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Abstract: Despite the dramatic improvements of revascularization therapies occurring in the past
decades, a relevant percentage of patients treated with percutaneous coronary intervention (PCI)
still develops stent failure due to neo-atherosclerosis (NA). This histopathological phenomenon
following stent implantation represents the substrate for late in-stent restenosis (ISR) and late stent
thrombosis (ST), with a significant impact on patient’s long-term clinical outcomes. This appears
even more remarkable in the setting of drug-eluting stent implantation, where the substantial delay
in vascular healing because of the released anti-proliferative agents might increase the occurrence
of this complication. Since the underlying pathophysiological mechanisms of NA diverge from
native atherosclerosis and early ISR, intra-coronary imaging techniques are crucial for its early
detection, providing a proper in vivo assessment of both neo-intimal plaque composition and peri-
strut structures. Furthermore, different strategies for NA prevention and treatment have been
proposed, including tailored pharmacological therapies as well as specific invasive tools. Considering
the increasing population undergoing PCI with drug-eluting stents (DES), this review aims to
provide an updated overview of the most recent evidence regarding NA, discussing pathophysiology,
contemporary intravascular imaging techniques, and well-established and experimental invasive
and pharmacological treatment strategies.

Keywords: coronary artery disease; percutaneous coronary intervention; neo-atherosclerosis; in-stent
restenosis; optical coherence tomography

1. Introduction

Coronary artery disease (CAD) remains the leading cause of mortality and morbidity
worldwide, albeit with many advances in diagnosis and treatment [1]. Nevertheless, the
survival rate of patients with CAD has been continuously improving in the last years due to
the development and improvement of revascularization therapies, including percutaneous
coronary intervention (PCI) and coronary artery bypass graft (CABG) [2]. However, both
treatments could be burdened by the activation of accelerated atherosclerosis, which
may occur within months to years and lead to revascularization failure associated with
unfavorable long-term follow-up outcomes [3].
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Since the introduction of coronary angioplasty about forty years ago, in-stent restenosis
(ISR) and de novo neo-atherosclerosis (NA) have been recognized as major causes of long-
term PCI failure, together with late stent thrombosis [4]. Pure and early (<1 year from stent
implantation) ISR is characterized by the proliferation and migration of vascular smooth
muscle cells (VSMCs) leading to the development of significant neointimal hyperplasia [5].
Conversely, the development of a novel fibroatheroma within the stent struts, a process
also called neo-atherosclerosis, has raised as a crucial favoring factor to induce long-term
coronary complications, including late ISR (>1 year from stent deployment) and very late
stent thrombosis [6].

As stent failure persists to be a major concern despite the use of new generation
DES, the aim of this review is to provide an update on in-stent neo-atherosclerosis, ar-
guing about pathophysiology and contemporary intravascular imaging techniques, and
focusing on potential invasive and pharmacological approaches to prevent and treat this
late complication.

2. Pathophysiology of Native Atherosclerosis, In-Stent Restenosis and Neo-Atherosclerosis

The underlying pathophysiological mechanisms of ISR and NA are complex and
significantly different from those causing native atherosclerosis (Figure 1). Indeed, compre-
hensive knowledge of all these cellular and molecular pathways are fundamental also to
stimulate further research on novel molecular targets to prevent this complication [7].
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Coronary native atherosclerosis begins with early adaptive or diffuse intimal hyperpla-
sia in atherosclerosis-prone vessels, usually near branch points [8,9]. These intimal masses,
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formed by a natural accumulation of smooth muscle cells, in the absence of lipids and
macrophage foam cells, develop from birth and are considered a physiological response to
blood flow rather than a pathological atherosclerotic process, whereas they could enlarge
with advancing age progressing to pathological intimal thickening [8,9]. Afterwards, the
invasion of lipid pools and macrophages foam cells determines the formation of early
and late fibroatheromas with large necrotic cores [3]. Necrotic cores may develop and
expand, sometimes quickly due to intraplaque hemorrhage from leaky vasa vasorum.
Furthermore, the fibrous cap above the necrotic core is a critical structural component:
active proteases released by infiltrating macrophages could steadily induce a thinning of
the fibrous cap [3]. The progressive fibrous cap thinning may result in plaque rupture, the
leading cause of acute coronary thrombosis. On the other hand, erosions occur in early
fibroatheromas or lesions with pathological intimal thickening, where a luminal surface
rich in VSMCs, proteoglycan and hyaluronan matrix induces de-endothelialization and
platelet thrombosis [10,11].

