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Abstract: The aim of this review is to provide an updated review of the epigenetic factors involved
in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease
characterized by chronic inflammation, ectopic bone formation within the joint, and physical and
proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no
disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has
identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic
joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying
epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these
epigenetic modifications with known functions in the onset and progression of the disease. We
also review current therapeutics targeting aberrant epigenetic regulation as potential options for
preventive or therapeutic treatment.
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1. Introduction

Epigenetics, as a word, has been present in the biological vocabulary since it was
coined by C.H. Waddington in the 1930s [1]. Since then, the concepts this word describes
have undergone extensive changes, from a broad overall postulation on the workings of
molecular development to the more modern term used to refer to a multitude of genetic
and transcriptomic chromatic regulators [1,2]. The scope and breadth of these regulators
can vary depending on context but commonly incorporate nucleotide or amino acid modi-
fications such as methylation/demethylation, acetylation/deacetylation, phosphorylation,
glycosylation, ubiquitination, transposable elements, non-coding RNAs (ncRNAs), small-
interfering RNAs (siRNAs), and microRNAs (miRNAs). More recently, scientists have been
expanding studies of these sporadic or temporal cellular events to determine the influence
of environmental changes during development (environmental epigenetics) and/or inher-
ited (transgenerational epigenetics) on epigenetic regulators [3,4]. Furthermore, studies are
beginning to shed light on how epigenetic changes affect normal physiological functions.

Epigenetic modifications during aging have been shown to negatively affect tissue
physiological function by themselves or in conjunction with various environmental factors,
such as weight, stress, or drug/alcohol usage [5,6]. Recent studies have linked changes in
epigenetic regulation to the development and/or progression of a wide range of human
diseases. DNA demethylation, aberrant histone methylation, and histone enzymatic activity
have been linked to cancer and tumor metastases [7–9]. Similarly, epigenetic dysregulation
has been linked to cardiovascular disease [5,10], and diabetic kidney disease [11,12].
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The development and progression of osteoarthritis (OA) are also negatively affected
by epigenetic dysregulation. OA is a debilitating joint disease and instigator of chronic dis-
ability that affects approximately half of the global population over the age of 65, incurring
a substantial socioeconomic burden (USD 128 billion in 2003 alone and rising) [13–16]. The
prevalence of this disease is expected to continue to grow as global life expectancies rise [17].
OA pathophysiology is most associated with synovitis (chronic synovial inflammation),
ectopic new bone formation (osteophytes), abnormal subchondral bone remodeling, and
the degradation of articular cartilage due to physical and proteolytic degradation [18–20]
(Figure 1). However, OA is a multifactorial disease that also affects the meniscus, ligament
structures, and infrapatellar fat pad, meaning that it is a whole joint disease [21,22]. Known
risk factors for the disease include microenvironment and mechanical stressors, physical
activity levels, health status, obesity, genetic predisposition, and age [23–25]. One of the
biggest difficulties in the understanding and treatment of the disease is that OA is symp-
tomatic only in approximately 30% of patients in later disease stages, making the detection
of early biomarkers difficult [26,27]. At present, no disease-modifying drugs are available
to decelerate or reverse OA. Current OA treatments are limited to pharmacological pain
management and arthroplasty, an irreversible surgical procedure that typically requires
revisional surgery in 10–15 years [28,29].
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joint capsule referred to as osteophytes. 

One of the biggest problems in the treatment of OA is that the affected tissue, articu-
lar cartilage, is unable to regenerate to repair mechanical or enzymatic damage. Articular 
chondrocytes, the resident cell type present in cartilage, synthesize an extracellular matrix 
(ECM) capable of withstanding biomechanical pressures and responsible for smooth joint 
articulation. Under normal conditions, chondrocytes are quiescent and catabolic and an-
abolic factors are balanced to maintain joint homeostasis. When damage occurs, chondro-

Figure 1. Osteoarthritis pathophysiology: Osteoarthritis (OA) is a multifactorial disease affecting
cartilage, synovium, the infrapatellar fat pad, and the underlying subchondral bone. OA is character-
ized by chronic inflammation, cartilage damage due to mechanical and proteolytic degradation and
abnormal subchondral bone formation, leading to the formation of bony outgrowths into the joint
capsule referred to as osteophytes.

One of the biggest problems in the treatment of OA is that the affected tissue, articular
cartilage, is unable to regenerate to repair mechanical or enzymatic damage. Articular
chondrocytes, the resident cell type present in cartilage, synthesize an extracellular ma-
trix (ECM) capable of withstanding biomechanical pressures and responsible for smooth
joint articulation. Under normal conditions, chondrocytes are quiescent and catabolic
and anabolic factors are balanced to maintain joint homeostasis. When damage occurs,
chondrocytes cannot regenerate the damaged tissue and actively participate in cartilage
destruction by enhancing the production of catabolic proteases [21,30]. The molecular
basis for this switch in chondrocyte function remains poorly understood, but aberrant gene
expression and epigenetic modifications are implicated [31].

OA is known to have genetic components associated with disease onset and progres-
sion with dozens of loci associated with the disease [32]. These loci alter gene expression and
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contribute to OA by either altering gene expression patterns or through post-translational
modifications [33]. Chondrocyte gene expression is regulated by a variety of epigenetic
mechanisms including the methylation of DNA and histones, histone acetylation, ncRNAs
and polycomb group proteins (PRCs) [34]. In this review, we will discuss these epigenetic
mechanisms and how they contribute to the onset and progression of OA.

2. Methods

A PUBMED literature review was conducted searching for original papers on epige-
netic regulation in OA. The key words used included “DNA methylation in osteoarthritis”,
“epigenetics and osteoarthritis”, “epigenetics and synovium in osteoarthritis”, “histone
modification and osteoarthritis”, “polycomb and osteoarthritis”, “miRNA and osteoarthri-
tis”, “siRNA and osteoarthritis”, “non-coding RNA and osteoarthritis”, “epigenetic regu-
lation of subchondral bone”, “osteoarthritis therapeutics”, and “epigenetic therapies and
osteoarthritis”.

