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Abstract: (1) Background: Coronavirus disease 2019 (COVID-19) is a dominant, rapidly spreading
respiratory disease. However, the factors influencing COVID-19 mortality still have not been con-
firmed. The pathogenesis of COVID-19 is unknown, and relevant mortality predictors are lacking.
This study aimed to investigate COVID-19 mortality in patients with pre-existing health conditions
and to examine the association between COVID-19 mortality and other morbidities. (2) Methods:
De-identified data from 113,882, including 14,877 COVID-19 patients, were collected from the UK
Biobank. Different types of data, such as disease history and lifestyle factors, from the COVID-19
patients, were input into the following three machine learning models: Deep Neural Networks
(DNN), Random Forest Classifier (RF), eXtreme Gradient Boosting classifier (XGB) and Support
Vector Machine (SVM). The Area under the Curve (AUC) was used to measure the experiment
result as a performance metric. (3) Results: Data from 14,876 COVID-19 patients were input into
the machine learning model for risk-level mortality prediction, with the predicted risk level ranging
from 0 to 1. Of the three models used in the experiment, the RF model achieved the best result,
with an AUC value of 0.86 (95% CI 0.84–0.88). (4) Conclusions: A risk-level prediction model for
COVID-19 mortality was developed. Age, lifestyle, illness, income, and family disease history were
identified as important predictors of COVID-19 mortality. The identified factors were related to
COVID-19 mortality.

Keywords: COVID-19 mortality; COVID-19; prediction model; machine learning model; COVID-19;
mortality predictors

1. Introduction

Coronavirus disease 2019 (COVID-19) is a dominant respiratory disease [1] that has
circulated globally from 2020 and was characterized as a pandemic on 11 March 2020 [2].
The COVID-19 pandemic has caused a severe global health threat and increased the pro-
cessing burden of worldwide healthcare systems [3]. As of 25 December 2021, there were
283 million confirmed cases and 5.41 million confirmed deaths due to COVID-19 across
more than 237 countries, with a global mortality of 1.9% and a steep daily increase in the
number of cases [4]. COVID-19 is related to severe acute respiratory syndrome [5].

Age is one of the risk factors well-known for severe COVID-19 [6], but age did
not show the typical U-shaped risk curve of COVID-19, which is different from other
respiratory diseases [7]. However, the factors influencing COVID-19 mortality still have not
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been confirmed. In addition, the pathogens of COVID-19 are unknown [8], and relevant
mortality predictors are lacking. However, a recent study showed that biomarkers may
help identify relevant clinical outcomes [9]. COVID-19 survivors may experience persistent
pulmonary disease. A study from China investigating the long-term sequelae of COVID-
19 suggested that COVID-19 causes chronic damage to the cardiovascular system [10].
Identifying potential risk profiles might help in the early identification of patients with a
poor prognosis. The pathogenesis of COVID-19 is unknown, and predictors of mortality
due to COVID-19 are lacking. However, a recent study showed that patient characteristics
might help identify relevant clinical outcomes [11]. Machine learning (ML) can analyze
various variables in a biological compartment and identify patterns associated with specific
disorders [12].

In this study, we used machine learning models and data mining to identify the
relationship between various patient characteristics and COVID-19. We also aimed to
investigate COVID-19 mortality in patients with pre-existing health conditions and examine
the association between COVID-19 mortality and other morbidities, such as diabetes,
cardiovascular cancers, and neurodegenerative diseases.

2. Materials and Methods

De-identified data from 113,882 individuals, including 14,877 COVID-19 patients
collected from the UK Biobank, were used in this study. The UK Biobank is a major
biomedical database and research resource that contains different types of data related to
COVID-19. Our dataset included 17,954 features and a target variable. Of the COVID-19
patients, 799 patients died from the disease.