In-stent de novo atherosclerosis, or neo-atherosclerosis, is histologically characterized
by an accumulation of lipid-laden foamy macrophages with or without a necrotic core
and/or calcification within the nascent intima following stent implantation [6]. By the
way, there is no communication among neo-atherosclerotic necrotic cores and the under-
lying native plaque [6]. The most common and earliest lesion of NA is the formation of
foamy macrophage clusters, which are usually located in the luminal surface or within
the peri-strut area [12]. Subsequently, the accumulation of foamy macrophages within the
neointimal layer or on the luminal surface could induce the formation of fibroatheroma [12].
The necrotic core often holds acellular fragments with free cholesterol, with an extracellular
matrix (ECM) largely damaged. In addition, extensive hemorrhage with fibrin accumula-
tion could be seen in the necrotic core in NA, originating after fissure or rupture of luminal
surface or, alternatively, from leaky vasa vasorum developed in to the adventitial layer near
the stent struts [12]. Finally, similarly to native vessel atherosclerosis, foamy macrophages
migrated in to the neointimal layer may lead to the formation of fibroatheroma with a
thin cap, which could, in turn, result in complications such as in-stent plaque rupture and
subsequent thrombosis [3,12]. Moreover, also calcification could be observed within the
neointima, particularly involving stents with long-term implant duration. Morpholog-
ical features of calcification in NA varies widely from microcalcification, due to foamy
macrophages or VSMCs apoptosis, to fragmented (>1 mm) or sheet-like calcification (>3
mm) derived from calcification of ECM, collagen and VSMCs [13]. Calcification within the
in-stent neointima could occur for both BMS and DES. However, the exclusive feature in
DES-related NA is calcification of fibrin, mainly observed in paclitaxel-eluting stents [13].
Conversely, VSMCs proliferation and neointimal hyperplasia without foamy macrophages
infiltration are frequently observed after BMS implantation and represent the distinctive
feature of BMS-related ISR [14].

A detailed comparison between native atherosclerosis and de novo neo-atherosclerosis
is reported in Table 1. As mentioned above, while the atherosclerotic process in native
vessels typically materializes through several years, in-stent NA usually occurs in a shorter
interval after the PCI and appears to be more common after DES implantation rather
than BMS implantation [6]. The processes responsible for in-stent NA are not entirely
understood; nevertheless, it could be speculated that stent implantation induces vascular
injury with endothelial denudation. The anti-proliferative effects of the eluted drugs, strictly
related to DES action and efficacy, induce decreased nitric oxide production and reduced
expression of anti-thrombotic molecules, leading to an incomplete and belated regeneration
of endothelium [15,16]. Particularly, the physiological barrier function of the endothelium
is compromised by altered cell junctions, favoring the migration of lipoproteins within
the sub-endothelial area, thus leading to NA development [16]. Of note, since NA after
BMS implantation develops earlier than atherosclerosis in native coronary, the stented
segment is characterized by an incompetent endothelium anyway, regardless the presence
of anti-proliferative mechanisms [17].
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Table 1. Profile comparison of native atherosclerosis and neo-atherosclerosis.

Native Atherosclerosis Neo-Atherosclerosis

Earliest lesion Intimal thickening, which could regress Intimal thickening with VSMCs proliferation

Intimal xanthoma
(“fatty streaks”)

Individual foam cells interspersed
throughout the intima

Foam cells clusters in surface or
in peristrut regions

Pathological intimal thickening Present Absent. Rarely present in BMS

Necrotic cores Deep Superficial

Intraplaque hemorrhage Arising from the lumen and/or leaky
neoangiogenic vessels

Arising from the lumen and/or leaky
neoangiogenic vessels

Plaque erosion Occasional Rare

Calcification Microcalcification, calcified sheets,
or calcified fragments

Microcalcification, calcified sheets, or
calcified fragments. Calcified fibrin in DES

Eruptive calcified nodules Rare Absent

Fibrocalcific plaque Very common Common, especially in DES

Thrombosis
60–70% due to plaque rupture; less

frequently by plaque erosion. Rarely
eruptive calcified nodules.

Primarily due to plaque rupture.
In-stent erosion is a rare event

Chronic total occlusion Very common Organized thrombus; not always derived
from plaque rupture or restenosis

BMS: bare metal stent; DES: drug eluting stent; VSMC: vascular smooth muscle cell.

Furthermore, stent implantation induces local blood flow disorders related to changes
in shear stress, leading to the activation of regenerating endothelial cells and the subsequent
expression of adhesion molecules (such as ICAM-1, PECAM-1, and VCAM-1) in peri-strut
locations [18]. Consequently, monocytes adhere to activated endothelium and migrate into
the subendothelial space, converting into macrophage-derived foam cells [19]. DES poly-
mers could also induce chronic inflammation characterized by infiltration of lymphocytes,
macrophages, and giant cells, contributing to NA development [20]. In addition, human
autopsy analysis showed that restenotic DES reveals higher proteoglycan deposition than
restenotic BMS, potentially favoring NA, as proteoglycans mediate lipoprotein retention at
the subendothelial space [20].