3. DNA Methylation

DNA methylation involves the addition of a methyl group to a specific location
along the DNA strand. This reaction is catalyzed by DNA methyltransferases (DNMTs)
and there are currently four known mammalian enzymes: DNMT1, DNMT3a, DNMT3b
and DNMT3L [35,36]. The biological importance of this addition is that it alters the
three-dimensional conformation of the DNA and, depending on the location, can either
enhance or inhibit the ability of transcription factors and/or associated proteins to bind
DNA [37,38]. In OA, changes in DNA methylation patterns are some of the most widely
studied epigenetic phenomenon.

Early studies of DNA methylation patterns associated with OA were targeted primarily
on candidate genes already known to be associated with OA pathophysiology. Candidates
often included catabolic cytokines and chemokines such as the matrix metalloproteinases
(MMP-3, MMP-9, and MMP-13) and aggrecanases A disintegrin and metalloproteinase
with thrombospondin motifs 4 and 5 (ADAMTS-4 and ADAMTS-5) that are upregulated in
OA and contribute to proteolytic cartilage degradation [39,40]. Proinflammatory molecules,
such as interleukins (IL-1β, IL-6 and IL-8), inducible nitric oxide synthase (iNOS) and tumor
necrosis factor-alpha (TNF-α), responsible for the initiation and maintenance of chronic
joint inflammation were also targeted [41,42]. The results from these studies determined
that the promoters of these catabolic factors are demethylated in OA, permitting increased
catabolic gene expression [34,43–45]. Anabolic factors known to be downregulated in OA
pathogenesis, such as cartilage ECM genes type-II collagen (Col2α1) and aggrecan (ACAN)
were targeted as well and found to be hypermethylated, inhibiting their expression [46,47].
Studies into DNA methylation changes during OA have also focused on signaling pathways
known to be altered in articular cartilage and subchondral bone during OA. For instance, the
Wnt pathway is known to be upregulated during OA progression and epigenetic changes
have been detected that altered sclerostin (SOST) and Wnt-ligand secretion mediator (WLS)
function to increase inflammation and endochondral ossification, respectively [41,48].

More recently, OA DNA methylation studies have switched to non-targeted genome-
wide methylome studies to identify novel genes or regions affected by the disease. The
standardization techniques used in these non-targeted genome-wide assays make compar-
isons between datasets easier to manage and promote more collaborative studies, which
increase sample sizes and allow for examinations of OA-specific DNA methylation changes
at various stages of disease progression and analyses of global datasets. Analyses of these
global datasets are beginning to detect regional and/or ethnic methylations that contribute
to disease susceptibility. For instance, meta-analyses of single-nucleotide polymorphisms
(SNPs) of European, Japanese and East Asian populations have identified region-specific
SNPs in type-11α1 collagen (COL11α1), vascular endothelial growth factor (VEGF) and
growth differentiation factor 5 (GDF5) that enhance susceptibility to OA [40,49–54]. Fur-
thermore, these large-scale analyses can detect sex-specific and location-specific differences
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in susceptibility loci to better predict predilection to hip versus knee OA within a popula-
tion [40,55–57]. Future studies identifying OA-specific SNPs and loci differences within
populations will continue to improve our knowledge of OA-affected genetic differences
and will increase risk prediction.

4. Histone Methylation

Genetic architecture plays and enormous role in transcriptional control. The structure
and accessibility of DNA for transcriptional activity are partly governed by the location
and function of histones, conserved regions of DNA enriched with positively charged
amino acids such as lysine (K) and arginine (R) [41,58]. These positively charged regions
interact tightly with the negatively charged DNA backbone and accessory DNA bind-
ing proteins to form tightly wound regions called nucleosomes [58,59]. This winding
makes the DNA inaccessible, which protects it from damage and regulates the transcrip-
tional control of the affected regions [58,60]. An additional level of control governing
histone-DNA interactions are post-transcriptional modifications to the side chains of the
amino acids comprising the histone. The various modifications known to occur include
sumoylation (the covalent attachment of small ubiquitin-like modifiers (SUMO) to lysine
residues), phosphorylation, ubiquitination (the covalent attachment of ubiquitin to lysine
residues), and poly (ADP)-ribosylation [61–65]. The two most widely known and widely
studied post-transcriptional modifications in the pathogenesis of OA, however, are histone
methylation and histone acetylation (Figure 2). The process of histone methylation and its
relevance to the pathophysiology of OA will be discussed here and histone acetylation in
the following subsection.

Life 2022, 12, x FOR PEER REVIEW 5 of 26 
 

 

a highly conserved deacetylase that contributes to OA progression, and also methylates 
promoters of lymphoid enhancer-binding factor 1 (LEF1) and T-cell factor 1 (TCF1) to 
modulate wingless-type (Wnt) signaling in chondrocytes [80,81]. In patients suffering 
from OA, H3K79 methylation was reduced, resulting in Wnt pathway activation and in-
creased cartilage degradation in humans as well as in murine OA models [82,83]. 

KDM6B (JMJD3) is emerging as a demethylase of interest in the onset and progres-
sion of OA. KDM6B catalyzes the removal of methyl groups from histone 3 lysine 27 
(H3K27) and functions to modulate cartilage anabolism and homeostasis [69,84]. In chon-
drocytes, the knockdown of KDM6B in mice results in abnormal bone and cartilage de-
velopment and accelerates the progression of OA [84,85]. Furthermore, KDM6B is associ-
ated with chondrocyte hypertrophy by increasing Runt-related transcription factor 2 
(RUNX2) and Indian hedgehog (IHH) signaling [85,86]. The overactivation of RUNX2 also 
negatively impacts OA pathogenesis by enhancing subchondral bone ossification and re-
modeling [84,85]. 