Four machine learning (ML) models: the Deep Neural Networks model (DNN),
Random Forest Classifier (RF), XGBoost classifier (XGB) and Support Vector Machine
(SVM), were used in this study. These four models were used to predict the mortality risk
level of COVID-19 and were chosen because the DNN model provides the best performance
for deep learning when the size of dataset is large and advanced in handle complicate
relationship between input features and target feature. There are three disadvantages of
the DNN model. Firstly, DNN model may need more than ten times the training time to
achieve the best performance. Secondly, the DNN model requires very large amount of
data to perform better than other ML models. The DNN model also has no standard theory
for choosing parameters and training method, while the RF and XGB models provide a
suitable algorithm to produce a prediction model while reducing the risk of overfitting.
Although the RF and XGB models share a similar structure, the RF model on complex
problems is usually poorer than the XGB trees; and the SVM model often provides a fair
result compared with other machine learning models; it is a simplified model with the fast
run time. SVM model may be disadvantaged when the relationship between input features
and target feature are complicated and unapparent.

The ML models were built using Python with the integrated development environment
provided by PyCharm 2021.2.2 (runtime version: 11.0.12 + 7-b1504.28 amd64), using an
OpenJDK 64-Bit Server VM (JDK version: JetBrains s.r.o., Prague, Czech Republic), with
Anaconda3 and Anaconda Navigator 2.0.4 as the project interpreters. Numpy [13] and
Pandas [14] were used to process arrays and matrices as a dataframe and to process
read/write data and operating data. To build the ML models, Sklearn [15] provided the
application programming interface (API) of the ensemble classifier for the RF classifier,
XGB and SVM and the API for data preprocessing. Sklearn also provided the ML model
platform, and Keras [16] provided implementations of neural networks based on Tensorflow
and Theano.

Table 1 shows the two fundamental data statistics in the UK Biobank original dataset,
including all patients and patients who died due to COVID-19.
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Table 1. Basic characteristics of the UK Biobank study participants showed the mean and its one
standard deviation or percentage and actual number of patients basic characteristics.

Basic UK Biobank
Data Characteristics

Statistics (All Data,
n = 14,877)

Statistic (Death Due to
COVID-19, n = 799)

Age 66.5 (57.8, 75.1) 75.8 (55.9, 90.0)

Death 5.37% (n = 799) N/A

Male gender 52.8% 34.2%

Height 168.6 (159.4, 177.8) 168.8(159.6, 178.0)

Weight 80.1 (64.4, 95.8) 84.0(67.3, 100.8)

Body mass index 28.0 (23.5, 32.6) 29.3(24.3, 34.4)

Current tobacco smoking 7.9% (n= 1176) 10.6% (n = 85)

Vascular/heart problems
diagnosed by doctor 23.2% (n= 3451) 37.7% (n = 302)

Blood clot, deep-vein
thrombosis, bronchitis,

emphysema, asthma, rhinitis,
eczema, or allergy diagnosed

by a doctor

16.5% (n =2456) 22.2% (n = 177)

Other serious medical
condition/disability

diagnosed by a doctor
19.0% (n = 2833) 33.3% (n = 266)

Long-standing illness,
disability or infirmity 33.5% (n = 4983) 57.4 (n = 459)

Alcohol consumption 95.9% (n =14,272) 93.3% (n = 746)

2.1. Features Merging

For features merging, there were 17,954 features in the raw dataset including 13,496 non-
empty features from the UK Biobank. Some of the features could be merged into a new
single feature based on the same feature semantic, as shown by the examples in Table 2.

Table 2. Example of features representing the same meaning under the same UDI.

UDI 1 Data Size Description

21–0.0 500,790
21–1.0 20,334 Weight
21–2.0 46,439 method
21–3.0 2729

1 UDI—the Unique Data Identifier for an item of data within the UK Biobank repository.

Table 2 shows an example of features represented the ‘weight method’ but using
different UDI from 21-0.0 to 21-3.0. Therefore, those features could be merged directly
using the participant ID, as they had the same units and meaning. After merging the
features by UDI grouping, the number of features decreased to 3442. After the primary
merge by UDI grouping, some features represented the same measurement and were
divided into different UDI groupings. Table 3 shows one of these examples, in which
features that were assigned to UDI 94 and UDI 4079 groupings could be merged into
one feature.
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Table 3. Examples of features representing the same meaning in different UDI grouping.

