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4.3. Measuring plasma protein levels  

The first step of our analysis was to search for significant and potential clinical im-
portant differences in protein levels between Multiple Sclerosis (MS) cases and healthy 
controls.  

Since subjects were related, differences in protein levels between MS cases and 
healthy controls in the 212 subjects (69 MS cases, 143 healthy controls) having protein lev-
els measured were evaluated using a Linear Mixed Model (LMM) formulated as: 

                     𝑌௜௝ =  𝛽଴ + 𝑀𝑆௜௝ ∗ 𝛽ଵ + 𝑆𝑒𝑥௜௝ ∗ 𝛽ଶ + 𝐴𝑔𝑒௜௝ ∗ 𝛽ଷ  + 𝑍ଵ௜ ∗ 𝑘𝑖𝑛𝑠ℎ𝑖𝑝௜ + 𝑍ଶ௜ ∗ 𝑓𝑎𝑚𝑖𝑙𝑦௜ + 𝑒௜௝             𝐸𝑞 (1) 
 

Where 𝑗  denoted the individual and 𝑖  the corresponding family, 𝑌௜௝  was the 
standardized protein level (using mean and standard deviation from healthy control, as 
explained below), 𝛽଴ was the intercept term, 𝑀𝑆௜௝  was the MS status (reference=con-
trols) with 𝛽ଵ the corresponding fixed effect, 𝑆𝑒𝑥௜௝was the sex of the individual (refer-
ence=males) with 𝛽ଶ the corresponding fixed effect, 𝐴𝑔𝑒௜௝ was the age of the individual 
at the day of the blood sampling (obtained as the difference of the day of blood sampling 
and date of birth) with 𝛽ଷ the corresponding fixed effect. 𝑘𝑖𝑛𝑠ℎ𝑖𝑝௜ was the random effect 
accounting for familiar relationship distributed as 𝑁(0, 𝜎ଶீ𝐴), where A was the kinship 
matrix multiplied by 2 (or relationship matrix). 𝑓𝑎𝑚𝑖𝑙𝑦௜  was the random effect accounting 
for the shared environmental effect with other members of the sub-family effect distrib-
uted as 𝑁(0, 𝜎ଶ஼𝐻), where H is the matrix with value “1” for the individuals belonging to 
the same family, and 𝑒௜௝ was the residual error assumed to be distributed as 𝑁(0, 𝜎ଶூ). 𝑍ଵ௜ and 𝑍ଶ௜ denoted the random effect model matrices for 𝑘𝑖𝑛𝑠ℎ𝑖𝑝௜ and 𝑓𝑎𝑚𝑖𝑙𝑦௜. 𝜎ଶீ 
and 𝜎ଶ஼ were assumed to be independent. Sex and age at blood sampling were included 
in the model as fixed effects to avoid potential confounding. The female-to-male MS prev-
alence ratio in the province of Nuoro (Sardinia, Italy) was reported to be 2:1 [1] a result in 
line with the worldwide estimate of 2.3–3.5:1 [2]. The association between sex and immune 
response level was explained in depth in the review by Klein SL & Flanagan [2], where 
they noted: “sex is one variable that influences innate and adaptive immune responses, 
resulting in sex-specific outcomes from infectious and autoimmune diseases, malignan-
cies, and vaccines”; this claim was further supported by other subsequent studies [3-5]. 
Age is also considered a potential confounder for immune protein levels and MS associa-
tion, as highlighted in a review of neuronal and glial cerebrospinal fluid (CSF) biomarkers 
in MS [6]; moreover, Lind et al. highlighted the magnitude of plasma proteins changes in 
adults during a 10-year follow-up, with 61 out of 84 changing significantly [7]. Thus, these 
insights justified the inclusion of sex and age at blood sampling in the model. relmatLmer 
function, from lme4qtl R package [8], was used to fit LMM using Maximum Likelihood 
(ML) method. Inference for MS fixed effect 𝛽ଵ was based on Wald test statistic [9].  

