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Abstract: This review asks some hard questions about what the enigmatic graphoglyptid trace
fossils are, documents some of their early fossil record from the Ediacaran–Cambrian transition
and explores the idea that they may not have been fossils at all. Most researchers have considered
the Graphoglyptida to have had a microbial-farming mode of life similar to that proposed for the
fractal Ediacaran Rangeomorpha. This begs the question “What are the Graphoglyptida if not the
Rangeomorpha persevering” and if so then “What if . . . ?”. This provocative idea has at its roots
some fundamental questions about how to distinguish burrows sensu-stricto from the external molds
of endobenthic sediment displacive organisms.
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1. Introduction

The importance of the first colonization of the sedimentary realm by infaunal organ-
isms has been at the heart of discussions around the evolution of complex animal life and
the beginning of the Cambrian Explosion of animal life [1–4]. The base of the Cambrian
period (and end of the Ediacaran) is defined by the first occurrence of trace fossils belong-
ing to the Treptichnus pedum Assemblage Zone [5,6] at a point in rock in Fortune Head
in Newfoundland, Canada approx. 540 Ma. The precept behind this decision was the
recognition that burrowing is an easily preservable—fundamentally animalian—trait either
in the form of fossil burrows or burrowing fabrics [1,7].

It has become increasingly clear in recent years that complex animals evolved well
before the base of the Cambrian. Indeed, recent studies consider two of the major Ediacaran
clades (the Arboreomorpha and Rangeomorpha) as members of total group Eumetazoa [8].
Evidence for the existence of Ediacaran animals includes: preserved cnidarian muscles
(in the staurozoan-like Haootia [9,10]) and surface locomotion trails [11] both from around
565 Ma; the mollusk-like grazing trace Kimberichnus [12] c. 550 Ma; serial impressions
of placozoan-type feeding (Dickinsonia, Epibaion [13–15] c. 550 Ma; as well as bilaterian
burrows [16] and possible annelid trails [17] close to the basal Cambrian both c. 542 Ma.
Debates around whether the Cambrian explosion of complex animal life had a short or
long Ediacaran fuse [18,19] have thus mostly converged on a consensus that there was a
long Ediacaran pre-history to the Cambrian biotas. The issue of how and why complex
animal life diverged so markedly during the Ediacaran–Cambrian transition is still a source
of debate [20–28].

Perhaps the most interesting questions around Ediacaran paleobiology relate to first
and last occurrences of taxa [9,29–31], but also the biotic transition from the Ediacaran
into the Cambrian [26]. With almost all first order evolutionary innovations (e.g., biomin-
eralization, terrestrialization, etc.) there is a period of time with equivocal evidence for
the event prior to its universally accepted advent. This is likely usually due to localized
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innovation that is difficult to characterize, followed by rapid radiation/dispersal [32]. The
record of the end of the Ediacaran and the Cambrian explosion of animal life includes
examples of Ediacaran survivors in Cambrian rocks (e.g., Swarpuntia [33,34]), and also
evidence of putative Cambrian type trace fossils below the recognized Ediacaran Cambrian
boundary [35–37]. It is to this latter transition, from the matground dominated Ediacaran
to the macroscopically bioturbated Cambrian [2,38] that our attention is drawn herein.

2. Microbially Dominated Seafloors at the Dawn of Animal Life

Matgrounds were common in late Proterozoic marine ecosystems, forming wherever
there was a sufficiently low rate of sedimentation to allow organic matter to settle onto
sediment surfaces. In the absence of surficial detritus-feeders and conveyor activity by
bioturbators, the development of matgrounds developed largely unchecked for the major-
ity of the Proterozoic history of microbial life [39]. The microbial consortia that made up
Proterozoic and lowermost Palaeozoic matgrounds, the physical integrity of matgrounds,
and their shear strength remain effectively unknown. It is presumed that in shallow water
depositional settings there was a strong photosynthetic component and that matgrounds
were dominantly algal in nature [40], but in deep marine settings the matgrounds likely
also had a range of sulphur-oxidizing bacteria close to the sediment-water interface [41,42].
Modern matgrounds are loci of large amounts of microbial biomass and microbial dis-
solved organic matter (DOM) production [43]. In fine-grained sediments, the matground
microbiota occludes pore throats with filaments, resulting in porewater dysoxia or even
anoxia very close to the sediment-water interface [44]. The fine-grained sediment below the
(macro)fossiliferous Ediacaran matgrounds of Avalonia was most commonly pelagite or
hemipelagite, probably with relatively high amounts of porewater [45,46]. The smothering
of these matground surfaces by the growth of reclining organisms or fallen erect organisms
commonly caused the preservation of negative impressions of even the delicate fronds of
Ediacaran organisms [15] (Figure 1A).