UDI Description

94 Diastolic blood pressure, manual reading

4079 Diastolic blood pressure, automated reading

2.2. Scaling

In data scaling, feature values were scaled to the interval [−1,1] and outliers in the ML
and neural network models were removed to avoid domination by extremely large values
and to create a similar range and difference, by min-max normalization (Equation (1)) [17].
Outliers that were greater than three standard deviations from the mean were removed.

Z = min + ((max − min) ∗ (unscaledData − min)/(max − min)) (1)

2.3. Data Preprocessing and Feature Selection

Primary feature selection involved the elimination of missing data. The threshold of
missing data was 30%, and 296 features were eliminated by primary feature selection. The
second filter involved removal of irrelevant data. For example, variables such as ‘Blood
pressure device ID’ and ‘Height measure device ID’ are not relevant predictors.

The train-test ratio of splitting data was 80:20 and an iterative imputation method
MissForest [18] was applied to replace the missing value in the training set.

Regression input perturbation ranking [19] was used for primary feature selection
using the K-best algorithm through a chi-squared distribution (Equation (2)) [20]. The
importance and collinear nature of the features were used in the selection process. A total
of 229 features with zero importance were identified after one-hot encoding, 240 features
were found to have a cumulative importance of 0.95 after one-hot encoding, and 469 out of
540 features were identified for removal after one-hot encoding. There were 71 of input as
listed in Table A1.

1
2
∗ x2 =

n

∑
i=1

(
(xi − υi)

2

2σ2
i

)
(2)

2.4. Model
2.4.1. Deep Neural Network

The DNN model used four fully connected hidden layers, one input layer and one
output layer. The first hidden layer had 268 neurons, nearly double the number of input
features. The number of neurons in the higher layer is decreased layer by layer decide
by grid search hyperparameter tuning tools. RandomNormal was used as the initializer,
the activation of hidden layers was performed using Relu, and Adadelta was used as the
optimiser. Early stopping was used during the training process to monitor validation loss.

2.4.2. Random Forest Classifier

The RF model used the ‘Gini’ impurity metric (mean decrease in impurity) to calculate
feature importance one by one individually. The GridSearchCV in RF model was applied to
adjust the value of parameters. The number of estimators was set at 279, and the maximum
depth of the trees was set at 5. The number of features to consider when looking for the
best split is the square of the number of input features; the minimum number of samples
and leaf required to split an internal node was set at 1 and 4, respectively.

2.4.3. XGBoost Classifier

The XGB model applied the GridSearchCV impurity metric to adjust the value of
parameters. The number of estimators was set at 200, maximum tree depth was set at 8,
and minimum child weight set at 1.
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2.4.4. Linear SVM

The linear SVM model was mainly used to address the problem of dividing the results
by a linear equation. The linear SVM model performs well when the number of features is
large. Moreover, the speed of training is faster for linear SVM models than for other SVM
models. Under normal circumstances, the linear SVM model has acceptable performance
compared with neural networks.

2.5. Imbalanced Classification

The synthetic Minority Oversampling Technique (SMOTE) was applied for each ML
model. By oversampling the minority class for ML models effectively learn the decision
boundary.

2.6. Output Result

The target variable was binary (patient death yes or no). Machine learning models
were applied to predict the probability of death, ranging from 0 to 1, with values close to 0
indicating a low risk, and those close to 1 indicating a high risk. Table 4 shows the training
information of each ML model.

Table 4. Data distribution.

