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Abstract: RNA–protein interactions play an indispensable role in many biological processes. Growing
evidence has indicated that aberration of the RNA–protein interaction is associated with many serious
human diseases. The precise and quick detection of RNA–protein interactions is crucial to finding
new functions and to uncovering the mechanism of interactions. Although many methods have been
presented to recognize RNA-binding sites, there is much room left for the improvement of predictive
accuracy. We present a sequence semantics-based method (called PRIP) for predicting RNA-binding
interfaces. The PRIP extracted semantic embedding by pre-training the Word2vec with the corpus.
Extreme gradient boosting was employed to train a classifier. The PRIP obtained a SN of 0.73 over
the five-fold cross validation and a SN of 0.67 over the independent test, outperforming the state-
of-the-art methods. Compared with other methods, this PRIP learned the hidden relations between
words in the context. The analysis of the semantics relationship implied that the semantics of some
words were specific to RNA-binding interfaces. This method is helpful to explore the mechanism of
RNA–protein interactions from a semantics point of view.

Keywords: RNA-protein interactions; word2vec; xgboost; embedding; semantics

1. Introduction

Proteins and RNAs are two of the most important biological macromolecules that
constitute life. They exert roles in many biological processes, such as protein synthesis, DNA
repair, DNA replication, regulation of gene expression, and viral replication, by interacting
with each other [1–5]. Increasing evidence shows that aberrant protein-RNA interactions
are closely associated with many complex human diseases [5–17], such as Alzheimer’s
disease [12–14], tumors [15], lung cancer [16], and cardiovascular diseases [17]. Therefore,
precisely identifying protein-RNA interfaces not only helps understand the mechanism of
protein-RNA interactions and provides insight into the pathological mechanisms related to
diseases, but also contributes to drug discovery and development.

It is a challenging task to quickly and accurately identify the RNA-binding inter-
face [18,19]. The current experimental methods are capable of accurately detecting RNA-
binding sites but are very costly and time-consuming. On the other hand, the computational
methods are able to screen protein-RNA interfaces inexpensively and on a large scale, but
their accuracy is discouraging. In spite of this, computational methods can inform experi-
mental methods in finding potential RNA-binding interfaces. Over the past decades, many
computational methods have been developed for predicting RNA-binding interfaces or
RNA–protein interactions [18–44]. These computational methods fall into the framework
of machine learning, which has two major components: features and algorithms. Accord-
ing to the used features, these computational methods are grouped into three categories:
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sequence-based, structure-based, and hybrid methods [45]. The sequence-based methods
extract informative features directly from primary protein sequences, including widely
used position-specific scoring matrices (PSSMs) [40], which are generally computed using
PSI-BlAST [46], physicochemical properties of amino acids, and pseudo amino acid com-
position [47]. Most of the sequence-based methods are easy to understand and compute,
but they are insufficient to characterize RNA-binding interfaces. In addition, the compu-
tation of PSSMs requires large-scale reference datasets and thus is time-consuming. The
structure-based methods extract structural features that are beneficial for improving the
prediction of the RNA-binding interface. However, the actual structures of most proteins
are not available, and the structures predicted by most computational methods generally
contain noise. The hybrid methods inherit the strength of both the sequence-based and the
structure-based methods, but they also absorb their shortcomings. Three types of methods
also suffer from local interferences [33].

Protein sequences are very similar to sentences in the natural language, where each
word has a semantic context. The advance in natural language processing (NLP) makes it
easy to seize the semantics of words from the context. For example, the Word2vec [48,49]
translates words into embedding, making it easy to measure semantic relationships be-
tween words. The NLP techniques have been successfully applied to a wide range of
areas, including sentiment analysis, spam detection, machine translation, and question
answering [50], over the past decades. The NLP techniques have also been recently utilized
in the area of bioinformatics [51–54]. For instance, the long-short term memory (LSTM), a
technique of NLP, along with the Word2vec were used for identifying antibacterial peptides
in protein sequences [54] and predicting human–virus protein–protein interactions [51].
For more examples, readers can refer to three relevant reviews [55–57]. Inspired by the
success of NLP, we presented a protein-RNA interface predictor based on the semantics
of protein sequences (called PRIP). The PRIP used the Word2vec to extract the semantic
embedding of protein sequences and employed the extreme gradient boosting (XGBoost)
to discriminate between RNA-binding interfaces and non-interfaces.