One of the most distinctive aspects of the earliest Ediacaran soft-bodied macrobiotas
is that—with few rare exceptions—they were immotile, and in many cases grew to very
large sizes on matgrounds [29,47,48] (Figure 1B). Being immotile on a porous organic-rich
seafloor potentially results in serious biogeochemical challenges in the form of hydrogen
sulfide buildup below the body tissues [49–51]. If hydrogen sulfide accumulates unchecked
next to the epithelium of an immotile recliner it would likely cause cell-death, meaning that
soft-bodied Ediacaran organisms must have been able to modify the organism-substrate
interface in a manner that detoxified, or otherwise mitigated, sulfide toxicity [52]. Other
strategies that animals employ to allow growth on sulfidic porewater substrates involve
creation of an inert barrier between the sediment and the organism such as the holdfasts
of crinoids [53], the basipinacocytes of sponges [51], or the mucous burrow linings of
burrowers that make permanent dwellings (e.g., cerianthid anemones [54,55]). The most
common way for modern soft-bodied organisms to avoid sulfide toxicity is to either
move on a regular basis (e.g., the placozoan Trichoplax initiates movement in response to
sulfide concentrations [56]) or to detoxify this hydrogen sulfide by pumping oxygen to
the sediment interface, causing oxidation of sulfide to thiosulphate [50,57] (Figure 1C).
There are many common ecto- and endo-symbioses between sulfur oxidizing bacteria and
animals, particularly on high surface area, oxygen-rich, epithelia such as gills [58,59].

The earliest examples of Ediacaran fossils include the epibenthic Rangeomorpha,
some of which had fractal-like lower surfaces and lived reclined on the seafloor [52,60,61]
(Figure 1D). Some rangeomorphs actively displaced sediment during growth such that
they grew slightly below the ambient sediment–water interface [62] and as such were
likely adapted to exploit sedimentary biogeochemical gradients, especially the very large
reclining organisms (e.g., Bradgatia [47] and Gigarimaneta [48]). Fractal-like morphologies
in reclining organisms are most consistent with sedimentary nutrient exploitation via
symbioses with lithoautotrophic bacteria, based around the metabolism of methane, hydro-
gen, and hydrogen sulfide in particular. In these symbioses, the rangeomorph probably
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provided oxygen to and gained nutriment from the symbionts that it hosted. It is most
likely in these simple organisms that there was a mixture of symbiosis and phagocytosis on
the lower surface of the organism, in the microbial productivity hotspot generated by the
localized enhanced near-organism oxic zone [50] (Figure 1C).

Figure 1. (A) Long, narrow Ediacaran frond from Mistaken Point Ecological reserve, NL (scale
bar in mm); (B) large reclining rangeomorph Ediacaran frond. aff. Bradgatia sp. from the MUN
surface, Catalina Dome, NL; (C) diagrammatic reconstruction of a generic reclining rangeomorph
detailing the ways that it might have interacted with the substrate. The lower surface is irrigated
with seawater by ciliary action and diffusion. The supply of oxygen to the lower surface is considered
to have increased microbial productivity. The top row of images shows possible feeding modes
with green circles showing the distribution of chemolithoautotrophic symbionts and arrows show
diffusion of solutes. Furthest left is phagotrophy, next is ectosymbiosis, then endosymbiosis and
furthest right is endosymbiosis with a trophosome (requiring diffusion of sulfide/methane into a thin
organism and POM = particulate organic matter). All of these methods of gaining nutrition would
work for endobenthic graphoglyptids; (D) reconstruction of the Ediacaran seafloor of Mistaken Point
Formation (courtesy of Paleocreations).

Due to the low rate of diffusion of oxygen into the sediment porewater systems that
underlay the ubiquitous Ediacaran seafloor matgrounds, the redox profile of Ediacaran sed-
iments is likely to have been significantly condensed [2,63–66]. As a result, very little of the
particulate and dissolved organic matter in such sub-mat settings will have been subject to
aerobic respiration (the greatest energy yield per unit of organic carbon metabolized [67,68]),
leading to a predominance of sulfate reduction and methanogenesis. However, should
a reclining organism grow atop an established matground and pump oxygenated sea-
water to its lower surface, this would stimulate productivity of chemolithoautotrophic
bacteria such as sulfur oxidizers (which could utilize reductants diffusing from the sub-
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mat sediment profile, e.g., HS−, NH4
+, Fe (II) [69]) as well as methanotrophs [70]. Such

stimulation of microbial productivity is likely to have constituted the basis for simple
ectosymbiosis/phagotrophic nutrition for reclining macro-organisms [61].