Training and Prediction Round 50 Times

Prediction type Regression

Total number of data point

In the DNN model:
Training on 9521 samples (before SMOTE),
validation on 2380 samples, and testing on

2975 samples
In the RF, XGB and SVM models: Training on

11,901 samples (before SMOTE)
and, testing on 2975 samples

3. Results

We used DNN, RF, XGB, and linear SVM models for COVID-19 mortality prediction.
Of the four ML models tested, the RF model provided the best results. The output of the
models was a continuous number from 0 to 1, representing the probability of COVID-19
mortality by 5-fold cross-validation. Table 5 shows the AUC values for the risk level results
from the DNN, RF, XGB, and linear SVM models.

Table 5. Regression results from different models obtained on the testing data.

Model Result (AUC)

DNN 0.84 (95% CI: 0.81–0.85)

RF 0.86 (95% CI: 0.84–0.88)

Linear SVM 0.81 (95% CI: 0.79–0.83)

XGB 0.83 (95% CI: 0.82–0.86)

Figure 1 shows the AUC value of the prediction result of the RF classifier model. The
RF classifier model showed the best results of the three machine learning models. The
mortality risk of COVID-19 was found to be 0.86 (95% CI: 0.84–0.88).
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Figure 1. Receiver operating characteristic curve of the RF model.

Table 6 and Figure 2 show the predicted results and corresponding mortality rates.
For example, when a patient had a predicted mortality probability of [0, 0.1), the survival
rate was 99.8%, but when a patient had a predicted mortality probability of [0.6, 0.7), the
survival rate was only 50%.

Table 6. Predicted results and corresponding mortality rates.

Predicted
Probability %

Number of Predicted
Patients Number of Deaths Mortality Rate %

[0,10) 1335.0 3.0 0.225
[10,20) 664.0 17.0 2.56
[20,30) 440.0 39.0 8.86
[30,40) 303.0 46.0 15.18
[40,50) 190.0 41.0 21.58
[50,60) 39.0 9.0 23.08
[60,70) 4.0 2.0 50
[70,80) 0.0 0.0 NaN
[80,90) 0.0 0.0 NaN

[90,100) 0.0 0.0 NaN
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Figure 2. Predicted results and corresponding mortality rates.

For binary classification, a novel threshold-based and k-means clustering method [21]
was used to convert the regression results to binary classification results. The best results
generated by the RF model gave an AUC value of 0.79.

Figure 3 lists the 20 most important features of the RF model. These features were
related to age, lifestyle, illness, income, and family history.

Figure 3. Top 20 important features for the RF model.

Figures 4 and 5 show the SHAP value break down related to the impact of top 20 fea-
tures based on magnitude of feature attributions. Positive or negative SHAP values indicate
the effect of COVID-19 mortality for top 20 features.
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Figure 4. SHapley Additive exPlanations.
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4. Discussion

A risk level prediction model for COVID-19 mortality was developed in this study
using data from the UK Biobank. We used a risk level to predict COVID-19 related mortality
rather than a binary classification prediction because a risk level can be used to easily
identify patients with a poor prognosis earlier by analyzing potential risk factors.

Table 7 shows several scoring systems to estimate the early risk of COVID-19, including
the International Severe Acute Respiratory Infection Consortium Clinical Characteriza-
tion Protocol-Coronavirus Clinical Characterization Consortium (ISARIC-4C) score, quick
COVID-19 Severity Index (qCSI), National Early Warning Score 2 (NEWS2) and CURB-65
(confusion, uremia, respiratory rate, BP, age 65 years).
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Table 7. Comparison of performance with developed scoring systems.

Model AUC

RF model (This study) 0.863 (95% CI: 0.842–0.881)

NEWS2 [22] 0.790 (95% CI: 0.643–0.937)

CURB-65 [23] 0.81 (95% CI: 0.71–0.91)

ISARIC-4C [24] 0.79 (95% CI: 0.78–0.79)

qCSI [25] 0.81 (95% CI: 0.73–0.89)

Compared with developed scoring systems, the RF model in this study achieve the
best performance of COVID-19 mortality risk prediction.