2. Materials and Methods
2.1. Datasets

For a fair comparison with the state-of-the-art methods, we used the same datasets
as aPRBind [20]. Namely, the RB198 [22] was used as the training set and the RB111 [40]
as the independent set; both were downloaded from http://ailab-projects2.ist.psu.edu/
RNABindRPlus/data.html (Accessed on 13 January 2021). The RB198 compiled by
Lewis et al. [58] contains unique 198 protein chains. The RB111 is a recently compiled
dataset of RNA-binding protein complexes, consisting of 111 protein chains. In both the
RB198 and the RB111, the intra-sequence identities are less than 0.3. The chains in the RB111
have less than 0.4 sequence identity with those in the RB198 and the RB44 constructed by
Puton et al. [59]. This is a sufficient reason to use the RB111 as the independent set.

A residue with at least one atom closer than 5 Å to any atoms of RNAs was referred to
as the interface residue [20]. According to the definition, the RB198 contains 7950 interface
residues and 45,710 non-interface residues, and the RB111 has 3305 interface residues and
34,255 non-interface residues.

2.2. Methodology

As shown in Figure 1, the proposed PRIP consisted of five steps: pre-training the
Word2vec [48,49], splitting protein sequences, extracting semantic features, training the
XGBoost classifier, and distinguishing between binding and non-binding sites. The corpus
of protein sequences was first collected to pre-train the Word2vec. Then, the protein
sequences were divided into segments of fixed length. Next, segments were mapped
into the semantic features by the pre-trained Word2vec. The semantic features of the
training set were used to train an XGBoost classifier. Finally, the trained XGBoost classifier

http://ailab-projects2.ist.psu.edu/RNABindRPlus/data.html
http://ailab-projects2.ist.psu.edu/RNABindRPlus/data.html
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discriminated the binding from non-binding sites, given the inputs of semantic features
of segments.
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Figure 1. The framework of the PRIP.

2.2.1. Word2vec

Word2vec, proposed by Mikolov et al. [48,49], is a popular algorithm for embedding
representations of words. In fact, Word2vec is a general model of neural network that consists
of the input, the hidden, and the output layer. The input consists of one-hot encoding vectors,
and the theoretical output consists of one-hot representations of words. The input is mapped
into the output by multiplying the linking weights between the input and the hidden layer,
and then multiplying the linking weights between the hidden and the output layer. The goal of
Word2vec is to minimize residues between the theoretical and the actual output. Word2vec has
two computational structures: continuous bag-of-word (CBOW) and skip-gram. The CBOW
predicts a target word given a context, while the skip-gram does the opposite, namely predict
its context given a target word. For each structure, there are two methods of optimization:
hierarchical soft-max and negative sampling. When Mikolov et al. [48,49] applied Word2vec
to analyze analogical reasoning tasks, some underlying semantic relationships between words
were uncovered. An interesting example is that vec(“Russia”) + vec(“river”) is close to
vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). Due
to its efficiency and effectiveness, Word2vec is increasingly attracting attention from the
natural language processing community. For more details about Word2vec, readers can
refer to the relevant reports [60,61]. Here, we adopted for calculation the Gensim [62], a
python tool for the Word2vec algorithm. The Gensim is an open source toolkit available at
https://radimrehurek.com/gensim/# (Accessed on 5 March 2021). The parameters of the
Word2vec are shown in Table 1.

Table 1. The set of the parameters in Word2vec.

