplo-
types) and the risk of ischemic stroke was performed for polymorphisms comprising the
majority of the two-order mbmdr-models. These SNPs include: GCLM rs2301022, RASEF
rs4322086, and PEMT rs12449964. Table 9 summarizes the identified statistically significant
associations of diplotypes with a predisposition to ischemic stroke. After adjusting for mul-
tiple testing by the FDR procedure, we identified diplotypes associated with both increased
and decreased disease risk. Carrying RASEF rs4322086-G/G × GCLM rs2301022-C/T
(FDR = 0.04), RASEF rs4322086-G/A × GCLM rs2301022-C/C (FDR = 0.015), and RASEF
rs4322086-G/A × GCLM rs2301022-C/T (FDR = 0.015) diplotypes reduced the risk of is-
chemic stroke. On the contrary, diplotypes such as RASEF rs4322086-G/G×GCLM rs2301022-
T/T (FDR = 0.04), RASEF rs4322086-G/A × GCLM rs2301022-T/T (FDR = 0.015), RASEF
rs4322086-A/A × GCLM rs2301022-C/C (FDR = 0.015), PEMT rs12449964-C/C × GCLM
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rs2301022-T/T (FDR = 0.015), and PEMT rs12449964-C/T × GCLM rs2301022-T/T
(FDR = 0.0018) showed protective effects against disease risk.
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Figure 3. Representation of SNPs and risk factors in the GxG and GxE interaction models associated with
susceptibility to ischemic stroke (A) and brain infarct size (B). Diagrams show the number of mbmdr-models
(expressed in weighted average percentages with weights 2, 3, 4, and 5 for models of the respective order)
in which the investigated SNPs and risk factors are involved. (A) (top diagrams): models associated with
the risk of ischemic stroke; (B) (bottom diagrams): models associated with brain infarct size (in mm). Left
diagrams show representation of each SNP and risk factor among all mbmdr-models; right diagrams show
representation of each SNP and risk factor among the best mbmdr-models (i.e., among the 25% of models
with the lowest permutation p-values). GxG (SNP×SNP) and GxE (SNP×risk factor) interactions were
analyzed by the model-based multifactor dimensionality reduction (mbmdr) method [35,36].

Summary statistics for all mbmdr-models and the best mbmdr-models associated with brain
infarct size are shown in Supplementary Tables S3 and S4, respectively. Figure 2B represents
diagrams with the number of mbmdr-models per SNP/risk factor associated with brain infarct
size. In total, 25 two-order, 109 three-order, 524 four-order, and 2143 five-order gene–gene and
gene–environment interactions models were found to be significantly (Pperm < 0.05) associated
with brain infarct size. Thus, the number of models significantly associated with the volume of
brain damage is significantly less than the models associated with the risk of ischemic stroke.
Apparently, the studied genes play a greater role in the predisposition to ischemic stroke than
in determining the volume of brain infarct in stroke patients. Among all the mbmdr-models,
polymorphisms of GCLC and GCLM were presented in 21% of two-order models, 37% of
three-order models, 46% of four-order models, and 47% of five-order models obtained by the
mbmdr analysis. This means that the percentage of models representing GCLC and GCLM SNPs
increased progressively with the increasing complexity of the models, while the percentage of
models comprising GWAS loci decreased progressively (64% for two-order models, 48% for
three-order models, 44% for four-order models, and 40% for five-order models). Table 10 shows
the best n-order gene–gene and gene–environment interactions significantly associated with
brain infarct size (only the top four models per order are shown). Polymorphisms of GCLC
and GCLM genes represented a significant number of five-order models. The great majority of
the best n-order models comprised interactions between the GWAS loci and glutamate-cysteine
ligase SNPs. As a whole, the contributions of the GWAS loci and GCLC/GCLM SNPs to ischemic
damage in the brain were comparable.
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Table 8. The best four n-order gene–gene and gene–environment interactions significantly associated with the risk of ischemic stroke.

Gene–Gene and Gene–Environment Interactions NH β H WH NL β L WL Pperm
Two-order GxG/GxE interactions

1 GCLM rs2301022 × RASEF rs4322086 3 0.175 37.70 4 −0.176 29.71 <0.001
2 SMOKE × ALCOHOL 2 0.175 30.54 1 −0.176 32.33 <0.001
3 SMOKE × VEGET 2 0.176 30.79 1 −0.147 20.61 <0.001
4 RASEF rs4322086 × SMOKE 1 0.199 30.24 1 −0.141 16.50 <0.001

Three-order GxG/GxE interactions
1 GCLM rs2301022 × RASEF rs4322086 × LOC105370913 rs899997 3 0.173 29.22 6 −0.248 45.37 <0.001
2 GCLM rs3827715 × GCLM rs2301022 × RASEF rs4322086 3 0.143 17.27 5 −0.240 45.12 <0.001
3 GCLC rs648595 × RASEF rs4322086 × ZC3HC1 rs11556924 4 0.234 43.84 1 −0.170 8.47 <0.001
4 GCLM rs2301022 × LDLR rs6511720 × RASEF rs4322086 5 0.195 43.54 4 −0.195 31.64 <0.001