Finally, thrombosis in NA is primarily related to plaque rupture; albeit in-stent erosion
is rarely observed in DES and BMS, this complication could occur without the formation of
the necrotic or the development of fosamy macrophage clusters, regardless the presence of
in-stent restenosis [21,22].

3. Clinical Impact of Neo-Atherosclerosis

The impact of both ISR and NA significantly differed among bare-metal stents (BMS),
first-generation drug-eluting stents (G1-DES) and second-generation DES (G2-DES). Mainly,
ISR occurred early and more frequently after BMS implant due to enhanced neointimal
hyperplasia [23], whereas this process is prevented by both G1- and G2-DES because of
anti-proliferative in-stent drug release, thus leading to lower rates of ISR [23]. However,
this unique advantage in terms of ISR has been partially offset by an increased risk of
thrombotic complications, especially with first-generation (G1-DES), due to hypersensitivity
reactions to stent polymer and chronic inflammation, inducing malapposition and coronary
aneurysms development [24]. On the other hand, the development of new stent platforms
with G2-DES (thinner struts, biocompatible durable and biodegradable polymers) has
improved clinical outcomes, particularly by decreasing late and very late thrombotic
complications [25]. Table 2 reported the incidence of definite very late stent thrombosis
according to Academic Research Consortium in BMS, G1-DES and G2-DES [26–33].
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Table 2. Incidence of definite very late stent thrombosis in BMS, G1-DES and G2-DES.

Study BMS G1-DES G2-DES

Tada et al. [27] 1.5% 2.2% 1.0%
EXAMINATION Trial [28] 2.1% - 0.8%

TYPHOON Trial [29] 4.0% 3.6% -
SESAMI Trial [30] 1.3% 1.9% -

COMFORTABLE-AMI Trial [31] 2.2% - 3.9%
RACES-MI Trial [32] - 1.2% 0%

Raber et al. [33] - 1.6% (PES)
1.0% (SES) 0.3%

BMS: bare metal stent; G1-DES: first-generation drug-eluting stents; G2-DES: second-generation drug-eluting
stents; PES: paclitaxel eluting stent; SES: sirolimus eluting stent.

Conversely, a higher incidence of de novo neo-atherosclerosis with DES compared
with BMS has been observed [23]; of note, this difference did not significantly diverge
among first- and second-generation DES [34], negatively affecting the long-term outcome
of patients undergoing PCI [35–37].

Although the well-established correlation between late ISR and adverse cardiac events,
few studies investigated the clinical significance of NA detected by intra-coronary imaging
techniques on long-term outcome of patients undergoing PCI. Sumino et al. [38] performed
an OCT analysis (median follow up of 4.8 years) on 187 patients undergoing coronary
stent implantation, mainly G2-DES. Patients with at least one stent affected by NA re-
ported an increased incidence of MACE (all-cause death, non-fatal MI, non-target vessel
revascularization, target vessel revascularization, stent-based adverse events) compared
with patients without NA (25% vs. 9%, respectively; p = 0.002). Cox-regression analysis
showed how NA could independently predict MACE (HR 4.14, 1.58–10.8, p = 0.004). In
another OCT-guided study, 46 patients with NA were followed using OCT for a median
of 46 months [39]. The incidence of MACE (composite of death, myocardial infarction
and target lesion revascularization) was significantly higher in the NA group than in the
no-NA group (36.9 vs. 9.3 %, p value < 0.001). Despite these promising results, a large-scale,
randomized study is still lacking in order to elucidate whether early detection of NA could
be beneficial to improve long-term outcome after coronary stenting.

4. In-Stent Restenosis and Neo-Atherosclerosis: The Pivotal Role of
Intra-Coronary Imaging
4.1. Intravascular Ultrasound (IVUS)

Although IVUS currently provides proper information on atherosclerotic plaque
composition of coronary native vessels, particularly with virtual histology-IVUS (VH-
IVUS) [40], several limitations exist to discriminate neo-intimal tissues because of the signal
interference from stent metal struts [23]. However, multiple IVUS-guided analyses of
neo-intima patterns allowed collecting more accurate data on both natural history and
tissue characterization of ISR and NA [41,42].

The potential risk of in-stent late lumen loss due to NA was firstly suggested by early
angiographic and histopathologic studies, thus without the use of intracoronary imaging
techniques. Indeed, BMS-related ISR was firstly considered a benign process caused by a
transient chronic inflammation leading to neo-intimal hyperplasia. These studies proposed
that ISR, occurring between 6 months and one year after receiving a BMS, was followed by
a quiescent period of intimal regression with concomitant luminal enlargement between 2
and 3 years after stent placement [43,44]. However, subsequent studies with longer clinical
follow-up elucidated that a late luminal re-narrowing usually occurred beyond 4 years,
thus suggesting that ISR may not be as stable as previously thought and that more complex
molecular pathways should be underlying this late stent complication [45].