 
Figure 2. Histone modifications in OA: Histone methylation/demethylation and histone acetyla-
tion/deacetylation affect genetics architecture and the accessibility of transcriptional activity. The 
process of histone methylation is governed by histone methyltransferases (HMTs) and histone de-
methyltransferases (HDMTs). Histone acetylation involves the addition or the removal of an acetyl 
group by histone acetyltransferases (HATs) or histone deacetylases (HDACs), respectively. 

5. Histone Acetylation 
Similar to histone methylation, dysregulated histone acetylation/deacetylation is 

known to play a role in enhanced proinflammatory cytokine and chemokine activity in 
both rheumatoid and osteoarthritis [87,88]. The addition or removal of an acetyl group 
from histones affects gene transcription and accessibility (Figure 2). Histone acetyltrans-
ferases (HATs) catalyze the addition of an acetyl group to a histone or histone sidechain, 
which loosens DNA-histone binding and enhances gene transcription [89]. Conversely, 
the removal of acetyl groups is catalyzed by histone deacetylases (HDACs) that are re-
cruited by transcription factors and protein complexes to enhance the binding between 
histones and DNA to silence transcription [87,90]. Additionally, both HATs and HDACs 
by themselves are known to interact with and destabilize non-histone-associated proteins 
and co-factors, leading to cellular dysfunction [91,92]. Unfortunately, this interaction with 

Figure 2. Histone modifications in OA: Histone methylation/demethylation and histone acetyla-
tion/deacetylation affect genetics architecture and the accessibility of transcriptional activity. The
process of histone methylation is governed by histone methyltransferases (HMTs) and histone
demethyltransferases (HDMTs). Histone acetylation involves the addition or the removal of an acetyl
group by histone acetyltransferases (HATs) or histone deacetylases (HDACs), respectively.

Histones are methylated by histone methyltransferases (HMTs) that catalyze the
addition of a methyl group to specific arginine or lysine residues on histone tail side
chains [41,65]. This reaction is reversible and the added methyl groups can be removed
through the actions of histone demethyltransferases (HDMTs). Unlike DNA methylation,
the effects of histone methylation depend highly on the site of methylation as well as
the degree of methylation (mono-, di- or trimethylation) [65,66]. Some of the most well-



Life 2022, 12, 582 5 of 26

studied sites for histone methylation occur on lysine residues associated with histone
3 (H3) [65,67,68]. For example, the inhibition of HMT activity at H3 lysine 4 (H3K4)
reduced inflammation by preventing iNOS and cyclooxygenase-2 (COX-2) expression in
chondrocytes, and methylation at lysines 9, 20 and 24 (H3K9, H3K20 and H3K24) are
known to be altered in OA [38,69–72]. Histone methylation changes are also known to
affect the expression of SOX-9 (SRY-box transcription factor-9), an important transcription
factor regulating COL2α1 expression. SOX-9 expression is downregulated in OA and
studies of epigenetic modifiers have linked SOX-9 inhibition to the increased methylation
of H3K27 [46,73–75]. Furthermore, the methylation of the NFATC1 (Nuclear Factor of
Activated T-cells-1) promoter has been shown to be increased in OA and contributes to
chondrocyte dysfunction [76,77].

Perhaps one of the best examples of the role of HMTs in OA pathology is that of
DOT1-like histone lysine methyltransferase (DOT1L). DOT1L was one of the first methyl-
transferases identified as associated with OA and subsequent studies have shed additional
light on the protective role of this enzyme in cartilage and chondrocyte biology [78].
DOT1L is the only known mammalian HMT to catalyze the methylation of H3 lysine79
(H3K79) [79]. The protective mechanism of DOT1L is two-fold: it inhibits sirtuin 1 (SIRT1),
a highly conserved deacetylase that contributes to OA progression, and also methylates
promoters of lymphoid enhancer-binding factor 1 (LEF1) and T-cell factor 1 (TCF1) to
modulate wingless-type (Wnt) signaling in chondrocytes [80,81]. In patients suffering from
OA, H3K79 methylation was reduced, resulting in Wnt pathway activation and increased
cartilage degradation in humans as well as in murine OA models [82,83].

KDM6B (JMJD3) is emerging as a demethylase of interest in the onset and progression
of OA. KDM6B catalyzes the removal of methyl groups from histone 3 lysine 27 (H3K27)
and functions to modulate cartilage anabolism and homeostasis [69,84]. In chondrocytes,
the knockdown of KDM6B in mice results in abnormal bone and cartilage development
and accelerates the progression of OA [84,85]. Furthermore, KDM6B is associated with
chondrocyte hypertrophy by increasing Runt-related transcription factor 2 (RUNX2) and
Indian hedgehog (IHH) signaling [85,86]. The overactivation of RUNX2 also negatively
impacts OA pathogenesis by enhancing subchondral bone ossification and remodeling [84,85].

5. Histone Acetylation

Similar to histone methylation, dysregulated histone acetylation/deacetylation is
known to play a role in enhanced proinflammatory cytokine and chemokine activity in
both rheumatoid and osteoarthritis [87,88]. The addition or removal of an acetyl group
from histones affects gene transcription and accessibility (Figure 2). Histone acetyltrans-
ferases (HATs) catalyze the addition of an acetyl group to a histone or histone sidechain,
which loosens DNA-histone binding and enhances gene transcription [89]. Conversely, the
removal of acetyl groups is catalyzed by histone deacetylases (HDACs) that are recruited by
transcription factors and protein complexes to enhance the binding between histones and
DNA to silence transcription [87,90]. Additionally, both HATs and HDACs by themselves
are known to interact with and destabilize non-histone-associated proteins and co-factors,
leading to cellular dysfunction [91,92]. Unfortunately, this interaction with additional
accessory proteins and/or transcription factors outside of DNA–histone interactions places
limitations on the use of HAT and HDAC knockout animal models [18,93].