Since protein levels were rarely normal distributed, but rather right-skewed, using 
LMM could have led to incorrect inference in presence of non-normality of residuals dis-
tribution. Moreover, an average protein level difference may have masked stronger or 
weaker differences that may have existed at other points of the distribution. Normality of 
residuals obtained from LMM was evaluated following guidelines from Kim [10], i.e., in 
our sample, we rejected the null hypothesis of normality of residuals for an absolute z-
value over 3.29 for skewness or excess kurtosis statistics. If the null hypothesis of normal-
ity of residuals assumption was rejected, a Linear Quantile Mixed Model (LQMM), as for-
mulated by Geraci and Bottai, was used instead [11]. The model is based on Quantile Re-
gression (QR), a methodology which extends regression for the mean to the analysis of 
the entire conditional distribution of the outcome variable and does not make assump-
tions about the model residuals, thus providing a complete picture of the distributional 
effects using maximum likelihood methods. The methodology relies on the Asymmetric 
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Laplace (AL) distribution which allows to estimate the τth conditional quantile using max-
imum likelihood methods. Considering for the dependent variable yij a vector 𝑖 = 1, … , 𝑀 
(where 𝑀 = number of sub-families, and 𝑗 = 1, … , 𝑛௜ with N = ∑ 𝑛௜௜  number of subjects) 
which values are independently distributed conditional on q random effects vectors 𝑢௜  
to an unknown distribution 𝐹௬೔|௨೔ , a joint AL model for 𝑦௜|𝜇௜(ఛ) is formulated as 𝑦௜ =𝜇௜(ఛ) + 𝜀௜(ఛ), where  𝜇௜(ఛ) =  𝑋௜𝛽௫(ఛ) + 𝑍௜𝑢௜ and residuals are distributed following an AL 
distribution, i.e., 𝜀௜(ఛ) ~ AL (0, σ(த), τ). Residuals are independent from the random effect 
vector 𝑢௜, which has median equal to 0. 𝛽௫ denotes a vector of unknown fixed effects of 
independent variables 𝑋௜ and τ indicates the skewness parameter, set a priori, defining 
the quantile level to be estimated. Finally, even if 𝐹௬೔|௨೔ distribution is unknown, its τth 
quantile is estimated making use of the AL distribution where μ(த), σ(த) and τ denote 
the location, scale, and skewness parameters. Adopting the assumption of Laplace distri-
bution for random effects (i.e., 𝑘𝑖𝑛𝑠ℎ𝑖𝑝௜ ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜎ଶீ𝐴)  and 𝑓𝑎𝑚𝑖𝑑௜ ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜎ଶீ𝐻)) directly results into a Gauss–Laguerre quadrature for the ap-
proximate AL-based log-likelihood: 

 𝑙௔௣௣(𝛽௫, 𝜎, Ψ | 𝑦) =  ෍ 𝑙𝑜𝑔ெ
௜ ቐ෍ …௄

௞భ ෍ 𝑝(𝑦௜|𝛽௫, 𝜎, Ψ′ ν௞భ
௄
௞೜ , … . , ν௞೜) ෑ 𝜔௞೗

௤
௟ୀଵ ቑ 

Where the constant 𝐾 is an integer giving the number of points for each of the q one-
dimensional integrals over the real line, ν௞భ, … . , ν௞೜=( ν௞భ, … . , ν௞೜)T are the nodes and 𝜔௞೗, 
with 𝑙 = 1, … … 𝑞 (i.e. the number of random effects), the kernel function based weights. Ψ denotes the diagonal covariance matrix of the random effects. lqmm R function does not 
allow to directly model kinship matrix in the covariance structure, therefore the model 
matrix 𝑍௜ for kinshipi random effect has been multiplied by the Cholesky decomposition 𝐿 of the relationship matrix 𝐴 (i.e., 𝐴 =  𝐿𝐿’). The approach has been described by Har-
ville and Callanan [12] and implemented by Vazquez in pedigreemm R package for herita-
bility estimation using pedigrees [13]. The gradient search algorithm for Laplace likeli-
hood has been used to minimize the negative integrated log-likelihood [14]. 
The protein levels difference in MS cases and healthy controls were evaluated at 50th quan-
tile 𝜏 (i.e., the median), using the same model as above. 25th and 75th were also explored 
for proteins where statistical significance for the median was achieved. 