DES substantially reduced ISR burden compared to BMS, whereas the incidence of
long-term NA resulted considerably higher in DES (31%) than BMS (16%) [6]. This late catch-
up phenomenon has been explained by the initial, transient, and drug-driven suppression
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of neo-intimal growth, followed by the activation of multiple other mechanisms (incomplete
re-endothelization, rapid deposition of lipid-laden macrophages, necrotic core formation)
gradually leading to NA-related stent failure [23]. Interestingly, IVUS-guided analyses
appear to be consistent with angiographic and histopathological findings confirming that
stents developing late ISR (either BMS or DES) have neo-intimal composition, with necrotic
core and dense calcium thus suggesting in-stent NA [42]. Additionally, in order to assess
potential differences of IVUS-based tissue characterization of restenotic neo-intima between
BMS and DES, Ando et al. found that patients receiving DES present a significantly higher
percentage of lipids and a significantly smaller percentage of fibrous tissue in restenosis
lesions compared with those after BMS [14].

4.2. Optical Coherence Tomography (OCT)

In order to overcome the previously mentioned technical limitations of IVUS, optical
coherence tomography (OCT) has become in the last decade the method of choice to
assess distinct morphological characteristics of restenotic tissue (structure, backscatter,
microvessels), as well as peri-strut NA composition (degree of macrophage infiltration and
lipid deposition, in-stent calcification, fibrous cap thickness, neointimal rupture), as the
consequence of a significantly higher resolution capacity (10–20 µm) compared with IVUS
(80–120 µm) [46].

On OCT images, Gonzalo et al. reported in 2009 the first in vivo morphological classi-
fication of different ISR patterns. According to this, restenotic tissue structure was defined
as either layered, homogeneous or heterogeneous [47]. However, despite the widespread
adoption of this classification in daily clinical practice and for research purposes, some ISR
patterns are not adequately categorizable using this system [48,49], whereas it does not
allow an appropriate classification for NA. For these reasons, Yamamoto et al. suggested
modifying the OCT-guided ISR classification as follows: homogeneous high-intensity tissue
(type I), heterogeneous tissue with signal attenuation (type II), heterogeneous speckled
tissue (type III), mixed tissue containing poorly delineated region with an invisible strut
(type IV), mixed tissue containing sharply delineated low-intensity region (type V) and
bright protruding tissue with an irregular surface (type VI). Additionally, the potential
clinical significance of this classification has been further explored; the authors found that
the incidence of stent fracture was significantly higher in both type I and IV, whereas
the duration between stent implantation and ISR resulted significantly longer in types IV
and VI [50].

Interestingly, significant variability of ISR pattern among different stent types has been
described, thus supporting the hypothesis that the underlying neo-atheroma composition
is specifically different between BMS, G1-DES and G2-DES. Layered and heterogeneous
patterns result prevalent with DES; conversely, lesions were homogeneous after BMS
implantation [51]. In addition, a strict association between morphologic OCT characteristics
and angiographic progression patterns of ISR has been described after DES implantation.
In particular, a heterogeneous tissue morphology was more frequently observed in those
patients who developed significant late ISR with poor disease progression in the early
phases after DES implantation (the so-called jump-up progression). At the same time,
homogenous patterns resulted more prevalent among patients with gradual progression
of ISR [52].

Moreover, neo-atherosclerotic plaque tissue varies within the DES population. In
this regard, after first-generation DES implantation, lipid length, lipid arc degree and
the prevalence of a 360◦ lipid arc seem to be significantly raised, while the fibrous cap
was thinner compared with second-generation DES. Therefore, the higher prevalence of
these unstable features in the neo-intimal composition of G1-DES might explain the higher
incidence of late stent thrombosis with these devices and the reduced frequency of the same
phenomenon with G2-DES [53]. Moreover, although stent malapposition and uncovered
struts represent the two traditional major causes of late DES thrombosis, multiple OCT
analyses elucidated the crucial pathogenetic role of NA in late stent failure due to thrombus
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formation. Accordingly, a recent OCT-based study enrolling consecutive patients with
late DES thrombosis showed a remarkable prevalence of NA (43.3% of the population),
with in-stent plaque rupture being the most dominant mechanism of stent thrombosis [54].
Additionally, among stable patients with progressive ISR, some evidence supporting a
NA prevalence of about 30% have been reported at long-term follow-up [55,56]. Of note,
despite large clinical trials assessing the effect of neo-intimal classification on long-term
clinical outcomes are currently lacking, a recent contribution by Kim et al. suggested that
among different patterns of NA, the heterogeneous lesions appear to be linked with poorer
MACE [57].