Four-order GxG/GxE interactions
1 GCLM rs2301022 × RASEF rs4322086 × LOC105370913 rs899997 × SMOKE 6 0.229 36.43 9 −0.273 59.01 <0.002
2 GCLM rs3827715 × GCLM rs2301022 × GCLC rs761142 × RASEF rs4322086 7 0.252 46.33 10 −0.260 55.87 <0.002
3 GCLM rs2301022 × GCLC rs606548 × RASEF rs4322086 × SMOKE 6 0.257 55.05 5 −0.180 26.83 <0.002
4 GCLC rs648595 × LDLR rs6511720 × RASEF rs4322086 × ZC3HC1 rs11556924 6 0.272 54.15 5 −0.219 24.02 <0.002

Five-order GxG/GxE interactions
1 GCLM rs3827715 × GCLC rs17883901 × GCLC rs12524494 ALCOHOL × SMOKE 1 0.093 3.43 5 −0.139 19.42 0.01
2 GCLC rs636933 × RASEF rs4322086 × SLCO1B1 rs2417957 × PITX2 rs12646447 × VEGET 1 0.159 8.08 3 −0.237 19.37 0.01
3 GCLM rs2301022 × GCLC rs12524494 × AIM1 rs783396 × SLCO1B1 rs2417957 × VEGET 3 0.142 12.34 4 −0.155 19.36 0.01
4 GCLM rs7517826 × GCLC rs606548 × GCLC rs12524494 × PEMT rs12449964 × VEGET 1 0.237 4.65 7 −0.215 19.35 0.01

Models are obtained using the model-based multifactor dimensionality reduction method, MB-MDR package for R. β H, regression coefficient for high-risk exposition in the step 2
analysis; β L, regression coefficient for low-risk exposition in the step 2 analysis; NH, number of significant high-risk genotypes in the interaction; NL, number of significant low-risk
genotypes in the interaction; Pperm, permutation p-value for the interaction model. The models were adjusted for age and sex; WH, Wald statistic for the high-risk category; WL, Wald
statistic for the low-risk category. Environment risk factors: SMOKE, cigarette smoking; ALCOHOL, alcohol abuse; VEGET, low vegetables/fruits intake.
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Table 9. Post hoc analysis of associations between the risk of ischemic stroke and diplotypes of the lead SNPs presented in the two-order. GxG mbmdr-models.

№ Genotype Combinations
IS Patients Controls

OR (95% CI) 1 p 2 FDR 3
n % n %

1 RASEF rs4322086-G/G × GCLM rs2301022-C/C 43 7.9 56 8.7 0.89 (0.59–1.35) 0.599 0.63
2 RASEF rs4322086-G/G × GCLM rs2301022-C/T 45 8.3 31 4.8 1.77 (1.10–2.84) 0.017 0.04
3 RASEF rs4322086-G/G × GCLM rs2301022-T/T 4 0.7 16 2.5 0.29 (0.10–0.87) 0.019 0.04
4 RASEF rs4322086-G/A × GCLM rs2301022-C/C 157 28.8 137 21.4 1.49 (1.14–1.94) 0.003 0.015
5 RASEF rs4322086-G/A × GCLM rs2301022-C/T 127 23.3 106 16.5 1.53 (1.15–2.04) 0.003 0.015
6 RASEF rs4322086-G/A × GCLM rs2301022-T/T 14 2.6 38 5.9 0.42 (0.22–0.78) 0.005 0.015
7 RASEF rs4322086-A/A × GCLM rs2301022-C/C 80 14.7 135 21.1 0.64 (0.48–0.87) 0.004 0.015
8 RASEF rs4322086-A/A × GCLM rs2301022-C/T 67 12.3 97 15.1 0.79 (0.56–1.10) 0.158 0.26
9 RASEF rs4322086-A/A × GCLM rs2301022-T/T 8 1.5 25 3.9 0.38 (0.17–0.84) 0.020 0.04

10 PEMT rs12449964-C/C × GCLM rs2301022-C/C 109 20.1 124 18.7 1.10 (0.82–1.46) 0.528 0.59
11 PEMT rs12449964-C/C × GCLM rs2301022-C/T 92 17.0 87 13.1 1.36 (0.99–1.86) 0.060 0.11
12 PEMT rs12449964-C/C × GCLM rs2301022-T/T 11 2.0 34 5.1 0.38 (0.19–0.77) 0.005 0.015
13 PEMT rs12449964-C/T × GCLM rs2301022-C/C 139 25.7 164 24.7 1.05 (0.81–1.37) 0.703 0.70
14 PEMT rs12449964-C/T × GCLM rs2301022-C/T 113 20.9 125 18.9 1.14 (0.86–1.51) 0.378 0.49
15 PEMT rs12449964-C/T × GCLM rs2301022-T/T 9 1.7 42 6.3 0.26 (0.13–0.53) 0.0001 0.0018
16 PEMT rs12449964-T/T × GCLM rs2301022-C/C 32 5.9 52 7.8 0.74 (0.47–1.17) 0.191 0.29
17 PEMT rs12449964-T/T × GCLM rs2301022-C/T 30 5.5 31 4.7 1.20 (0.71–2.00) 0.494 0.59
18 PEMT rs12449964-T/T × GCLM rs2301022-T/T 6 1.1 4 0.6 1.78 (0.53–5.95) 0.336 0.47

1 Unadjusted odds ratio for the association between a genotype combination and the risk of ischemic stroke; 2 Significance level for the association between a genotype combination and
the risk of ischemic stroke; Bold type indicates statistically significant differences in genotype combinations between the study groups. 3 FDR, false discovery rate.
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Table 10. The best four n-order gene–gene and gene–environment interactions significantly associated with brain infarct size.