Name Values

Structure CBOW
Vector Size 25

Corpus RB198
Window size 5

Negative sampling 5
Epoch 200

Workers 1

2.2.2. Sequence Division

Protein sequences differ in length. Some are long, while some are short. The pro-
tein sequences of variable length are disadvantageous to be subsequently processed by

https://radimrehurek.com/gensim/#
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the machine learning algorithms, because the latter generally requires the input to be
length-fixed. Therefore, the primary protein sequences must be divided into length-fixed
segments. For each residue in the protein sequence, a length-fixed segment was separated
from it. The cut residue was located at the center of the segment, and n residues were
located downstream and upstream of the segment. At the start or end of the sequence, the
corresponding number of X was added to the segment. For example, a protein sequence
was assumed to be TGDFPLO, with n as 3. The protein sequence was split into XXXTGDF,
XXTGDFP, XTGDFPL, TGDFPLO, GDFPLOX, DFPLOXX, and FPLOXXX. The segments
with the interface residue at the center were positive examples in the training set and the
independent set and were otherwise considered negative.

2.2.3. Feature Extraction

We used the 198 protein sequences as the corpus to pre-train Word2vec, where each
amino acid was viewed as a word. The pre-trained Word2vec was like a semantic dictionary,
where each word (amino acid) corresponded to a semantic vector. Using the semantic
dictionary, each residue in the segment was mapped into a semantic vector. Concatenating
all the semantic vectors in the segment made it possible to obtain the semantic features of
the segment.

2.2.4. XGBoost

XGBoost, proposed by Chen et al. [63], is an improved GBDT (Gradient Boosting
Decision tree) algorithm. The XGBoost has the advantages of high efficiency, flexibility,
and portability over the traditional GBDT. Similar to the random forest, the XGBoost is an
ensemble learning algorithm. The XGBoost generally consists of many decision trees. The
outputs of all decision trees are combined as the final output of the XGBoost. Unlike the
random forest, the XGBoost is an additive model, where a new decision tree is fitted by the
residues between the actual and the sum of all the previous trees.

Given a training set, D = {(xi, yi)|xi ∈ Rm, yi ∈ R}, where n and m denote the number
of samples and the dimensions of features, respectively. The XGBoost was assumed to con-
sist of K functions (also called classification or regression trees), namely
F =

{
f 1(x), f 2(x), . . . , f K(x)

}
. The predictive output ŷK

i for the sample xi is the sum
of the output values of all the functions f k (k = 1, 2, 3, . . . . . . , K), namely

ŷK
i = ∑K

k=1 f k(xi), (1)

where f k(xi) denotes the predictive score of the k-th tree.
Assume that the previous t-1 trees are known. The goal of the XGBoost is to look for

the t-th tree so as to minimize the sum of the loss between the predictive and the target
output. The objective of the XGBoost is modeled as

obj = ∑n
i=1 l(yi ˆ, yt

i), (2)

where yi is the target for the sample xi, and ŷt
i is the predictive output of all the t trees,

which is computed by
ŷt

i = ŷt−1
i + f t(xi), (3)

The function l denotes the loss function, which measures residues between the predic-
tive output ŷt

i and the target yi. In order to reduce or remove over-fitting, regularization is
employed. The objective with the regularization is expressed as

obj = ∑n
i=1 l(yi ˆ, yt

i) + ∑t
i=1 Ω

(
f t)

= ∑n
i=1 l(yi ˆ, yt−1

i + f t(xi)) + Ω
(

f t)+ constant,
(4)

where
Ω( ft) = γT +

1
2

λ ∑T
j=1 ω2

j (5)



Life 2022, 12, 307 5 of 15

In Equation (5), λ and γ are two user-defined hyper-parameters, T is the number
of leaf nodes, and ωj is the weight of the j-th leaf node. Different from the traditional
GBDT, which uses the first-order Taylors, the XGBoost [63] uses the second-order Taylors
to approximate the loss function, namely

l
(

yi, ŷt−1
i + ft(xi)