Considering the time limit for running the model, the DNN model used a single
hidden layer, the grid search hyperparameter tuning tools used for RF model estimators
was set at only few options, and the maximum depth option of the trees was set at 1 to 5.
Thus, the parameters of the model may not be fully optimized and although the results
showed an AUC value of 0.86 (95% CI:0.84–0.88), a higher AUC value may have been
possible. Another limitation of this study is that because there were more than a thousand
features in the original dataset, many of the features were similar. We may not have been
able to eliminate all of the related data because the correlations between them were lower
than the threshold. For example, the features ‘year of birth’ and ‘mother still lives’ should
be related under normal circumstances. The raw dataset also contains variables only at
the individual level. Area-level data such as temperature, and income may increase the
performance of prediction models [26], but were not provided in the detailed information
of each patient in the original dataset.

For COVID-19 patients, age represented the highest risk, as more than five out of the
20 most important features were related to age of the patient. Income, lifestyle, disease
history, and family disease history were also important features for COVID-19 patients.
This study defined the important features related to COVID-19 mortality, and may provide
an objective and quantitative risk model for clinical care.

5. Conclusions

This study found a significant relationship between specific patient characteristics
and the risk of COVID-19-related death. Age, income/personal property, long-standing
illness, disability, and heart disorders were important factors affecting COVID-19 mortality.
Some unique features, such as ‘length of mobile phone use’ and ‘non-oily fish intake’,
were relevant for predicting COVID-19 mortality but have not previously been reported.
Alcohol intake showed no associated COVID-19 mortality in the prediction, which is
inconsistent with what may be theoretically expected [27]. This study identified some
patient characteristics that are not easily obtained but showed a relationship with COVID-
19 mortality.

Future studies will aim to collect more laboratory testing data of confirmed COVID-19
cases and collect more detail information of patients for analysis at the area-level to increase
the performance of the prediction models.
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Appendix A

Table A1. Input features for models.

Feature Name

Able to confide Age at recruitment Age completed full
time education

Age first had sexual
intercourse

Age when attended
assessment centre

Alanine
aminotransferase Albumin Alkaline phosphatase

Arm fat-free mass
(left)

Arm fat-free mass
(right)

Arm predicted mass
(left)

Arm predicted mass
(right)

Aspartate
aminotransferase

Average total
household income

before tax
Birth weight known Body mass index

(BMI)

Body mass index
(BMI) Bread intake Breastfed as a baby Carer support

indicators
Chest pain or

discomfort Cholesterol Cooked vegetable
intake C-reactive protein

Creatinine Current employment
status Cystatin C

Daytime
dozing/sleeping

(narcolepsy)

Direct bilirubin Dried fruit intake Eosinophill count Ever had bowel
cancer screening

Falls in the last year Father still alive Forced expiratory
volume in 1-s (FEV1)

Forced expiratory
volume in 1-s (FEV1)

Z-score
Forced vital capacity

(FVC)
Forced vital capacity

(FVC) Z-score
Gamma

glutamyltransferase Genetic sex

Glucose Glycated
haemoglobin (HbA1c)

Haematocrit
percentage

Haemoglobin
concentration

HDL cholesterol Hearing
difficulty/problems

Hearing
difficulty/problems

with background
noise

High light scatter
reticulocyte count

High light scatter
reticulocyte
percentage

Housing score
(England) IGF-1 Illnesses of siblings

Immature reticulocyte
fraction

Impedance of arm
(left)

Impedance of arm
(right)

Impedance of leg
(left)

Impedance of leg
(right)

Impedance of whole
body

Intended
management of

patient (polymorphic)

Intended
management of

patient (recoded)
Interpolated Age of

participant when
non-cancer illness

first

diagnosed
Interpolated Age of

participant when
operation took place

Interpolated Year
when operation took

place

IPAQ activity group LDL direct Leg fat-free mass (left) Leg fat-free mass
(right)

Leg predicted mass
(left)

Leg predicted mass
(right)

Length of mobile
phone use

www.ukbiobank.ac.uk
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