Of these reactions, much more is known about HDACs and their role in the develop-
ment and progression of OA. HDACs comprise four separate classes divided by enzymatic
structure, substrate usage, function, and location. Class I (1, 2, 3 and 8) and Class II (4, 5, 6, 7,
9 and 10) HDACs use zinc as a common substrate, while Class III HDACs, also referred to as
sirtuins (Sirt 1-7), utilize nicotinamide adenine dinucleotides (NAD+) [87,94,95]. Class I en-
zymes are vital for cell survival and regulate gene transcription and DNA replication during
development [96,97]. Knockout models of these are embryonically lethal. Class II enzymes
have weaker enzymatic activity but are more tissue specific in their function [98,99]. Class
III enzymes (the Sirts) possess the highest enzymatic activity of the HDACs and studies
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have shown that their activity affects a multitude of different pathways including (but not
limited to) aging, inflammation, bone formation, maintenance, and metabolism [100,101].

Several studies have examined the role of HDACs in osteoarthritis. During OA
development and progression, the activity of matrix catabolic factors is elevated, while
anabolic factors are suppressed. Recently, studies on diseased cartilage have linked HDAC
activity to reductions in anabolic factors. For instance, OA chondrocytes were found to
have elevated levels of HDACs 1 and 2 which can inhibit the expression of key anabolic
factors Col2α1 and ACAN [89,102,103]. In vitro studies have shown that Runx2, known
to stimulate chondrocyte hypertrophy and MMP-13 production, is inhibited by HDAC4
but this interaction requires better study in vivo prior to therapeutic assessment [104–106].
HDAC7 is elevated in diseased OA cartilage and studies of the mechanism in murine
models have linked it to elevated MMP-13 expression [107].

The expression of some HDACs, however, is known to have chondroprotective prop-
erties. SIRT6, for instance, plays a protective role in human and murine chondrocytes. In
studies of human OA, SIRT6 expression is decreased in articular cartilage, and the overex-
pression of Sirt6 in mice reduces cartilage damage and the expression of proinflammatory
cytokines and chemokines [108]. SIRT1, linked to increased Col2α1 expression, is also
related to protective functions and SIRT1 expression is known to decline during OA in
human chondrocytes and in subchondral osteoblasts [109,110]. Finally, the continuing
development of knockout mouse models of HDACs 3-5 and HDAC7 allows for the contin-
uation of more focused studies of endochondral bone formation and the changes that occur
with age-related or induced post-traumatic osteoarthritis [111,112].

HDAC activity in OA is not limited to chondrocytes and cartilage. Synovial tissues are
known to contribute to chronic joint inflammation through the secretion of proinflammatory
cytokines and chemokines such as IL-6, IL-1β and TNF-α [113]. The best known function
of IL-6 in OA is proinflammatory, but IL-6 also stimulates MMP-13 expression and activates
osteoclast activity in subchondral bone, enhancing skeletal remodeling [114]. Epigenetic
studies into IL-6 expression in the synovium of OA demonstrated that the promoter region
of IL-6 is hypo-methylated, and the promoter histone region is hyper-acetylated, leading to
increased IL-6 production [115]. While there are fewer studies on the epigenetic regulation
of synovial tissues in OA, these findings demonstrate that the modulation of synovial
epigenetics may be of interest for future studies towards pharmacological interventions.

6. Polycomb Repressive Complexes (PRCs)

Polycomb repressive complexes (PRCs) are key enzymes for regulating and modifying
chromatin structure and histones. Polycomb repressive complex 1 (PRC1) and Polycomb
repressive complex 2 (PRC2) are the two main repressive PcG protein complexes that
contribute to chromatin compaction and play a crucial role during development, cell prolif-
eration, and differentiation (Figure 3) [116,117]. PRCs are important in the silencing of genes
globally, particularly during mitotic cycles that can act as regulatory mechanisms. Addition-
ally, PRC proteins are biologically essential throughout development from embryogenesis
to adulthood, particularly in the regulation of imprinted genes [118–120].

PRC1, composed of the subunits BMI1, PHC, CBX, and RING1A/B, is involved in tran-
scriptional repression through the ubiquitination of histone 2 lysine 119 (H2K119) [121–123].
PRC2 is a chromatin-modifying enzyme that catalyzes the trimethylation of histone H3 at
lysine 27 (H3K27), which regulates gene expression [124]. PRC2 contains four core subunits,
SUZ12, EED, EZH1/EZH2, and RBBP4/7, which form two functional lobes [125,126]. The
catalytic lobe that methylates H3K27 is comprised of the methyltransferase subunits enhancer
of Zeste 1 polycomb repressive complex subunit-1 (EZH1) or enhancer of Zeste 2 polycomb
repressive complex subunit-2 (EZH2), a binding protein called embryonic ectoderm develop-
ment (EED), and the scaffold protein Zeste 12 homolog (SUZ12) [127,128]. The targeting lobe
consists of SUZ12 and RBBP4/7 [125,129].
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Studies into the epigenetic regulation of PRCs in the pathogenesis of human OA
have recently paid particular attention to the importance of EZH2 in the development
and progression of the disease. EZH2 has been found to be upregulated in both cartilage
and chondrocytes of human OA patients [130,131] and in the cartilage of mice following
the induction of post-traumatic OA via the destabilization of the medial meniscus (DMM)
surgery [130,132,133]. This upregulation of EZH2 results in the enhanced expression of
proinflammatory cytokines/chemokines (IL-1β, nitric oxide (NO) and IL-6), increased ECM
catabolism via increased activity of MMPs and mediates Wnt pathway inhibitor-secreted
frizzle-related protein (SFRP-1) [131,134]. While these findings seem to suggest that the
EZH2 inhibition in cartilage would be undoubtedly beneficial, other studies have pointed
out that the timing of ablation is important to the maintenance of chondrocyte homeosta-
sis. A tissue-specific mouse EZH2 knockout mouse model showed enhanced cartilage
destruction following the induction of post-traumatic OA via medial meniscectomy (MMx)
surgery, suggesting that EZH2 plays a selective chondroprotective role [135]. A conditional
knockout (cKO) of EZH2 in mouse mesenchymal stem cells resulted in a smaller body size
and shorter limbs [136]. A histological analysis of the proximal tibias of one day and three-
week-old EZH2 cKO pups revealed an abnormality in growth plate development, which
was represented in the reduced distance between the surface of articular cartilage and the
hypertrophic zone [136]. A reduction in distance between epiphysis and the hypertrophic
zone is associated with a shorter proliferative area in the one-day-old EZH2 cKO pups and
a reduced hypertrophic zone in the three-week-old EZH2 cKO mice. The importance of
EZH2 function in chondrocytes and growth plate development is indicated by the reduced
chondrocytes proliferation and accelerated hypertrophy in EZH2 cKO mice [136]. More
studies are needed to assess the true role of EZH2 in OA pathophysiology.