In conclusion, in most PCI settings, these intracoronary techniques, OCT or IVUS,
might improve procedural success and prevent late stent failure avoiding suboptimal device
deployment. However, current guidelines strongly suggest their use, preferentially OCT, to
investigate the mechanisms of stent failure [2,58]; increasing awareness and understanding
of NA mechanisms, they might potentially guide appropriate invasive treatments. Table 3
reports the most important studies investigating the usefulness of IVUS and OCT in the
NA setting [14,42,47,54–56,59–64]. Figure 2 shows in-stent NA detected by IVUS (panel A)
and OCT (panel B).

Table 3. Main findings from observational studies on intra-vascular imaging techniques assessing
neoatherosclerosis.

Study (Year) Type of Study Methodology Main Findings

Kang et al. (2010) [42] Observational

VH-IVUS-guided tissue
characterization of 117 restenotic

lesions after BMS and
DES implantation

BMS- and DES-treated lesions develop in-stent
necrotic core and dense calcium, suggesting the

development of in-stent neoatherosclerosis

Ando et al. (2013) [14] Observational

IB-IVUS-guided tissue
characterization of 54 restenotic

lesions after BMS and
SES implantation

The neo-intimal tissue after SES implantation
had a significantly larger percentage of lipid

tissue and a significantly smaller percentage of
fibrous tissue compared with that after BMS

Yoshizane et al. (2019) [61] Observational

IB-IVUS-guided tissue
characterization of 125 restenotic

lesions after BMS and
DES implantation

On long-term FUP, a significant difference was
observed in the change of TD of the BMS group

(low value in the early period with later
increase), whereas TD of the DES group tended

to be high from the early period

Gonzalo et al. (2009) [47] Observational

Quantitative and qualitative
OCT-guided restenotic tissue

structure characterization
of 25 lesions

Layered, homogeneous and heterogeneous
pattern of restenotic tissue have been identified.

Habara et al. (2011) [62] Observational

Quantitative and qualitative
OCT-guided restenotic tissue
structure characterization of

43 patients with very-late ISR
compared with 39 patients with

early ISR

Heterogeneous pattern of restenotic tissue was
significantly higher in patients with very-late

ISR compared to patients with early ISR

Kang et al. (2011) [55] Observational OCT-guided analysis of 50 DES
in-stent restenosis lesions

OCT findings of NA was frequently identified
especially in patients with late ISR, including
TFCA-containing neointima, intimal rupture

and thrombi.

Kim et al. (2012) [56] Observational

OCT-guided evaluation of serial
changes in stent strut coverage
and neointima characteristics of

76 DES-treated lesions at
9-months and 2-years FUP

Neointimal coverage improved during FUP
without significant changes in the incidence of

malapposed struts and intracoronary thrombus;
NA including transformation to lipid-laden
neointima increases during extended FUP

Yonetsu et al. (2012) [63] Observational
Determining the predictors of NA

using OCT-analysis of
179 stent-treated lesions

Stent type (DES), stent age (>48 months), age
(>65 years), current smoking, chronic kidney
disease and ACEi/ARBs use are significant

predictors of NA.
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Table 3. Cont.

Study (Year) Type of Study Methodology Main Findings

Nakamura et al. (2016) [64] Observational

OCT-guided evaluation of failure
mechanisms and NA patterns in
61 patients with very-late DES or

BMS stent thrombosis

Uncovered struts, malapposed struts and stent
underexpansion were more frequently observed
in DES; NA, lipid neo-intima, TCFA neo-intima
were more frequently observed and had a more

diffuse pattern of distribution in BMS.

Joner et al. (2018) [54] Observational OCT-guided assessment of NA in
134 patients with VLST

NA was frequently observed in VLST (43.3%);
in-stent plaque rupture resulted the dominant

mechanism causing VLST.

Nakamura et al. (2019) [59] Observational

OCT-guided analysis of NA
patterns among 98 patients with
ISR and previously BMS/DES

treated lesions

NA with ISR was more frequent with DES than
BMS and its pattern exhibited a more focal and

thicker fibrous cap as compared with BMS.