Gene–Gene and Gene–Environment Interactions NH β H WH NL β L WL Pperm
Two-order GxG/GxE interactions

1 RASEF rs4322086 × SMOKE 1 3.968 13.93 1 −2.375 5.41 0.002
2 RASEF rs4322086 × ZC3HC1 rs11556924 2 3.863 16.19 2 −2.952 8.11 0.005
3 RASEF rs4322086 × GCLM rs2301022 2 3.239 14.65 2 −2.589 5.99 0.008
4 SLCO1B1 rs2417957 × GCLC rs648595 2 21.281 19.80 0 - - 0.009

Three-order GxG/GxE interactions
1 PITX2 rs12646447 × ZC3HC1 rs11556924 × GCLC rs648595 3 27.429 38.68 0 - - 0.001
2 ZC3HC1 rs11556924 × GCLC rs648595 × ALCOHOL 3 9.974 26.38 0 - - 0.001
3 PITX2 rs12646447 × PEMT rs12449964 × GCLC rs648595 2 44.033 30.18 0 - - 0.002
4 RASEF rs4322086 × PITX2 rs12646447 × SMOKE 4 6.681 32.73 2 −3.749 9.84 0.004

Four-order GxG/GxE interactions
1 GCLM rs3827715 × GCLC rs636933 × PITX2 rs12646447 × ZC3HC1 rs11556924 4 28.155 71.44 0 - - <0.002
2 GCLC rs648595 × SLCO1B1 rs2417957 × PITX2 rs12646447 × ZC3HC1 rs11556924 5 28.427 56.95 1 −7.303 2.77 <0.002
3 GCLC rs648595 × GCLC rs606548 × PITX2 rs12646447 × ZC3HC1 rs11556924 5 21.454 54.06 0 - - <0.002
4 GCLC rs648595 × PEMT rs12449964 × ZC3HC1 rs11556924 × ALCOHOL 5 17.308 53.83 0 - - <0.002

Five-order GxG/GxE interactions
1 GCLC rs636933 × GCLC rs12524494 × AIM1 rs783396 × SLCO1B1 rs2417957 × PITX2 rs12646447 4 14.795 18.69 1 −3.124 2.74 0.01
2 GCLC rs606548 × GCLC rs648595 × GCLC rs17883901 × SLCO1B1 rs2417957 × PITX2 rs12646447 6 7.699 18.65 1 −6.380 3.41 0.01
3 GCLC rs606548 × SLCO1B1 rs2417957 × ZC3HC1 rs11556924 × VEGET × ALCOHOL 3 35.186 18.23 1 −2.748 2.81 0.01
4 GCLC rs606548 × GCLC rs12524494 × GCLC rs17883901 × PEMT rs12449964 × ALCOHOL 4 10.448 18.10 1 −3.016 4.53 0.01

Models are obtained using the model-based multifactor dimensionality reduction method, MB-MDR package for R. β H, regression coefficient for high-risk exposition in the
step 2 analysis; β L, regression coefficient for low-risk exposition in the step 2 analysis; NH, number of significant high-risk genotypes in the interaction; NL, number of significant
low-risk genotypes in the interaction; Pperm, permutation p-value for the interaction model. The models were adjusted for age and sex; WH, Wald statistic for the high-risk category; WL,
Wald statistic for the low-risk category. Environment risk factors: SMOKE, cigarette smoking; ALCOHOL, alcohol abuse; VEGET, low vegetables/fruits intake.
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3.4. Functional Annotation of GCLC and GCLM Polymorphisms

Since the investigated polymorphisms of GCLC and GCLM genes are located in non-
coding sequences (introns) of the genes, there is a difficulty in deciphering their biological
functions in the pathogenesis of ischemic stroke. In recent years, the increasing multiomics
databases and resources, providing integrated access to large-scale genomic, transcrip-
tomic, epigenomic, and other omics datasets, have made it possible to clarify the function
of noncoding variants in the human genome [47,48]. Here, we conducted a comprehen-
sive functional annotation for SNPs of genes encoding catalytic and modifier subunits of
glutamate-cysteine ligase. Table 11 summarizes the results of functional annotations of
GCLM and GCLC gene polymorphisms using various bioinformatics tools and resources.
The regulatory potential of SNPs was analyzed in silico using two bioinformatics tools,
such as FuncPred and the Regulome database.

It was predicted that SNP rs17883901 of GCLC had a regulatory potential value of
0.249 and a score of 3a (TF binding + any motif + DNase peak) according to FuncPred
assessment and functional annotation of the Regulome database, respectively. An SNP
rs648595 of GCLC possessed a regulatory potential value of 0.187 and a regulome score of 5
(presence of TF binding or DNase hypersensitivity sites). The polymorphism rs2301022 of
the GCLM gene associated with ischemic stroke had a Regulome score of 4, suggesting the
presence of both TF binding and DNase hypersensitivity sites at this locus.