PRC2 maintains gene transcription through alterations in cellular genetic makeup that
govern normal cellular development. PRC2 is modulated by accessory subunits as well as
various modifications to either stimulate or inhibit its activity on H3K27. Histone modifica-
tions and dense chromatin stimulate PRC2, while active chromatin inhibits it to prevent
the spreading of H3K27 methylation [137,138]. PRC2 is necessary for normal skeletal and
cartilage growth. When certain subunits of PRC2 are deficient, cartilaginous abnormalities
can occur. For example, when EED is deficient, there have been reports that there is aberrant
signaling activation in the Wnt pathway which causes premature differentiation, ultimately
leading to kyphosis and accelerated chondrocyte hypertrophic differentiation [139]. In
addition, the overactivation of TGF-β led to a reduction in chondrocyte proliferation with
growth defects [140]. The functional activity of Z hypoxia-inducible transcription factor 1α



Life 2022, 12, 582 8 of 26

(Hif1α) is required to maintain chondrocyte viability within the central region of the growth
plate, and EED deficiency decreases Hif1α, ultimately leading to hypoxic cell death [139].

7. Non-Coding RNAs (ncRNAs)

Only approximately 1.2% of the human genome consists of coding regions, indicating the
profound role and potential utility of non-coding regions [141]. Non-coding RNA (ncRNA) is
a term applied to RNAs that do not code for proteins and that are sometimes thought of as
“junk RNA” [142]. However, some ncRNAs have been known to have biological functions for
decades, with early studies identifying roles in the regulation of chromosomes compaction
(Xist), and in cell-type specific nuclear organization [143–145]. Further studies have supported
the role of ncRNAs in epigenetic regulation and the remodeling of chromatin, although these
roles are still being debated [146,147]. The term ncRNA includes a wide range of molecules
such as small interfering RNAs (siRNAs) microRNAs (miRNAs), small nucleolar RNAs
(snoRNAs), small nuclear RNAs (snRNAs), long non-coding RNAs (lncRNAs), and, more
recently, circular RNAs (circRNAs), all of which have been implicated in the pathogenesis of
OA [148–150].

siRNAs are double stranded, non-coding RNAs approximately 21–23 nucleotides in
length (Figure 4) that typically have one specific target [151]. siRNAs are known to protect
the genome from exogenous or invasive nucleic acids, such as viruses and transposons [152].
siRNAs can induce target degradation after translation through the formation of an RNA-
induced silencing complex (RISC) or directly target mRNAs for degradation through base
pair complementarity (RNAi) [152,153]. The role of siRNAs in the onset and development of
OA is ever expanding. Given that OA is a polygenic disease, researchers typically focus the
siRNA discovery of chondrocytes, cartilage, and synovium on one aspect, such as chronic
inflammation or matrix degradation. For instance, the siRNA-mediated knockdown of
ADAMTS-5 and MMP-13 through intra-articular injection ameliorated cartilage damage
and inflammation following DMM in mice [154,155]. Similar findings were reported
when siRNA targeting MMP-13 were delivered using intra-articular nanoparticle delivery
methods [156]. RNA-silencing was also found to be effective at inhibiting inflammation
through the targeting of TNFα and Transforming growth factorβ-activated kinase-1 (TAK1)
in a collagen-induced murine models [157]. These findings demonstrate the efficacy of
siRNA-mediated targeting strategies in the treatment of OA, but further work is needed to
validate these findings in human joints. Meanwhile, other key targets for siRNA-mediated
inhibition include the NF-κB and transforming growth factor-beta (TGF-β) pathways
(inflammation), SOST (subchondral bone remodeling), hypoxia-induced factor 2a (Hif2a)
(cartilage degeneration and synovitis), MMP13 (matrix catabolism) and mitochondrial
dysfunction, which results in cell apoptosis [158–160].