lqmm function from lqmm R package [15] was used to fit LQMM, using the default 
number of quadrature knots (i.e., 7) and the default optimization algorithm based on the 
gradient of the Laplace log–likelihood. Inference for MS fixed-effect 𝛽ଵ is based on two-
sided t-test with 𝑁 − 𝑃 − 1 degrees of freedom, where 𝑁 is the number of subjects in the 
analysis, and 𝑃 is the number of parameters in the model (i.e., 7: 𝛽଴, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, σ(த), 𝜎ଶீ, 𝜎ଶ஼). 
T-test statistic T0 is then calculated as 𝑇଴ =  ఉభ෢௦௘൫ఉభ෢൯. 
 

Where 𝛽ଵ  standard error 𝑠𝑒൫𝛽ଵ෢൯ estimate was based on block-bootstrap; 𝐵=1000 
bootstrap samples were obtained by resampling the 𝑖 =  1, … , 𝑀 sub-families with re-
placement, and standard deviation of 𝐵 distribution 𝑠𝑑(𝐵) was used as standard error 
estimate 𝑠𝑒൫𝛽ଵ෢൯.  Parametric 95% confidence intervals are reported based on t-value sta-
tistic. 
Bias in 𝛽ଵ෢ statistic estimate was estimated as  𝐵𝚤𝑎𝑠෣஻൫𝛽ଵ෢൯ =  𝐵ത − 𝛽ଵ෢, where 𝐵ത  was the 
mean of B distribution. Following Efron and Tibshirani [16], it was suggested and justified 
that if bias 𝐵𝚤𝑎𝑠෣஻൫𝛽ଵ෢൯ < 0.25 ∗  𝑠𝑒൫𝛽ଵ෢൯  then the bias can be ignored. Otherwise, bias cor-
rection is implemented to 𝛽ଵ෢, subtracting 𝐵𝚤𝑎𝑠෣஻൫𝛽ଵ෢൯ estimate (i.e., bias-corrected estimate 𝛽ଵෲ  = 𝛽ଵ෢ − 𝐵𝚤𝑎𝑠෣஻൫𝛽ଵఛ෢ ൯) and t-value statistic,  𝑇଴ =   ఉభෲ௦௘൫ఉభ෢ ൯,  was calculated using the bias-corrected estimate 𝛽ଵෲ. 

Both LMM and LQMM were fitted on centered and standardized protein levels, us-
ing the mean and SD of protein levels in healthy controls, to get a better interpretability 
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of the estimated coefficients. Thus, for a specific protein, an estimated coefficient 𝛽ଵ 
would translate as an increase/decrease in MS cases protein level (mean or median, de-
pending on the model used) equal to 𝛽ଵ times the SD of the protein levels in healthy con-
trols. This interpretation gave direct and more understandable evidence on the magnitude 
of protein levels difference between MS cases and healthy controls.  

Once p-values were obtained both for LMM or LQMM, these were corrected to avoid 
type I error inflation due to multiple testing (i.e., 56 statistical tests, one for each protein). 
Holm correction was used to provide strong control on family-wise error (FWER) at 0.05 
level since it does not require the independence of the test statistics [17], which we could 
not assume since proteins were correlated both positively and negatively. Plasma proteins 
differences between MS cases and healthy controls, which did not reach statistical signif-
icance but showed a p-value < 0.005 and an absolute difference of at least 0.3 healthy con-
trols protein plasma levels standard deviations (HC SD), were still considered as poten-
tially interesting proteins to be investigated. For these proteins, both significant and “sug-
gestive”, Pearson’s correlation coefficients were calculated.  