Yamamoto et al. (2020) [60] Observational
OCT-guided evaluation of
133 lesions with ISR after

DES implantation

Neo-intimal tissue was classified in six different
patterns: homogeneous high-intensity tissue

(type I), heterogeneous tissue with signal
attenuation (type II), speckled heterogeneous

tissue (type III), heterogeneous tissue containing
poorly delineated region with invisible strut
(type IV), heterogeneous tissue containing

sharply delineated low-intensity region (type V),
or bright protruding tissue with an irregular

surface (type VI)

VH-IVUS: virtual histology–intravascular ultrasound; BMS: bare metal stent; DES: drug eluting stent; IB-IVUS:
integrated backscatter intravascular ultrasound; SES: sirolimus eluting stent; FUP: follow-up; TD: tissue signal
distribution; OCT: optical coherence tomography; ISR: in-stent restenosis; NA: neo-atherosclerosis; TFCA: thin
fibrous cap atheroma; ACE-I/ARBs: angiotensin-converting enzyme inhibitors/angiotensin II receptor blockade;
VLST: very late stent thrombosis.
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5. Prevention and Treatment of Neo-Atherosclerosis
5.1. Pharmacological Strategies
5.1.1. Lipid-Lowering Therapy

The potential interaction between neo-atherosclerosis and low-density lipoprotein
cholesterol (LDL-c) levels remains controversial [65], and the current evidence mainly
comes from observational OCT-based studies. Kuroda et al. supported that high LDL-
c blood concentration may be independently related to NA progression [39]. Recently,
small dense LDL-c and malondialdehyde-modified LDL were found significantly higher in
patients with NA compared with those without this late stent complication [66]. Oppositely,
a sub-study of the EXAMINATION trial suggested that NA resulted strictly associated
with stent length rather than the amount of circulating LDL-c [67]. Finally, several data
showing potential benefits of a synergistic statin and eicosapentaenoic acid (EPA) therapy
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to prevent late stent failure confirm the potential relationship between lipid levels and
NA [68]. In this regard, the LINK-IT trial, a prospective, randomized, single-center OCT-
based study, showed that intensive combined lipid-lowering therapy (high-dose statins
with EPA) suppressed NA progression compared to standard therapy (low-dose statins
alone), translating in greater minimum lumen area, reduced in-stent lipid progression
with macrophage accumulation, and lower target lesion revascularization [69]. Despite
these promising findings, there are no specific therapeutic guidelines recommending lipid-
lowering therapy to reduce neo-atherosclerosis burden; furthermore, whether the current
proposed LDL-c levels targets for secondary prevention (55 mg/dL or 1.4 mmol/L) might
prevent NA and the occurrence of stent failure is uncertain. Along these lines, a recent
small OCT study reported a lower incidence of NA in patients with LDL-c < 70 mg/dL [70].

5.1.2. Antiplatelet Therapies

The inhibition of platelet activation is a cardinal point of secondary prevention af-
ter DES implantation [71]. The European Society of Cardiology (ESC) guidelines em-
phasize the importance of this strategy and suggest a personalized duration of dual an-
tiplatelet/anticoagulant therapy based on comorbidities and ischemic/bleeding risk [2,72].
The DAPT trial showed that long-term treatment with dual antiplatelet therapy (DAPT)
reduced the risk of myocardial infarction and stent thrombosis in patients receiving DES
at the cost of a raised risk of moderate bleeding [73]. Interestingly, in this study, patients
receiving G1-DES reported the greater reduction in ischemic events following longer DAPT
duration [74]. Conversely, in patients receiving G2-DES, a prolonged DAPT resulted in
a poorer benefit [74]. Otherwise, the thrombotic risk after PCI is influenced by several
clinical (diabetes, acute coronary syndromes, chronic renal failure) and procedural features
(multiple stents, stent length, small vessels, malapposition). Thus, the type and duration of
antiplatelet strategy should be tailored to the patient’s and procedural characteristics other
than the stent type in order to prevent stent thrombosis and avoid excessive bleeding risk.
Neo-atherosclerosis is a crucial substrate of late stent thrombosis, which is observed signifi-
cantly earlier after DES (mean ~420 days) than after BMS (mean ~2160 days), whereas no
significant difference between G1 and G2-DES has been noticed since both employ mTOR
inhibitors [75]. Nevertheless, no specific recommendation regarding the type and duration
of antiplatelet therapy exists for patients with evidence of NA to prevent stent thrombosis.
Furthermore, few studies examined the long-term use of P2Y12 inhibitors after coronary
stenting. Xie et al., retrospectively enrolling 57,900 patients undergoing PCI, found that
among those who continued P2Y12 inhibitors intake, a significant reduction in major car-
diovascular events was observed at 5 years follow-up [76]. Similarly, in the THEMIS Trial,
long-term therapy with ticagrelor in addition to aspirin reduced cardiovascular death,
myocardial infarction, and stroke, although with an increased risk of major bleedings at a
median follow-up of almost 40 months [77,78].

Finally, regarding the potential role of novel anticoagulants, the combination of rivarox-
aban and aspirin in comparison with aspirin alone did not impact the rate of definite stent
thrombosis in patients chronic coronary syndromes with a previous PCI in the COMPASS-
PCI trial [79].