)
≈ l
(

yi, ŷt−1
i

)
+ gi f t(xi) +

1
2

hi[ f k(xi)]
2

(6)

where gi is the first-order derivative of the loss function,

gi =
∂l
(

yI , ŷ(t−1)
i

)
∂ŷ(t−1)

i

(7)

And hi is the second-order derivative of the loss function,

hi =
∂2l
(

yi, ŷ(t−1)
i

)
∂ŷ(t−1)

i ∂ŷ(t−1)
i

(8)

Because the constant is not influential on the derivative, the objective is equivalently
expressed as

obj = ∑n
i=1

[
gi f t(xi) +

1
2

hi[ f t f 2
t (xi)]

2
]
+ γT +

1
2

λ ∑T
j=1 ω2

j (9)

Let Ij be the set of samples belonging to the j-th leaf node, namely

Ij = {i|q(xi) = j} (10)

where q(xi) represents the structure of the t-th decision tree. Let

Gj = ∑i∈Ij
gi (11)

Be the sum of the first-order derivative over all the samples of the j-th leaf node, and

Hj = ∑i∈Ij
hi (12)

Be the sum of the second-order derivatives over all the samples of the j-th leaf node.
The objective is further simplified as

obj = ∑T
j=1

{
Gjωj +

1
2
(
λ + Hj

)
ω2

j

}
+ γT (13)

Equation (13) is univariate and quadratic. If the structure of the decision tree was
fixed, the objective could have the minimum. If, and only if, the weight of the leaf node
was set to

ω∗j = −
Gj

Hj + λ
(14)

The minimum of the objective was computed by

obj∗ = −1
2 ∑T

j=1
G2

i
Hi + λ

+ γT. (15)

The descriptions above introduced how to optimize the weights of the leaf nodes
given the fixed structures of trees. It is easy to understand and realize, but the optimization
of the tree structure is an NP-complete question. The number of trees would increase
exponentially with the increasing number of samples. It is impossible in practice to
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enumerate all possible trees to reach the global optimum solution. A practical solution is to
adopt the greedy algorithm. The XGBoost begins with one leaf node and expands to new
branches iteratively. The new expanded tree was assumed to be with the left branch L and
the right branch R. The gain of the objective was computed by

Gain =
1
2

(
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+
1
2

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− 1
2
(∑i∈I gi)

2

∑i∈I hi + λ
− γ (16)

The tree with the minimum gain was chose for the next possible expansion.

2.3. Evaluation Metrics

The k-fold cross validation and the independent test are the commonly used ways
of examining the performance of the machine learning algorithms. In the k-fold cross
validations, all the training samples are divided into k parts. The machine learning al-
gorithm is trained by k-1 parts of the sample and is tested by the remaining part. The
process is repeated k times. The sensitivity (SN), accuracy (ACC), specificity (SP), and
Matthews correlation coefficient (MCC) are used to evaluate the performance, which were
computed by

SN =
TP

TP + FN
(17)

SP =
TN

TN + FP
(18)

ACC =
TP + TN

TP + FP + TN + FN
(19)

MCC =
TP× TN − FP× FN√

(TN + FN)(TN + FP)(TP + FN)(TP + FP)
(20)

where TP and TN are the numbers of correctly predicted interfacial residues (binding
site) and the numbers of correctly predicted non-interfacial residues (non-binding site),
respectively. FP and FN stand for the number of wrongly predicted interfacial residues and
non-interfacial residues, respectively. The receiver operating characteristic (ROC) curve is
also employed to visualize performances. The ROC curve draws true positive rates (SN)
against false positive rates (1-SP) under various thresholds. The area under ROC curves
(AUROC) is used to quantitatively assess the performance.