The GTEx portal, eQTLGen Consortium, and QTLbase were used to identify SNP-
associated eQTLs (expression quantitative trait loci, genomic loci explaining all or a fraction
of the variation in expression levels of mRNAs) in arteries or aorta, brain tissues, and blood.
The results of the eQTL analysis are summarized in Supplementary Table S5. All SNPs,
except rs17883901 of GCLC, represent significant cis-eQTLs in the blood according to the
eQTLGen Consortium and QTLbase resources. All SNPs, except rs12524494, rs17883901,
and rs606548 of GCLC, are involved in cis-eQTLs in the brain tissues. According to the
GTEx portal, two SNPs in the GCLM gene, rs7517826 and rs3827715, were associated with
cis-eQTLs in arteries (data from the GTEx portal, v7, https://gtexportal.org (accessed on
1 April 2021)). In particular, SNP rs7517826 of GCLM represents two eQTLs in the tibial
arteries (p = 2.1 × 10−6) and the aorta (p = 8.6 × 10−6). In addition, SNP rs3827715 was
associated with a change in the GCLM gene expression in the tibial arteries (p = 0.000002)
and aorta (p = 0.0001).

Furthermore, we used QTLbase to look for QTLs associated with tissue/cell type-
specific molecular functions such as DNA methylation (mQTL), histone modification
(hQTL), splicing events (sQTL), and other molecular traits that have been incorporated into
the current version of QTLbase (http://mulinlab.tmu.edu.cn (accessed on 3 April 2021)).
The results of this analysis are summarized in Supplementary Table S6. Thirteen significant
methylation quantitative trait loci (mQTL) in brain tissues were found for polymorphisms
rs2301022 (one mQTL), rs3827715 (six mQTLs), and rs7517826 (six mQTLs). No significant
mQTLs for the studied SNPs were observed in the arteries or aorta. Interestingly, two
polymorphisms, such as rs636933 (p = 3.7 × 10−19) and rs648595 (p = 3.0 × 10−8), were
associated with tissue-specific splicing events of the GCLC gene in the brain.

https://gtexportal.org
http://mulinlab.tmu.edu.cn
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Table 11. Summarized data on functional annotations of GCLC and GCLM gene polymorphisms using various bioinformatics tools.
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rs12524494 A/G intron 0.000 6
√ √ √ √

rs17883901 G/A intron 0.249 3a
√ √ √ √ √ √ √ √

rs606548 C/T intron 0.000 5
√ √ √ √

rs636933 G/A intron - -
√ √ √ √

rs648595 G/T intron 0.187 5
√ √ √ √ √
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√ √ √ √ √ √ √
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rs3827715 T/C intron 0.000 5
√ √ √ √ √ √ √ √ √ √

rs7517826 C/A intron 0.000 -
√ √ √ √ √ √ √ √ √

Detailed information on the usage of both bioinformatics tools is described in the Methods Section. TFBS, transcription factor binding site.
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The SNPnexus resource was used to search for histone modification and open chro-
matin DNase I hypersensitive sites in brain tissues, arteries, and blood from the ENCODE
and Roadmap Epigenomics projects to predict which SNPs were enriched in what kinds of
histone marks and DNase peaks (Supplementary Table S7). We found that several SNPs
represent subjects to epigenetic modifications, influencing gene activity in normal human
astrocytes, aorta, blood, and other tissues. In particular, several polymorphisms have been
found to be related to histone marks, such as rs2301022 of the GCLM gene (H4K20me1,
H3K4me2, and H3K4me1), rs12524494 (H3K36me3), and rs761142 (H4K20me1) of the GCLC
gene in normal human astrocytes. The rs17883901 polymorphism was associated with
histone marked regions H3K4me2 and H3K4me3, hypersensitivity of chromatin to DNase1,
and poised promoter activity of the gene in normal human astrocytes. Moreover, the SNP
of GCLM rs3827715 was related to histone mark H4K20me1 and repressed the promoter
flanking region in astrocytic glial cells in humans. The GCLC polymorphism rs17883901
was found to be epigenetically regulated via histone H3K4me1 modifications and gene
promoter activity in the aorta.

Then we evaluated whether the studied SNPs might regulate enhancer activity by
affecting the binding ability of various transcription factors (TF). Bioinformatics resources
such as VEP, Transfac, and atSNP have revealed that the investigated polymorphisms are
located within DNA motifs that are targets for the binding of multiple transcription factors
or transcription factor binding sites (TFBS). In particular, Ensembl Variant Effect Predictor
identified that SNP rs17883901 of GCLC is located within a DNA motif which is a target
for binding of transcription factor complexes such as GCM1:CEBPB, TFAP4:MAX, and
OXB2:RFX5, whereas SNP rs606548 creates binding sites for transcription factor complexes
GCM1::FIGLA and ETV2:RFX5.

We also found that the substitution from T to C of rs3827715 of GCLM would affect
the binding affinity of TFs RUNX3 and RUNX2. According to the TRANSFAC database,
polymorphism rs17883901 was predicted to be a subject for a number of transcription
factors such as AP1, AP4, AREB6, CEBPA, PPARA, PPARG, and SREBP1.