5.1.3. Targeting Inflammation and Oxidative Pathways

An activated inflammation is at the base of NA development and progression; thus,
patients with documented neointimal hyperplasia at quantitative OCT revealed higher
levels of high sensitivity C-reactive protein (hs-CRP) and eosinophil cationic protein levels
compared with those without in-stent complications, with a proportional relationship
between neointimal burden and systemic levels of inflammatory markers [80]. According
to these findings, inflammatory pathways may be potentially targeted, providing new
opportunities for IRS and NA prevention and treatment.

In this regard, the results of the pivotal CANTOS trial demonstrated for the first time
that pharmacological strategies explicitly targeting the interleukin-1β (IL-1β) inflammatory
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pathway may improve cardiovascular outcomes in patients with a history of myocardial
infarction and enhanced inflammatory response (hs-CRP > 2 mg/dL) [81]. Of note, patients
with the highest clinical benefit were more frequently treated with PCI before randomiza-
tion, suggesting these anti-inflammatory drugs might have a beneficial effect in PCI setting,
attenuating atherosclerosis progression and stent failure [81]. Methotrexate has also been
investigated as a preventive strategy for NA development due to its properties to block IL-1
receptors and inhibit the release of other inflammatory cytokines [82]. In a pre-clinical OCT-
based study analyzing rabbits treated with DES, the administration of methotrexate led
to thinner and smaller lipid-rich neointimal areas [83]. Furthermore, colchicine is another
well-known drug with anti-inflammatory and anti-proliferative effects [84]. Many studies
investigated its role in the prevention ISR, with contrasting results. In an animal placebo-
controlled randomized trial, colchicine significantly reduced late lumen loss compared with
placebo [85]. Additionally, in another double-blinded randomized clinical trial, 196 patients
undergoing PCI with BMS implantation reported a lower incidence of angiographic and
IVUS-defined ISR after treatment with colchicine 0.5 mg twice daily than controls [86].

Finally, recent studies proposed a crucial vaso-protective role of the glucagon-like
peptide 1 (GLP-1). The activation of the GLP-1 receptor has been demonstrated to induce
the proliferation of endothelial cells, stimulate NO production, and inhibit the migration
of monocytes and VSMCs proliferation [87–89]. These findings, in turn, suggest that both
glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors
might potentially modulate ISR and NA development. Indeed, the GLP-1 analogue liraglu-
tide showed lower intimal hyperplasia in a pig model after coronary stent implantation [90].
Accordingly, DPP-4 inhibitors eluting stents improved neointima regeneration in vitro and
in a diabetic rabbit model [91]. These agents might also reduce PCI-related late com-
plications through well-known anti-platelet properties [92]. Nevertheless, despite these
favorable findings, clinical data available so far are conflicting. A recent observational
study investigating the effect of incretins therapy on the risk of ISR/ST in a large cohort of
diabetic patients receiving DES did not find any significant benefit of this class of agents on
stent failure, albeit a significant reduction in cardiovascular mortality [93].

5.2. Device-Based Strategies
5.2.1. Drug-Eluting Balloons and Repeat Drug-Eluting Stent Implantation

The RIBS IV (Restenosis Intra-Stent of Drug-Eluting Stents: Drug-Eluting Balloons
vs. Everolimus-Eluting Stents) and RIBS V (Restenosis Intra-Stent of Bare Metal Stents:
Paclitaxel-Eluting Balloon vs. Everolimus-Eluting Stent) trials showed that NA appears
to be the key pathological substrate of a substantial number of ISR lesions undergoing
repeat revascularization [94,95]. If the latter demonstrated the safety and effectiveness of
both DEB and DES in treating patients with BMS-ISR, the RIBS IV trial showed a reduced
need for repeat interventions with everolimus-eluting stent than DEB in the setting of DES-
ISR [94,95]. Furthermore, a pooled analysis of these trials studied the potential prognostic
impact of OCT-derived NA on the long-term outcomes of patients with ISR requiring
repeated PCI [96]. At 3-years follow-up, the rate of MACEs was similar among patients
with and without NA (15% vs. 12%, respectively, p = 0.93). These results appear to be
consistent with those from an observational study by Tada et al. enrolling consecutive
patients undergoing PCI for ISR [97]. According to OCT images, among patients with
a heterogeneous pattern of neo-intima suggesting an underlying NA, no increase in re-
ISR or repeat target lesion revascularization (TLR) rates was reported at 6–8 months of
follow-up, dispelling the concept of a negative predictive role of NA in the setting of repeat
percutaneous revascularization. However, these limited data come from small studies
with a relatively short angiographic follow-up. Further studies are needed to investigate
the real predictive role of NA on hard clinical endpoints in the long-term follow-up of
patients receiving coronary stenting and to evaluate the best therapeutic strategy to adopt
in this setting.
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5.2.2. Debulking Strategies

Not infrequently, NA requires debulking strategies due to the high degree of calcium
involving neo-intima [98]. Several small studies using rotational atherectomy, including
one randomized trial, suggested that debulking techniques were associated with a lesser
amount of residual tissue and a lower rate of target vessel revascularization than plain
old balloon angioplasty (POBA) [99]. However, successive trials comparing POBA to
rotational atherectomy showed contrasting results with better clinical outcomes in patients
undergoing POBA [100].