3. Results
3.1. Parameter Optimization

In order to investigate the impact of the length of the segments on performance, protein
sequences were divided into segments ranging from 21 to 39 at an interval of 2. As shown
in Figure 2, the AUROC of the segment of 39 amino acid residues is best. Therefore, we set
the length of the segment to 39.

3.2. Selection of Models

There are more than 100 machine learning algorithms that have been applied to a
wide range of fields. We compared the XGBoost with five popular algorithms: random
forest (RF) [64], support vector machine (SVM) [65], logical regression (LR) [66], gradient
boosting decision tree (GBDT) [67], and Lightgbm [68]. All the algorithms were trained by
the same RB198 and tested by the identical RB111. The ROC curves are shown in Figure 3A.
Obviously, the XGBoost is superior to these five algorithms in terms of predicting RNA-
binding protein interfaces. We also compared the word embedding of the Word2vec with
three common representations: amino acid composition (AAC) [69], dipeptide composition
(DPC) [70], and the composition of k-spaced amino acid group pairs (CKSAAPGP) [71].
The AAC calculates the occurring frequency of each amino acid in a given protein or
peptide sequence, resulting in a 20-dimensional vector. The DPC calculates the frequency
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of amino acid pair occurrence, so it is a 20 × 20 = 400 dimensional vector. The CKSAAPGP
computes the frequency of amino acid group pairs separated by K amino acids. Here, K
was set to 3, and the five groups were the aliphatic group (G, A, V, L, M, I), aromatic group
(F, Y, W), positive charge group (K, R, H), negative charge group (D, E), and uncharged
group (S, T, C, P, N, Q) [72], so the dimension of the CKSAAPGP is 52 × 4 = 100. The
ROC curves are shown in Figure 3B. The embedding of the Word2vec is superior to the
three representations. Therefore, we chose semantic embedding of the Word2vec as the
representations of proteins and XGBoost as the learning algorithm.
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3.3. Comparison with State-of-the-Art Methods

The PRIP obtained a mean AUROC of 0.73 over five-fold cross validations and an AU-
ROC of 0.68 over the independent test, as shown in Figures 3 and 4. Recently, some methods
have been developed for predicting the RNA–protein interface, including aPRBind [20],
FastRNABindR [21], RNABindR v2 [22], BindN+ [33], and PPRInt [28]. The aPRBind [20] is
a convolutional neural network-based method that uses sequence and structure informa-
tion, while FastRNABindR [21], RNABindR v2 [22], BindN+ [33], and PPRInt [28] all adopt
sequence-based features for interface prediction [20–22,28,33]. The performance of the
independent test over the RB111 are listed in Table 2. The PRIP increased SN by 0.19 over
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the aPRBind [20], by 0.06 over the FastRNABindR [21], by 0.04 over the RNABindR v2 [22],
by 0.24 over the BindN+ [33], and by 0.19 over the PPRInt. On the other hand, the PRIP
performed worst in terms of SP, ACC, and MCC. Apart from the PRIP, the best SN was
0.63, which was obtained by the RNABindR v2 [22]. This implied that it was challenging to
correctly predict RNA–protein interfaces. Our method obtained a SN of 0.67. Table 3 lists
the performance of the five-fold cross validations over the RB198. The same phenomenon
was observed as in the independent test over the RB111. The PRIP obtained a better SN
than the aPRBind [20].
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Table 2. PRIP was compared with existing methods on RB111.

Methods SN SP ACC MCC

PRIP 0.67 0.60 0.61 0.16
aPRBind [20] 0.48 0.90 0.86 0.32

FastRNABindR [21] 0.61 0.76 0.75 0.24
RNABindR v2 [22] 0.63 0.73 0.72 0.22

BindN+ [33] 0.43 0.87 0.84 0.24
PPRInt [28] 0.48 0.79 0.76 0.18

Table 3. The average results of the five-fold cross-validation studies on RB198 when compared
to aPRBind.