Finally, comparisons for plasma protein levels significant after multiple testing cor-
rections, were explored within MS course classifications, i.e., protein levels differences 
were tested between Relapse-Remitting MS (RRMS) cases and Secondary Progressive 
(SPMS) cases compared to healthy controls, as well as between SPMS cases and RRMS 
cases, using the same model in Eq 1. 

4.5. MS-risk SNPs-protein levels associations 
The second step of our analysis was to quantify plasma protein levels variability ex-

plained by a set of well-known MS-risk SNPs. This analysis was performed on the protein 
levels resulted significantly different between MS cases and healthy controls in the previ-
ous step of the analysis only. The list of MS-risk SNPs was obtained from [18], where 200 
autosomal SNPs outside the major histocompatibility complex (MHC) region were prior-
itized as significantly and strongly suggestive of being associated with MS risk. From 
these prioritized 200 signals 139 SNPs only could be selected for our analysis as included 
in our ImmunoChip data.  

This “naïve” approach had not any purpose to establish causality between protein 
levels and MS, but it solely represents an attempt to investigate the potential biological 
function of well-established MS-risk SNPs for which, to date, the causal pathway is still 
unknown. 

The analysis was conducted on the 92 healthy controls having both proteins and Im-
munoChip data. We excluded MS cases from the analysis since the aim was to obtain SNP-
protein associations in regular healthy conditions, avoiding potential reverse causation 
due to a different physiological status caused by the disease.  To avoid lack of precision 
and/or type I error inflation due to reduced sample size, we kept in our sample only var-
iants having minor allele frequency (MAF) > 0.10. Moreover, variants in linkage disequi-
librium, considering a maximum threshold for 𝑟ଶ  statistic equal to 0.2, were also re-
moved.  This caused the removal of 16 and 4 variants respectively, leading to 119 SNPs 
included in the analysis. 

Since all 119 MS-risk SNPs could not be included in a single model, as parameters 
would outnumber observations, we first refined the search for MS-risk SNPs potentially 
associated with protein levels following the approach in [19] and [20]. First, each SNP was 
included as a covariate in a univariate LMM formulated as: 

                                                                          𝑌௜௝ =  𝛽଴ + 𝑆𝐸𝑋௜௝ ∗ 𝛽ଵ + 𝐴𝑔𝑒௜௝ ∗ 𝛽ଶ +  𝑆𝑁𝑃௜௝ ∗ 𝛽ଷ + 𝑍ଵ௜ ∗ 𝑘𝑖𝑛𝑠ℎ𝑖𝑝௜ + 𝑍ଶ௜ ∗ 𝑓𝑎𝑚𝑖𝑙𝑦௜ + 𝑒௜௝                   𝐸𝑞 (2)  
 
Where all the variables were already defined in Eq 1 except for 𝑆𝑁𝑃௜௝, which denotes 

the number of effect alleles (minor allele), with 𝛽ଵ the respective additive linear effect on 
protein levels. Among the SNPs-protein levels associations significant at α=0.10, the best 
set of SNP markers were selected using the stepwise regression procedure [21], where 
inclusion and exclusion of each SNP out of the model was determined at 0.05 level. The 
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best set of SNPs was then included in a multivariable LMM model, formulated as in Eq 2, 
and SNPs significantly associated with protein levels at α=0.01 were selected to estimate 
the marginal proportion of protein level variability explained by significant SNPs. This 
measure has been calculated using the marginal R2 statistic as defined by Nakagawa and 
Schielzeth [22]: 𝑅ଶௌே௉௦ =  𝜎ଶௌே௉௦𝜎ଶி + 𝜎ଶீ + 𝜎ଶ஼ + 𝜎ଶூ 