Finally, the atSNP Search bioinformatics tool was used to identify and quantify best
DNA sequence matches to the transcription factor position weight matrices with both
the reference and the SNP alleles of the GCLC and GCLM genes, following evaluation of
the statistical significance of the match scores with each allele and calculating the p-value
of the score difference between the best matches with the reference and SNP alleles [46].
Detailed information on TFBS in the regions of SNPs predicted by the atSNP Search tool is
shown in Supplementary Table S8. Numerous transcription factor binding sites regions
have been predicted around SNPs with the potential to impact on the expression levels of
genes. Molecular functions of transcription factors such as activators, repressors, or dual
effects on transcription were assessed by Gene Ontology enrichment analysis hosted by the
Enrichr online resource [49] and through manual annotation of the UNIPROT database.
Attention should be paid to the polymorphisms of the GCLC and GCLM genes, which
were found to influence the risk of ischemic stroke and brain infarct size. For instance,
allele T at SNP rs2301022 of GCLM protecting against ischemic stroke was associated with
creating the binding sites for numerous transcription factors such as PDX1, ZSCAN26,
ELF3, ZNF652, PAX4, SMARCC1, JDP2, FOXP3, ZBTB33, PRRX2, MEF2A, OTX2, DMBX1,
RHOXF2, JUND, PITX1, JUNB, CUX1, HNF4A, UNCX, PAX5, FOSL2, HOXB5, BARX1,
TFAP2A, SRF, VSX2, FOS, and POU6F2. However, as predicted by the atSNP Search tool, an
alternative allele rs2301022-C increasing disease risk was discovered to potentially disrupt
the binding sires for the TFs listed above. This allele was found to create TFBS for SPIC,
TP53, STAT2: STAT1, RUNX2, SPI1, IRF3, SPI1, PAX3, GABPA, IRF1, HDAC2, IRF5, MYB,
IRF1, HDAC2, IRF8, HNF4A, TFCP2, SETDB1, and IRF5.

4. Discussion

A problem with the genetic regulation of glutathione metabolism still remains outside
the mainstream of research on the molecular mechanisms of cerebrovascular diseases. This
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happens despite numerous obvious facts clearly demonstrating that glutathione is the most
important biologically active molecule, critically required for maintaining cellular redox
homeostasis and antioxidant protection as well as for the normal functioning of metabolic
processes in the brain. Surprisingly, a few studies have been conducted to assess the
relationship between polymorphisms in genes encoding glutathione metabolism enzymes
and the risk of ischemic stroke and its complications. In particular, in a Chinese population
of 189 IS patients and 169 healthy patients, Man et al. [50] did not reveal statistically
significant differences between the groups in the frequency of alleles and genotypes of the
−129C/T promoter polymorphism (rs17883901) of the GCLC gene. Another study in an
Italian population of 100 patients showed that the −129C > T SNP of the GCLC gene is
associated with cardiovascular events, including the development of cerebral stroke [51]. In
a study by Baum and colleagues [52], the−588C > T polymorphic variant (rs41303970), also
located in the 5’-flanking region of the GCLM gene, showed an association with cognitive
impairment that occurs against the background of ischemic stroke, although the association
of this SNP with the risk of ischemic stroke has not been investigated. In addition, these
GCLC and GCLM gene polymorphisms showed statistically significant associations with an
increased risk of myocardial infarction and endothelial dysfunction [53,54]. Much more
often, the objects of genetic association studies in ischemic stroke were polymorphic variants
of glutathione-S-transferase genes, which showed associations with disease risk [17,19,21].
Furthermore, in a previous study, we looked at the associations between polymorphisms
in glutathione peroxidase genes such as GPX1 (rs1050450), GPX3 (rs2070593), and GPX4
(rs713041) and the risk of cerebral stroke in hypertensive patients, and we observed that
SNP rs713041 of the GPX4 gene is associated with an increased risk of stroke [23].

The present study was undertaken for the first time to investigate the contribution of
polymorphic genes encoding catalytic and modifier subunits of glutamate-cysteine ligase,
a key and rate-limiting enzyme for biosynthesis of glutathione, to the development of
ischemic stroke and brain infarct volume. It is observed that polymorphism rs2301022 of
the GCLM gene is strongly associated with a decreased risk of ischemic stroke regardless of
sex and age. In addition, SNP rs648595 of the GCLC gene was associated with increased
stroke risk, but at a borderline statistical level. Two haplotypes, such as A-G-G-C-C-G
of GCLC and C-T-T of GCLM, were associated with an increased and decreased risk of
ischemic stroke, respectively. However, haplotype association analysis stratified by tobacco
smoking status showed that two common haplotypes such as A-C-C and C-T-T of GCLM
possess protective effects against the risk of ischemic stroke, but exclusively in nonsmokers.
GCLC polymorphisms rs636933 and rs761142, as well as two haplotypes of GCLM, were
associated with an increased volume of brain infarction in patients with ischemic stroke.
The relationship between polymorphism rs2301022 of GCLM and the risk of large artery
atherosclerosis was revealed in the Spanish cohort. Furthermore, SNP rs761142, which was
associated with brain infarct size, has been found to be associated with the risk of large
artery atherosclerosis in a mixed cohort (MEGASTROKE) GWAS. Some polymorphisms
of GCLC (rs12524494, rs606548, and rs17883901) and GCLM (rs3827715 and rs7517826)
genes that did not show associations with risk of ischemic stroke in our population were
associated with disease risk at least in one independent population. The analysis of linkage
disequilibrium between DNA polymorphisms revealed that interpopulation differences in
the association of alleles with ischemic stroke risk appear to be attributed to features of the
haplotype structure of genes in the studied populations.