Mature miRNAs are non-coding, single stranded and range from 21–24 nucleotides in
length (Figure 4). miRNAs regulate gene expression through the targeting and cleavage of
mRNA or via translational repression through binding interactions with the 3′untranslated
region (3′ UTR) of target mRNAs [161,162]. New miRNAs are being discovered regularly
and the function of these new biomolecules is under study. Currently, miRNAs are known
to be involved in the regulation of cell differentiation, cell cycle progression, apoptosis,
lipid metabolism, gene and protein expression and the modulation of intercellular commu-
nication in numerous cell types [163–167]. Given the diversity of their biological roles, it is
unsurprising that aberrant miRNA expression has been linked to OA and there are many
reviews that focus solely on these biomolecules. Here, we will provide a brief overview
of the role of miRNAs in OA pathogenesis to provide insight into their epigenetic func-
tion (Table 1). One early study into the role of miRNAs in OA pathogenesis examined
the expression patterns of miRNAs in knee cartilage and bone samples of arthroplasty
patients compared cartilage from to post-mortem healthy cartilage and bone [168]. This
study identified 157 miRNAs that were statistically different in the OA individuals and
two specific miRNAs, miR-9 and miR-98, were subsequently identified to upregulate the
expression MMP-13, IL-6 and TNFα [168,169]. miRNA-140 is another miRNA with func-
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tional roles in healthy and diseased chondrocytes. miRNA-140 is highly expressed during
endochondral ossification of long bones and significantly decreased under inflammatory
conditions in vitro and in OA tissues in vivo [170–172]. The functional role of miRNA-140
was discovered to be the inhibition of ADAMTS-5 aggrecanase expression as well as the
post-translational inhibition of MMP-13 and insulin-like growth factor binding protein 5
(IGFBP-5) [171–174]. miRNAs are also capable of regulating chondrocyte anabolic expres-
sion. miRNA-148a serves dual chondroprotective roles: it inhibits chondrocyte hypertrophy
and enhances Col2α1 chondrocyte deposition [175]. Recent findings demonstrate that miR-
4784 enhances Col2α1 expression while simultaneously inhibiting MMP-3 to reduce ECM
degradation [176,177]. Similarly, the miRNAs miR-98 and miR-181a play a role in chondro-
cyte homeostasis through the inhibition of BCL2 apoptosis regulator (BCL2) translation
to slow the accelerated chondrocyte apoptosis seen in OA [178,179]. Conversely, miR-101
and miR-145 upregulate ECM catabolism and, when inhibited, lead to increases in SOX-9,
Col2α1 and proteoglycan deposition [180].
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miRNAs have also been discovered to contribute to OA synovial pathology. Exami-
nations of synovium from a murine DMM model identified 394 differentially expressed
miRNAs during post-traumatic OA development [181]. Additionally, studies of miRNA
expression in human OA detected differential expression in disease chondrocytes and
cartilage. These were found to have various roles in disease development such as increased
inflammatory response (miRs-381a-3p, 34a, 146a, 181a), increased NF-κB signaling (miR-
381a-3p), and enhanced angiogenesis (miR-125) [182–186]. Synovial miRNAs can also
serve anti-inflammatory functions and protect against ECM degradation [187–189]. While
many studies have focused on the miRNA contributions in chondrocyte and cartilage
pathology, fewer have focused on synovial miRNA expression. Given the importance of the
synovium in the onset and progression of OA, more studies are needed to fully understand
the contribution of synovial miRNAs in OA and their mechanisms of action.

Long non-coding RNAs (lncRNAs) are non-coding RNAs classified by their size, being
greater than 200 nucleotides in length (Figure 5). lncRNAs play a role in cellular structure
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integrity, transcription, splicing, translation, protein localization, cell cycle, apoptosis, stem
cell pluripotency, embryonic development, immune responses and more [149,190]. Less
is known about the role of lncRNAs in skeletal biology, but aberrant lncRNA expression
has been implicated in the development of cancers, cardiovascular and neurodegenerative
diseases and inflammatory diseases, such as OA [191–195]. lncRNAs, like other ncRNAs,
have been linked to various aspects of OA such as chondrocyte apoptosis, ECM degradation
and the maintenance of the chronic inflammatory response [191,196,197]. For example, the
upregulation of lncRNAs such as HOTAIR, GAS5, H19, PMS2L2, and others, may increase
mRNA expression for bone morphogenic protein-2 (BMP-2), ADAMTS5, MMP-9, and
MMP-13 [198–200]. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is
also associated with OA. MALAT1 expression is upregulated in OA cartilage and results
in increased chondrocyte proliferation and the inhibition of apoptosis [201,202]. Another
lncRNA, FOXD2-adjeacent opposite strand RNA 1 (FOXD2-AS1), is also upregulated
in OA and enhances ECM degradation in OA via increased Toll-like receptor 4 (TRL4)
expression [197,203]. A study examining differences in OA knee arthroplasty lncRNA
expression identified 3007 lncRNAs were upregulated and 1707 were downregulated in
comparison to normal samples [204]. These numbers indicate the breadth of lncRNA
involvement in OA, for which further investigation is required.

circRNAs are novel ncRNAs that have evaded recognition until recently for a variety
of reasons (Figure 5). circRNAs are separated from other RNAs by their circular shape, not
by their size, and they have no definitive 3′ or 5′ ends for techniques recognizing the free
RNA ends to acknowledge [205]. circRNAs are very stable molecules with half-lives of
approximately 48 h [206]. circRNAs can be exonic or intronic, can be translated, and can
influence transcriptional regulation through the regulation of miRNA [207]. These ncRNAs
are involved in the pathogenesis of diseases such as diabetes, cancer, cardiovascular disease
and OA [208]. In OA, circRNAs are known effect the proliferation and survival of chondro-
cytes as well as mediate cartilage metabolism and inflammation within the joint [208–211].
circRNAs often function as miRNA sponges, downregulating the expression of aggrecan
and COL2 and enhancing the expression of ADAMTS-4, MMP-3, and MMP-13, thus leading
to cartilage degradation [150,208]. Via miRNAs’ sponge activity, circRNAs have also been
shown to lead to the degradation of the cartilage matrix [208]. However, circRNAs such as
circSERPINE2 have been shown to have anabolic properties and may have the potential
to be protective against OA [212]. Similarly, circCDK14 has been shown to protect ECM
composition during OA by inhibiting Smad2 expression and inhibiting TGF-β signaling in
chondrocytes [213].

Recent work into the mechanisms of ncRNA function have also identified that various
ncRNAs can interact through a competitive endogenous RNA (ceRNA) axis that can alter
the speed and severity of OA progression [214]. Through this interaction, ncRNAs can
regulate the timing and expression of other ncRNA to alter cell homeostasis and disease
pathology [215]. This novel pathway of cellular regulation is still poorly understood and
warrants future study.
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Table 1. ncRNAs.

ncRNA OA Function References

miR-9 Enhance ECM degradation [171,172]

miR-98 Enhance ECM degradation [171,172]

miR-140 Inhibit ECM degradation [173–177]

miR-148a Enhanced ECM anabolism
Inhibit hypertrophy [178]

miR-4784 Enhances ECM anabolism
Inhibit ECM degradation [179,180]

miR-98 Inhibit ECM degradation
Inhibit inflammation [171]

miR-181a Inhibit ECM degradation
Inhibit inflammation [171]

miR-101 Enhance ECM degradation [183]

miR-145 Enhance ECM degradation [183]

miR-381a-3p Proinflammatory [185–189]

miR-34a Proinflammatory [185–189]

miR-146a Proinflammatory [185–189]

miR-181a Proinflammatory [185–189]

circCDK14 Inhibit ECM degradation [205]

miR-125 Increased angiogenesis [185–189]

HOTAIR Enhance ECM degradation [203]

GAS5 Proinflammatory [202]

H19 Proinflammatory [201]

MALAT1 Inhibit apoptosis
Increase proliferation [204,205]

FOXD2-AS1 Enhance ECM degradation [206,207]
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8. Epigenetics of Obesity

The prevalence of obesity in the general population is increasing and obesity itself
is now identified as a global health problem [216]. The link between weight, physical
activity levels, and OA is well established. Mechanical stressors such as joint loading
are increased in obese individuals and are thought to contribute to disease onset and
progression [217,218]. To help combat this process, weight loss is one lifestyle alteration
commonly suggested in OA patients to reduce joint stress and stiffness [219–221].