The excimer laser coronary atherectomy (ELCA) has been evaluated in small, random-
ized studies enrolling patients with ISR [101,102]. Albeit angiography showed a higher
acute luminal gain among patients undergoing ELCA, no significant difference in clinical
outcomes and target vessel revascularization has been observed in patients undergoing
combined treatment (ELCA and POBA or DEB) than those treated with balloon dilation
alone [101,102].

Notably, suboptimal stent strut expansion due to severe calcification in the intimal and
medial layers of the coronary wall represents a major determinant of ISR [103]. In the last
years, a novel technique combining a balloon angioplasty catheter with the use of sound
waves, the Shockwave intravascular lithotripsy, has emerged as a safe and effective tool
for the treatment of severe calcified de novo coronary lesions [104,105]. Its use at the site
of coronary narrowing before stent deployment creates microfractures into the calcified
tissue without affecting soft tissues, allowing complete stent expansion and apposition.
More recently, small series and several case reports employed intra-coronary lithotripsy
for the treatment of ISR, in those cases where a severe calcified neointimal tissue was
detected by intracoronary imaging or a severe calcification of the coronary wall caused an
incomplete stent expansion at the time of the first PCI [106]. Promising short- and mid-
term angiographic data were reported in most cases; however, further studies with longer
follow-up are needed to confirm the effectiveness of this technique in this complex setting.

5.2.3. Bioresorbable Vascular Scaffolds

In the context of patients suffering multiple ISR requiring further stent implantation,
potentially increasing the number of metal layers within the coronary arteries, or those
in which DEB failed to guarantee a successful PCI on long-term follow-up, bioresorbable
vascular scaffolds (BVS) appear an intriguing alternative treatment option. In this regard,
despite being currently an off-label strategy evaluated in selected small studies, BVS
showed encouraging results regardless of ISR pattern or stent type [107], whereas long-
term clinical outcomes are still a matter of debate. A multicenter Italian registry suggested
acceptable rates of cardiovascular events on long-term follow-up; at 15 months of follow-
up, the composite endpoint including cardiac death, target vessel myocardial infarction
and ischemia-driven target lesion revascularization occurred in 9.1% of patients [108].
Conversely, a recent comparison of BVS, DEB (paclitaxel-eluting balloon), and DES re-
implantation (everolimus-eluting stent) for ISR treatment showed that BVS have a similar
performance compared with DEB but is inferior to DES [109]. Therefore, data supporting
the routine adoption of BVS as an alternative tool for ISR treatment are currently lacking.

Figure 3 summarizes potential pharmacological and device-based strategies for NA
prevention and treatment. Of note, despite reasonable pathophysiological bases, most of
these approaches are in an experimental phase and need to be proved in further studies.
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6. Conclusions

Despite improved technologies and materials, PCI is still burdened by a remarkable
risk of stent failure mainly driven by de novo neo-atherosclerosis. Whether early ISR
results from neointimal hyperplasia, NA is a more complex phenomenon represented by
a novel fibro-atheroma developing within the stent struts but separated from the native
plaque. The gradual advancements of DES enabled to dramatically mitigate the impact of
ISR; however, the incidence of NA did not differ significantly between DES generations.
Meanwhile, the incremental adoption of intra-coronary imaging techniques, mainly OCT,
contributed to a more extensive understanding of both morphological characteristics of
restenotic tissue and peri-strut composition, thus improving procedural success and pro-
viding early detection of stent failure, as suggested by current guidelines. Although none
of the available pharmacological therapies clearly demonstrated a net beneficial effect in
reducing NA burden, during the last decades, several invasive tools (particularly DEB,
debulking techniques and, more recently, BVS) allowed to significantly improve mid-term
angiographic results.

Neo-atherosclerosis represents a challenge for interventional cardiologists. Since
the increasing use of percutaneous techniques for coronary atherosclerosis treatment in
the last years, further studies aiming to identify safer and more effective preventive and
therapeutic strategies are needed. However, we have to take in mind that a successful PCI
calls for appropriate intra-coronary imaging techniques in the periprocedural phase and a
concomitant comprehensive pharmacological strategy in the acute and long-term follow-up
in order to prevent stent failure and its deleterious clinical consequences.
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