Modeling gene–gene and gene–environment interactions by the mbmdr method showed
that polymorphisms at GCLC and GCLM are involved in epistatic interactions with known
candidate genes for ischemic stroke, and their effects on disease susceptibility are compara-
ble with those loci identified by large-scale, genome-wide association studies. However,
the contribution of GCLC and GCLM gene polymorphisms to the volume of brain infarction
is greater than the studied GWAS loci. Differences in the associations of GCLC and GCLM
gene polymorphisms with ischemic stroke risk and brain infarct size may be explained by
the fact that SNPs have different functional effects in the carotid arteries and brain, and
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these effects can be modulated through epigenetic mechanisms such as methylation and
histone modification, as has been identified by the bioinformatics analysis. The strongest
gene–gene interactions contributing to the risk of ischemic stroke were found between
SNP rs2301022 of the GCLM gene and two GWAS loci, such as rs4322086 of RASEF and
rs12449964 of PEMT (exact biological functions of these genes remain unknown), suggesting
that the studied genes are part of a complex genetic predisposition to ischemic stroke.

It is also important to note that the synergic effects of the genes on ischemic stroke
risk and brain infarct size are triggered by environmental factors such as tobacco smoking,
alcohol abuse, hypodynamia, and fruit and vegetable intake that are well-recognized risk
factors for cerebrovascular disease. Bioinformatics analysis showed that polymorphisms of
the GCLC and GCLM genes are functionally important regions involved in the regulation
of gene expression in the vasculature and brain through epigenetic mechanisms and
allele-specific binding with transcription factors. The rs2301022 polymorphism of the
GCLM gene showed the most significant association with the risk of ischemic stroke.
Bioinformatics analysis showed no phenotypic effects of this polymorphism on gene
expression, and there are no studies that have investigated the impact of this SNP on
the expression levels of GCLM. However, we found that the rs2301022 SNP is part of
a common haplotype rs2301022T-rs3827715T-rs7517826C of the GCLM gene, which was
associated with a protective effect against the risk of ischemic stroke. Since the rs3827715-
T and rs7517826-C alleles are associated with a higher level of transcriptional activity
of the GCLM gene in the arteries and in some parts of the brain, this indicates that the
rs2301022-T allele, apparently, is also associated with increased expression of the gene,
thereby enhancing the synthesis of glutathione. It is noteworthy that a strong protective
effect of the rs2301022-T/T GCLM genotype on the risk of ischemic stroke was seen in
the suppression of the negative effects of polymorphic genes such as rs4322086 of RASEF
and rs12449964 of PEMT that have been found to be associated with an increased risk
of ischemic stroke [55,56]. In addition, bioinformatics analysis allowed us to show that
SNPs rs636933 and rs761142 of GCLC and rs2301022 of GCLM are significant eQTLs with
loss-of-function effects of alternative alleles on gene expression in the brain, suggesting
that an increase in brain infarct size might be the result of a decrease in the expression
and/or activity of the genes that lead to a reduced synthesis of glutathione. A study in the
British population [57] confirmed our finding that the rs2301022 SNP of the GCLM gene is
associated with the volume of brain damage following stroke. Thus, despite interpopulation
differences in the associations between the gene polymorphisms and stroke phenotypes
identified by replication analysis, the present study clearly shows that genetic variation
in both catalytic and modifier subunits of glutamate-cysteine ligase determines ischemic
stroke susceptibility and brain infarct size, highlighting the importance of GCLC and GCLM
gene polymorphisms for both the molecular pathogenesis of ischemic stroke and disease
severity. Thus, functional annotation of SNPs showed that SNPs rs636933 and rs761142 of
the GCLC gene and rs2301022 of the GCLM gene are characterized by statistically significant
loss-of-function effects of minor alleles on the expression of the corresponding genes in
brain and vasculature tissues. The increase in the area of ischemic damage appears to be the
result of a low glutathione level caused by the decrease in the expression and/or activity of
the GCLC and GCLM genes.