However, it is not just weight itself that forms such a strong link between weight
and OA. Adipose tissue is an active endocrine organ that secretes cytokines as well as
adipokines, adipose-secreted proteins [222]. These secreted factors have systemic and local
functions and influence insulin resistance, vascular function, renal function, β cell function,
and cancer [223–227]. In OA, adipokines such as leptin, adiponectin, resistin, visfatin, and
chemerin have been shown to be differentially expressed in the cartilage, synovium, and/or
infrapatellar fat pads of OA patients and mechanistic studies have linked these molecules
to cartilage and synovial inflammation, increased chondrocyte catabolism, and increased
joint pain [228–234].

Recent studies have begun to examine the epigenetic regulation of obesity and the link
with OA. For instance, the expression of two microRNAs (miR-935 and miR-4772) are statis-
tically increased in obese patients [235]. Examinations of miRNA profiles in patients who
have lost weight either by lifestyle changes or bariatric surgery have identified alterations in
miRNA profiles post weight loss [236]. These findings have led some individuals to target
anti-miRNA therapies for OA. Preclinical studies are now underway with several therapies
showing potential [237]. One example of this is miR-146a that suppresses MMP-13 and
ADAMTS-5 following IL-1 proinflammatory stimulation [238].

Other studies have examined alternative epigenetic regulators of obesity. Altered
DNA and histone methylation patterns have been identified in obese individuals suffering
from vascular disease, diabetes, and energy metabolism [239–241]. These findings, and the
increasing body of work detailing age-related epigenetic changes, lend increasing support
that epigenetic dysregulation contributes to OA pathology and highlight the need for
further studies [242–244].

9. Epigenetic Regulators as Therapeutic Options

The development of therapeutic treatments to slow or prevent OA is challenging due
to its multifactorial genetic involvement, the involvement of numerous tissue types, incom-
plete pathogenesis, and disease heterogeneity [158,245,246]. Pharmacological treatment
options under development and evaluation seek to mitigate disease-associated pain and
progression by targeting key proinflammatory mediators. Recent developments in the field
of OA epigenetic regulation have also yielded new potential targets for OA therapeutics.

Traditionally, therapeutics have targeted the molecular pathways known to be affected
in OA pathogenesis. For instance, cartilage degradation due to proteolytic enzymes have
been countered with metalloproteinase and aggrecanase inhibitors and bisphosphonates
have been prescribed to rebalance bone homeostasis (2). However, these therapies have
had limited success due to differences in patient genetic backgrounds and the mixed effects
between different joint tissues. These findings highlight the potential use of epigenetic
targets for OA treatments, particularly epigenetic regulators found in all joint cell and
tissue types.

One therapeutic target that shows promise is ten-eleven-translocation (TET) enzymes
TET1, -2 and -3 methylcytosine dioxygenases function in DNA hydroxymethylation and
have been shown to have cell-specific gene expression regulatory functions [247–249].
Additionally, TETs have been shown to regulate multiple OA-related anabolic (Col2α1,
Acan) and catabolic (Mmp-3, Mmp-13 and Adamts-5) genes [250–252]. TETs are also in-
volved in dysregulated chondrocyte homeostasis through the regulation of the Wnt and
mTOR pathways [252]. A pharmacological inhibitor, 2-hydroxyglutarate, has been shown
to inhibit OA development in a murine destabilization of the medial meniscus model
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highlighting the therapeutic potential of the molecule, but this has yet to be investigated in
clinical trials [252,253]. Other molecules have also been developed that target DNA methyl-
transferases (DMTs) activity such as TETs. Two inhibitors, azacytidine and decitabine,
have already been granted FDA approval for use in blood, colorectal, ovarian and breast
cancers [231,254–257]. Based on in vitro studies, decitabine also shows potential for use in
OA but no clinical trials are presently examining this role [258].

The pharmacological inhibition of polycomb recessive complexes is also currently
under investigation as potential therapeutics. A small-molecule inhibitor of PRC2 complex
member EZH2, EPZ005687, is under evaluation in murine OA models. The results have
been mixed. Using pharmacological inhibition with this molecule, OA was inhibited
following induced medial meniscectomy surgery [134]. However, the genetic ablation of
EZH2 in a cartilage-specific murine model showed exacerbated OA development [135].
These findings highlight the potential of EZH2 pharmacological intervention, but caution
that patient genetic background, cell-type-specific events and timing need to be further
studied. Finally, other EZH2 inhibitors (such as tazemetostat, E7438, GSK126 and UNC1999)
have been utilized in various cancer treatments, and it would be beneficial to test these
drugs for efficacy in OA [259–262].