Methods SN SP ACC MCC

PRIP 0.73 0.60 0.62 0.23
aPRBind [20] 0.65 0.82 0.74 0.48

3.4. Analysis of Pattern of the RNA-Binding Interfaces

We used the word cloud generator to draw a word cloud diagram of positive samples.
As shown in Figure 5, the characters R, L, K, and G are dominant in the positive samples. We
further employed Two Sample Logo [73] to visualize the difference between RNA-binding
and non-binding protein sequences. Two Sample Logo is a tool to calculate and visualize
differences between two sets of aligned samples of amino acids. Due to its simplicity
and effectiveness, Two Sample Logo has widely been applied to the analysis of sequence
patterns, such as post-translational modification patterns [74–76]. As shown in Figure 6,
the characters R, K, and G are enriched in the RNA-binding protein sequences, and the
characters L, A, E, and V are depleted. The results are in agreement with the word cloud
diagram (Figure 5). This might imply that RNA-binding interfaces were associated with
the emergence of R, K and G.
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4. Discussion

We used only semantic embedding of protein sequences generated by the Word2vec to
predict RNA-binding interfaces, and obtained competing performances with the state-
of-the-art methods, including aPRBind [20], FastRNABindR [21], RNABindR v2 [22],
BindN+ [33], and PPRInt [28]. This demonstrated that RNA-binding protein sequences
were of semantics. The semantics of protein sequences have recently attracted attention
from the molecular biology and bioinformatics communities [77]. For example, semantics
were applied to detect remote evolutionary relationships [78,79], to predict protein sub-
cellular localization [80], and to recognize protein–protein interactions [81]. Like natural
language, biological sequences formed stable semantic relationships during the course
of evolution. This is one of the reasons that our method obtained better performance in
predicting RNA-binding interfaces.

In order to investigate the specificity of semantics, we generated four datasets of
protein sequences by randomly altering 40%, 45%, 50%, and 55% of residues of RNA-
binding protein sequences in the RB198. Each shuffled dataset was used as a corpus to
pre-train Word2vec. The semantic relationship between words was defined as the cosine
between the embedding of words, namely

cos θ =
∑n

i=1(Ai × Bi)√
∑n

i=1(Ai)
2×
√

∑n
i=1(Bi)

2
(21)

where (A1, A2, · · · , An) and (B1, B2, · · · , Bn) are the semantic embedding of the word A
and B, respectively. Four shuffled datasets generated four stochastic semantic relationships
for any two words. We used the RB198 as a corpus to pre-train the Word2vec, and we set the
epochs to 100, 200, 300, and 400. We obtained four semantic embeddings of words. Using
Equation (21), we computed true semantic relationships between any two words. We used
student’s test to investigate the difference in semantic relationships. As shown in Figure 7,
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some parts of the semantic relationship are not of significant difference, while some are of
significant difference (p-value < 0.05). For example, for L, the semantic relationship with
three amino acids (T, M, and C) is of significant difference, while the semantic relationship
of W with up to eight amino acids (E, A, V, G, F, Q, Y, C) is of significant difference. This
indicated that some semantic relationships were specific to RNA-binding protein sequences.
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As shown in Tables 2 and 3, the PRIP didn’t show marked superiority over the state-
of-the-art methods. This is because some negative segments are similar to the positive
segments. For example, the protein sequence ‘VERIFPL’ has an RNA-binding interface,
namely I. The protein sequence was assumed to be divided into three segments of five
residues, ‘VERIF’, ‘ERIFP’, and ‘RIFPL’. The interface was located at the center of the
second segment, and thus it was a positive sample and the other two were negative ones.
In fact, the two negative samples were very similar to the positive one, with only one
different amino acid residue. Therefore, these semantics were too close to discriminate.
After disrupting the negative fragments of the RNA-binding interface, we retrained the
PRIP model (named it PRIP *) and repeated five-fold cross validation and the independent
test. Table 4 shows the predictive performance. Obviously, SN and SP both increased,
but the increase did not reach the expected value. There might be two reasons. One was
that the original semantics of the negative samples were lost if we disrupted the sequence
of all the negative samples. The other was that the motif of RNA-binding interfaces was
quite complicated.