It is known that interactions between genetic and environmental factors are jointly
involved in the development of ischemic stroke. The findings obtained by our study support
this concept. The mbmdr method discovered that well-known environmental risk factors for
ischemic stroke, such as chronic stress [58], physical inactivity [59], cigarette smoking [60],
alcohol abuse [61], and insufficient consumption of fresh vegetables and fruits [62], showed
the strongest contribution to disease development in combination with polymorphisms of
the GCLC and GCLM genes, as well as some GWAS loci. The vast majority of GxE models
comprise combinations of one or more of these environmental factors. An in-depth analysis
of the literature has led us to the assumption that endogenous glutathione deficiency may
be a shared condition that occurs as a result of the influence of these risk factors. This
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assumption is based on the fact that chronic stress, alcohol abuse, and smoking might be
responsible for the depletion of glutathione [63–68], whereas moderate physical activity
and high levels of consumption of fresh vegetables and fruits contribute to an increase in
endogenous biosynthesis of glutathione [69–71]. In particular, it is known that short-term
emotional stress can cause positive changes in the activity of enzymes involved in the
synthesis of glutathione [72]. However, chronic stress is associated with the depletion
of endogenous glutathione, as has been clearly demonstrated by experimental studies,
including in brain tissues [73,74]. Regular consumption of fresh vegetables and fruits,
which contain up to 70% of dietary glutathione and its precursors, including a balanced
amount of amino acids, vitamins, minerals, and phytochemicals, contributes to a significant
increase in endogenous glutathione levels [71,75]. Interestingly, increasing the intake of
fresh fruits and vegetables (e.g., green leafy vegetables and citrus fruits, including juice) by
one serving per day is associated with a 6% reduction in the risk of ischemic stroke [62].

Glutamate-cysteine ligase is a heterodimeric enzyme consisting of a heavy catalytic
subunit and a light modifier subunit that are expressed by different genes [76], and inter-
actions between the subunits determine the catalytic efficiency of this enzyme. Activity
of glutamate-cysteine ligase and upregulation of GCLC gene expression may be induced
in response to oxidative stress and GSH depletion through the activation of regulatory
elements in the gene promoter [77]. It is known that biosynthesis of GSH in brain cells
depends on their ability to uptake extracellular amino acid precursors of glutathione (glu-
tamate, cysteine, and glycine) and/or synthesize sufficient substrates to produce their own
GSH. Notably, uptake and metabolism of GSH precursors differ by brain cell type. Unlike
neurons, astrocytes can use a variety of amino acids and peptides, which are taken up by
excitatory amino acid carrier 1 and converted into substrate amino acids for glutamate-
cysteine ligase and glutathione synthetase [78].

The present and previous studies [79–81] clearly show that polymorphisms of key
genes involved in glutathione biosynthesis such as GCLC, GCLM, GSS (glutathione syn-
thase), and GGCT (gamma-glutamylcyclotransferase) are important contributors to the
pathogenesis of ischemic stroke. Together with the environmental factors discussed above,
these genes determine the level of glutathione metabolism and thus can modulate intra-
cellular GSH content. The study results point out that loss-of-function variants in genes
for glutathione metabolizing enzymes along with environmental factors increase the risk
of development and severity of cerebrovascular disease through the development of glu-
tathione deficiency. What is the pathophysiological significance of impaired glutathione
synthesis for the development and progression of cerebrovascular disease? Glutathione
deficiency in the vasculature and brain tissues may contribute to the multistep pathogenesis
of cerebrovascular disease. Glutathione deficiency may have a pathogenetic role in all three
stages of cerebrovascular disease, such as (1) atherosclerosis of cerebral arteries, (2) acute
occlusion of the cerebral artery, and (3) ischemic injury of the brain. Glutathione has been
shown to be an important intravascular regulator involved in the control of endothelial
growth and the protection of endothelial cells from oxidative damage, inflammation, and
atherosclerosis [82,83].

Atherosclerosis has been associated with decreased expression of GSH-dependent
antioxidant enzymes and an associated decline in glutathione [82,84,85]. A prospective
study performed on mice showed that reduced levels of GSH in the aorta are detected
both before the onset of atherosclerosis and during its development and progression [86].
It has also been found that the expression level of the GCLM gene is decreased in carotid
arteries affected by atherosclerosis compared to intact internal mammary arteries [87].
In addition, hypomethylation of CpG sites at the GCLM gene in blood leukocytes was
found to be associated with acute cerebral stroke [88]. Carotid intima-media thickness, an
indicator of carotid and generalized atherosclerosis [89,90], is negatively associated with
blood GSH levels [91], providing additional evidence for the role of glutathione deficiency
in atherosclerosis of cerebral arteries. Cho and co-workers observed that the increase
in GSH by oxidized low density lipoproteins (OxLDL) may afford cellular protection
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against OxLDL-induced oxidative stress, impairing endothelial cells as an initial step in
atherogenesis [92]. Moreover, it has been established that glutathione deficiency reduces
the bioavailability of nitric oxide, resulting in the development of endothelial dysfunction,
which is a key pathophysiological change in atherosclerosis [93]. Deficiency of reduced
glutathione has been revealed in cerebrovascular disease [24] and in the acute phase
of ischemic stroke [94], thereby contributing to more severe brain damage, as has been
demonstrated by numerous studies [95–99]. It has been demonstrated that the severity of
ischemic stroke correlates directly with the level of glutathione deficiency [100].