Histone deacetlyases (HDACs) have been a potential therapeutic option for many years
now. The inhibition of these enzymes through HDACi shows potential for the inhibition of
matrix catabolism and inflammation. However, an early HDAC inhibitor, Trichostatin A,
failed to inhibit MMP-13 expression in human chondrocytes [107,263,264]. Interestingly,
the siRNA-mediated inhibition of HDAC7 did inhibit MMP-13, demonstrating that the in-
hibition of specific HDACs, versus a broad-range inhibitor such as Trichostatin A, may be a
more beneficial approach [107]. This hypothesis was further validated when HDAC4 inhibi-
tion with SW1353 inhibited inflammation following proinflammatory stimulation [104,265].
While continuing studies of the long-term usage of these drugs suggests HDACis have detri-
mental effects on the skeleton in children and adults, HDAC inhibitors have been found
to be largely beneficial to the health of chondrocytes [89,266,267]. One Class III HDAC,
Sirt1, has been shown to stabilize chondrocyte homeostasis and demonstrates reduced
expression in OA patients [268–270]. Sirt1 activator, resvertol, has recently been shown
to protect against cartilage damage in surgical OA murine and rat models, but human
trials are still needed to test the effects in human OA [271–273]. To further our knowledge
about HDACi in OA and towards the development of new therapeutic approaches, other
specific HDAC inhibitors, including ACY-1215, RGFP966 and vorinostat, are being used in
ongoing clinical and murine trials to evaluate the efficacy of these molecules alone and in
combination [266,274,275].

Cell therapy is another therapeutic option gaining favor in the treatment of OA.
Studies of other disease pathologies have identified that mesenchymal stem cells (MSCs)
can interact with the immune system and modulate aspects of the anti-inflammatory
response [276–278], making them of interest in the treatment of OA. Preclinical studies
of intra-articular injections showed promise in animal preclinical trials and researchers
are developing various biological packaging options to minimize the risks of injection site
leakage and the possibility of rejection effects [279,280]. At present, several clinical trials
are underway in the United States to test the efficacy of intra-articular injections of MSCs,
bone marrow aspirates and platelet-rich plasma in OA treatment.

Currently no siRNA therapeutic agents are on the market or in clinical trials in the
treatment of OA; however, they are on the market for other conditions such as pancre-
atic ductal carcinoma, Ebola virus infection, Hepatic fibrosis and others [151]. siRNAs as
therapeutic options offer the benefit of high target gene specificity and the flexibility to
target various aspects of the disease from chronic inflammation to matrix degradation.
However, these methods do not come without their shortcomings. siRNAs are negatively
charged, making it difficult for them to cross cell membranes and elicit a response. This
characteristic causes difficulties in delivery and a lack of adequate volume of siRNA ac-
cessing the area of interest. Due to these difficulties, researchers are investigating different
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drug delivery techniques such as liposome-based, nanoparticle-based and antibody-based
methods to provide better localized delivery [148]. Current siRNA targets under investiga-
tion in preclinical trials for OA include, but are not limited to, Indian hedgehog, NF-kB,
yes-associated protein, hypoxia-induced factor 2 a, and matrix-degrading enzymes such as
matrix metalloproteinases [158,160,281,282].

The use of miRNAs is also only in the preclinical stage, with targeting genes such
as MMP-13, ADAMTS-5, vascular endothelial growth factor (VEGF), BCL2 and more
being used [158,283,284]. lncRNAs have two promising therapeutic uses, as predictive
biomarkers, such as HOTTIP, and potential therapies, via the downregulation of lncRNA-
CIR, for example, [285,286]. Similarly, circRNAs provide potentials biomarkers, such as
hsa_circ 0032131, and as potential therapies [287]. However, research into the use of
lnRNAs and circRNAs in this manner is very preliminary and there is a lack of evidence of
its efficacy. There is great potential for the use of siRNAs, miRNAs, lncRNAs and circRNAs
in the treatment of OA; however, further investigation into the pathogenesis of OA and the
use of miRNAs, siRNAs, lncRNAs and circRNAs in treatment is required.

10. Concluding Remarks

As the global population ages, the prevalence of age-related diseases, such as OA,
is predicted to increase. In the United States alone, the aged population over the age of
85 years is theorized to triple by 2050 [288]. Skeletal and joint diseases such as osteoarthritis
reduce mobility in affected individuals due to chronic pain and stiffness, particularly in
diarthrodial joints. In this review, we have examined several known epigenetic factors that
contribute to OA disease pathogenesis. The dysregulation of these epigenetic regulators
contributes to all aspects of OA progression. They regulate proinflammatory cytokine
and chemokine expression and secretion, the macrophage inflammatory response within
synovial tissues, proteolytic enzymes that increase cartilage degradation, and even the
regulation of bone cell homeostasis, which contributes to abnormal subchondral bone
remodeling and the formation of osteophytes.

Currently, pharmacological and surgical interventions for OA are limited. They focus
primarily on symptom management but are unable to treat the underlying causes of
the disease or slow its progression. Pharmacological remedies that address epigenetic
regulation offer hope more effective treatments will soon be identified.
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DOT1-like histone lysine methyltransferase (DOT1L), sirtuin 1 (SIRT1), lymphoid enhancer-binding
factor 1 (LEF1), T-cell factor 1 (TCF1), wingless-type (Wnt), Runt-related transcription factor 2
(RUNX2), Indian hedgehog (IHH), histone acetyltransferases (HATs), histone deacetylases (HDACs),
enhancer of Zeste 1 polycomb repressive complex subunit-1 (EZH1), enhancer of Zeste 2 polycomb
repressive complex subunit-2 (EZH2), scaffold protein Zeste 12 homolog (SUZ12), nitric oxide (NO),
secreted frizzle-related protein (SFRP-1), medial meniscectomy (MMx), conditional knockout (cKO),
the hypoxia-inducible transcription factor 1α (Hif1α), small nucleolar RNAs (snoRNAs), small nu-
clear RNAs (snRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), RNA-induced
silencing complex (RISC), RNA interference (RNAi), Transforming growth factorβ-activated kinase-1
(TAK1), transforming growth factor-beta (TGF-β), the 3′untranslated region (3′ UTR), insulin like
growth factor binding protein 5 (IGFBP-5), BCL2 apoptosis regulator (BCL2), bone morphogenic
protein-2 (BMP-2), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), FOXD2-
adjeacent opposite strand RNA 1 (FOXD2-AS1), Toll-like receptor 4 (TRL4), competitive endogenous
RNA (ceRNA), ten-eleven-translocation (TET), and mesenchymal stem cells (MSCs).
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