Table 4. Performances by the PRIP and the PRIP *.

Methods SN SP ACC MCC

Five-fold cross validation
PRIP 0.73 0.60 0.62 0.23

PRIP * 0.74 0.63 0.65 0.27

Independent test PRIP 0.67 0.60 0.61 0.16
PRIP * 0.69 0.62 0.63 0.18
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As shown in Table 5, we conducted an analysis of two cases: 4V90_56 [82] and 3ULD_
A [83]. The predictive performances are summarized in Table 5 for the RNABindRPlus [40],
the PRIP, the PRIP *. Obviously, the PRIP * obtained the best SN, which is 0.16 more than
that of the RNABindRPlus [40] and 0.12 more than that of the PRIP over the 4V90_56. Over
the 3ULD_ A, the SN of the PRIP * is 0.13 more than that of the RNABindRPlus [40] and
0.20 more than that of the PRIP. Figure 8 illustrates the predicted structure of proteins in
the gray cartoon.

Table 5. The predictive performances over the 4V90_56 and the 3ULD_A.

Protein Methods SN SP ACC MCC

4V90_56
RNABindRPlus [40] 0.79 0.82 0.81 0.61

PRIP 0.83 0.57 0.69 0.41
PRIP * 0.95 0.65 0.78 0.62

3ULD_ A
RNABindRPlus [40] 0.80 0.87 0.86 0.53

PRIP 0.73 0.67 0.68 0.26
PRIP * 0.93 0.71 0.74 0.42
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Figure 8. The protein structures of the predicted results of 4V90_56 and 3ULD_ A in PRIP and PRIP *.
(A,B) represent the prediction results of 4V90_56 on PRIP and PRIP *, respectively. (C,D) represent
the prediction results of 3ULD_ A on PRIP and PRIP *, respectively. Green, red, and blue represent
TP, FP, and FN, respectively.

5. Conclusions

RNA–protein interactions play key roles in the regulation of many cellular processes
and are increasingly becoming a hot topic. Although many computational methods have
been presented in the past decades, it is still a challenging task to precisely and cheaply
detect RNA-binding interfaces. We presented a sequence semantics-based method to
predict RNA-binding interfaces. Compared with the state-of-the-art methods, the presented
method learned the hidden relations between words in the context. This method is helpful
to explore the mechanism of RNA–protein interactions from a semantics point of view.

Author Contributions: G.H. conceived the concept and methodology and wrote the manuscript. Y.W.
and Y.L. (Yuewu Liu) conceived the methodology; Y.L. (You Li) collected the dataset, implemented



Life 2022, 12, 307 12 of 15

the methodology and software, and wrote the draft. J.L. wrote the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Scientific Research Fund of Hunan Provincial Edu-
cation Department (21A0466, 19A215), by the Natural Science Foundation of Hunan Province
(2020JJ4034), by the open project of Hunan Key Laboratory for Computation and Simulation in
Science and Engineering (2019LCESE03), and by the Shaoyang University Innovation Foundation for
Postgraduate (CX2021SY031).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and source code can be found here: https://github.com/
Good-Ly/PRIP.git (Accessed on: 4 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem.

2010, 79, 351–379. [CrossRef] [PubMed]
2. Hogan, D.J.; Riordan, D.P.; Gerber, A.P.; Herschlag, D.; Brown, P.O. Diverse RNA-binding proteins interact with functionally

related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 2008, 6, e255. [CrossRef] [PubMed]
3. Licatalosi, D.D.; Darnell, R.B. RNA processing and its regulation: Global insights into biological networks. Nat. Rev. Genet. 2010,

11, 75–87. [CrossRef] [PubMed]
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