The brain has a moderate antioxidant capacity, and this limited ability to neutralize
ROS makes brain tissues more susceptible to oxidative stress than other organs and tissues,
contributing to the development of pathological processes including ischemic stroke [9,101].
Cerebral vessels are the main targets of oxidative stress, which actually plays a decisive
role in the formation of ischemic damage to brain tissues and determines the severity of
stroke [102]. High levels of glutathione are essential not only for the protection of the
central nervous system against oxidative stress but also for normal brain functioning [78].
First, glutathione may represent a physiologic reservoir of glutamate, the most abundant
excitatory neurotransmitter in cortical synapses, which is known to participate in many
physiologic and pathologic processes, including stroke [103]. Second, glutathione has been
proven to play a crucial role in brain ischemia resistance by reducing the loss of nerve
function and apoptosis of neuronal cells [104,105]. In humans, an age-dependent decline
in GSH has also been found to increase the extent of neuronal injury following ischemic
stroke [106,107]. It has been established that astrocytes with glutathione deficiency lose
their neuroprotective function, resulting in a decrease in neuron viability and death [108].
Elevation of GSH after acute stroke is considered to be a part of acute adaptive neuroprotec-
tive mechanisms during acute stroke [109]. A decrease in reduced glutathione was found
to cause protein nitration, S-nitrosylation, as well as the formation of DNA strand breaks in
neuronal cells [12]. Moreover, glutathione depletion is an important factor for decreased
neuronal viability, apoptosis initiation, and execution [110–112]. Howarth and co-workers
demonstrated that production of the vasodilator prostaglandin E2 in astrocytes is critically
dependent on brain levels of glutathione, and decreased levels of glutathione will lead
to dysfunctional cerebral blood flow regulation, resulting in subsequent neuronal dam-
age [113]. Glutathione was found to reduce inflammation and neuronal cell death following
brain injury [111]. Reduced glutathione is known to mediate antioxidant responses in the
brain, providing a critical defense system for the protection of cells from oxidative stress
as well as serving a central role in repairing brain damage after ischemic stroke [16,106].
Finally, it has been experimentally observed that glutathione has the potential to stimulate
neurorepair and functional recovery after ischemic stroke [114].

Finally, glutathione deficiency may be the cause of impaired protein folding, leading to
endoplasmic reticulum stress and the induction of neuronal cell death following ischemic
stroke. The formation of disulfide bonds in maturing proteins is required for their correct
tertiary structure, and this process takes place in the endoplasmic reticulum (ER) and is
heavily influenced by glutathione, one of the key players in ensuring proteostasis in all
types of cells [115,116]. Oxidized and reduced forms of glutathione play distinct functions
in protein folding: GSSG, being an oxidant, forms disulfide bonds in a protein, whereas
GSH, being a reducing agent, cleaves misbridged disulfide bonds [116,117]. Glutathione
deficiency appears to reduce ischemic neurons’ ability to ensure the efficiency of the
protein folding process in the endoplasmic reticulum, causing it to become overloaded with
misfolded proteins. Thus, there is reason to believe that glutathione deficiency in the cell is
the key factor responsible for ineffective protein folding and accumulation of unfolded or
misfolded proteins in the ER, culminating in activation of the unfolded protein response and
cell apoptosis. Importantly, impaired proteostasis is a major cause of neuronal cell death in
ischemic stroke. Ischemic injury of the brain initiates ER stress or unfolded protein response,
an adaptive process with the activation of prosurvival mechanisms for the recovery of brain
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damage after cerebral ischemia [118,119]. However, chronic ER stress plays a detrimental
role in nerve cells via triggering diverse proapoptotic pathways [118,119].

There are some limitations in the present study that should be addressed. The present
study examined a limited number of polymorphisms in the GCLC and GCLM genes. There-
fore, further studies with a larger number of SNPs are required to assess the comprehensive
contribution of the genes to the risk of ischemic stroke and postischemic damage to the
brain. Furthermore, the observed associations need to be confirmed in independent popu-
lations. Low statistical power did not allow detection of reliable estimates of the effects of
polymorphisms on glutathione levels because the sample size of IS patients with biochemi-
cal investigations of redox homeostasis was too small. A relatively low sample size of the
studied population did not allow us to identify gene–environment interactions involving
risk factors such as chronic stress, physical inactivity, alcohol abuse, and decreased intake
of fresh vegetables and fruits, all of which play a role in the etiology of ischemic stroke.

5. Conclusions

Our study was the first to show that genetic variation in subunits of glutamate-cysteine
ligase, a key and rate-limiting enzyme for glutathione biosynthesis, contributes to the risk
of ischemic stroke and brain infarct size. We found that polymorphisms of the GCLC and
GCLM genes are in tight epistatic interactions with known genes responsible for the risk of
ischemic stroke and determining the volume of brain infarction. The multifactorial nature of
ischemic stroke is supported by our findings that the synergic effects of the studied genes on
disease susceptibility and brain infarct size are triggered by well-recognized environmental
risk factors for cerebrovascular disease. Understanding the role of glutathione metabolism
disorders caused by the interaction of environmental and genetic factors opens the door
to developing new methods for the treatment and prevention of ischemic stroke and
its consequences. In particular, N-acetylcysteine and glycine supplementation for the
replenishment of endogenous glutathione deficiency is widely regarded as a promising
approach to the primary prevention of atherosclerosis and neuroprotective therapy for
ischemic stroke and its severity [82,101,120,121]. Finally, the present study supports the
urgent need for clinical trials focusing on intravenous administration of reduced glutathione
as an adjuvant therapy in the acute phase of ischemic stroke with the goal of protecting
neurons from oxidative damage and alleviation of disease outcomes.
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