 
 Where 𝜎ଶூ, 𝜎ଶ஼, 𝜎ଶ஼ were defined as in Eq 1, 𝜎ଶி was the variance for the fixed 

effects components (i.e., sex, age at blood sampling, and the set of SNPs included in the 
multivariate model). In the scenario where all SNPs are significant at ɑ=0.01, this compo-
nent is defined as: 

𝜎ଶி = 𝑣𝑎𝑟 ቌ𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ + 𝛽ଶ ∗ 𝐴𝐺𝐸௜௝ + ෍ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣
௛ୀଵ ቍ= 𝑣𝑎𝑟(𝜎ଶௌே௉௦) + 𝑣𝑎𝑟൫𝜎ଶௌா௑,஺ீா൯ + 2 ∗ 𝑐𝑜𝑣൫𝜎ଶௌே௉௦, 𝜎ଶௌா௑,஺ீா൯= 𝑣𝑎𝑟 ቌ෍ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣

௛ୀଵ ቍ + 𝑣𝑎𝑟൫𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ + 𝛽ଶ ∗ 𝐴𝐺𝐸௜௝൯ + 2
∗ 𝑐𝑜𝑣(෍ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣

௛ୀଵ , 𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ + 𝛽ଶ ∗ 𝐴𝐺𝐸௜௝)  
Where 𝛽ଵ, 𝛽ଶ,  𝑆𝐸𝑋௜௝ and 𝐴𝐺𝐸௜௝ were defined as in equation (1), 𝛽௛ were the signifi-

cant SNPs fixed effects, with ℎ = 1, … , 𝑝 denoting the specific SNP. The covariance com-
ponent 𝑐𝑜𝑣(∑ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣௛ୀଵ , 𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ + 𝛽ଶ ∗ 𝐴𝐺𝐸௜௝) results different from 0 (with posi-
tive or negative values) when sex and age at blood sampling are not independent from 
the set of significant SNPs and therefore jointly shared a part of the information about 𝜎ଶி 
(and consequently about protein levels).  𝜎ଶௌே௉௦ and 𝜎ଶௌா௑,஺ீா , were, respectively, the 
variance for the SNPs significant at ɑ=0.01 fixed effects component and the variance for 
joint sex and age at the blood sampling fixed effects component. These were then defined 
as: 

𝜎ଶௌே௉௦ = 𝑣𝑎𝑟 ൭෍ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣
௛ୀଵ ൱ +  𝑐𝑜𝑣(෍ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣

௛ୀଵ , 𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ + 𝛽ଶ ∗ 𝐴𝐺𝐸௜௝)  
𝜎ଶௌா௑,஺ீா = 𝑣𝑎𝑟൫𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ +  𝛽ଶ ∗ 𝐴𝐺𝐸௜௝൯ +  𝑐𝑜𝑣(෍ 𝛽௛ ∗ 𝑆𝑁𝑃௛௜௝௣

௛ୀଵ , 𝛽ଵ ∗ 𝑆𝐸𝑋௜௝ + 𝛽ଶ ∗ 𝐴𝐺𝐸௜௝, ) 

Where the sum of 𝜎ଶௌே௉௦  and 𝜎ଶௌா௑,஺ீா, gives 𝜎ଶி. In case of non-significant SNPs 
resulting from the multivariable model, at ɑ=0.01, these were added to 𝜎ଶௌா௑,஺ீா,  compo-
nent. 

Marginal 𝑅ଶௌே௉௦  statistic was also calculated separately for each significant SNP, 
(the sum of each R2SNP giving 𝑅ଶௌே௉௦). 95% confidence interval for 𝑅ଶௌே௉௦  was calculated 
making use of (bias-corrected accelerated) BCa interval, at ɑ=0.05, calculated on 𝐵=1000 
block-bootstrap replications (as defined in section 4.3) [16]. 
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