3. The Slow Death of the Ediacaran-Type Matground Biotope

From their acme in the Proterozoic, matgrounds such as stromatolites slowly de-
clined, becoming increasingly marginalized in the lowermost Paleozoic [71]. Paleozoic
matground facies became increasingly associated with environments that were some-
what hostile to burrowing animals such as low TOC mud-belts in front of deltas [46,72],
whereas in the lowermost Cambrian matgrounds were common in normal marine settings
such as the lower shoreface [2]. Evidence for matground facies in siliciclastic settings is
commonly in the form of microbially induced sedimentary structures (MISS) such as lin-
eated bedding planes of Arumberia, wrinkled surfaces such as Kinneya and elephant-skin
textures [41,73–77]. These same textures commonly recur after mass extinction events
until biotic recovery re-establishes ecosystem services in the benthic realm, including the
all-important ecosystem engineering burrowing endobenthos [78–82].

The stresses on the matground biotope that dominated hiatal marine seafloors of
the Proterozoic largely result from the effects of bioturbation, which seemingly started
in the Ediacaran with the evolution of bilaterian burrowers [16] along with the grazing
activity of metazoans [12,17,83]. This matground stress likely escalated with the evolution
of larger bulk-sediment deposit feeders around the base of Cambrian Stage 2 [80], becoming
better established as bioturbators increasingly sought out surficial and buried organic rich
substrates through the lower Palaeozoic (Figure 2A). Modern levels of bioturbation and
distribution would likely have developed very quickly.

Figure 2. (A) Microbial matground surface with wrinkled texture and abundant sediment mining
trace fossils from the Ordovician of Bell Island, NL; (B) typical ichnofabric from the lower Fortunian of
Fortune Head showing abundant curved, spiraling and branching pyritized burrows; (C,D) bedding
plane view of Lamonte trevallis burrows (Lt) and pyritized graphoglyptid burrows (PGr) with T
junction arrowed. Scale bars 1 cm.



Life 2022, 12, 136 5 of 16

The presence of shallow burrows co-existing with elements of the soft bodied Edi-
acaran biota, while not entirely unexpected, does need to be considered with an open mind
to alternative hypotheses. The morphologies of late Ediacaran burrows are commonly
simple and narrow (Figure 2B). The most abundant trace in this period is the simple tubular
burrow Lamonte trevallis [84] (Figure 2C,D), which is interpreted as a member of an ichnogu-
ild of under-mat miners [85]. Other regularly serial or branched burrows are commonly
attributed to the treptichnid genera Treptichnus and Streptichnus [36,37,86]. The importance
of identifying Treptichnus alongside elements of the Ediacaran biota stems from the fact that
the Treptichnus pedum (originally Phycodes pedum) ichnoassemblage zone is diagnostic of
the base of the Cambrian, thereby creating an apparent stratigraphic conundrum. Though
in the present author’s opinion, none of the purported Ediacaran Treptichnus closely re-
sembles T. pedum, typically being very thin with narrow angle of branching. This begs the
question—to me at least—if they are not Treptichnus s.s. then what might they be?

4. The Early Putative Burrowers of the Ediacaran–Cambrian Transition

It is a seldom appreciated precept of ichnological (trace-fossil) studies that burrows
do not generally betray the taxonomic affinities of the burrowing organism [87], nor do
they always represent a single life activity in most cases [55]. A simple vertical burrow in a
sand, for example, works just as well as a den for a predator or mucous net feeder as it does
for a head-down deposit feeder [88]. While most biologists would accept that as a truism,
many palaeo-ichnologists are surprisingly content with making broad-brush assumptions
of behavior based on burrow morphology [89].

The majority of the earliest fossil burrows do not show good evidence for deposit
feeding activity, but rather are passively sediment-filled, diagenetic mineral-filled, or
collapsed [80]. In the type of section for the Ediacaran–Cambrian boundary in south-
eastern Newfoundland, Canada, the open, passive filled burrows Treptichnus and Gy-
rolithes, dominate the ichnology of the Fortunian-aged Treptichnus pedum assemblage
ichnozone [1,2,80,90] (Figure 3A–D). In the Fortunian stage of the lower Cambrian there
are also abundant surface traces including arthropod burrows and surficial grazers/
bulldozers [1,91]. It is not until slightly higher in the lower Cambrian (Cambrian Stage 2)
that there is unequivocal evidence of bulk sediment deposit feeding activity [2,3,80].

The ichnogenus Treptichnus was created for fossilized burrows [92] and has subse-
quently been applied to a range of marine trace fossils from deep marine turbidite succes-
sions throughout the Phanerozoic, as well as shallow marine trace fossils of the Palaeozoic
and burrows of modern insect larvae [93]. The generic diagnoses of the similarly branch-
ing burrows of Trichophycus and Phycodes include the formation of spreite by serial bulk
sediment deposit feeding and direct evidence of movement in the form of bioglyphs; fecal
pellets are known from Cambrian Stage 2 [94,95] (Figure 4). Both Trichophycus and Phycodes
have Treptichnus-like biserial and uniserial branching, which is almost certainly an example
of convergent behavioral evolution for effective sediment exploration and exploitation
using sympodial/feather stitch branching [3,4,96].

While the ichnotaxonomic minutiae have been explored in detail, the question that
seems not to have been asked is: what evidence do we have for the behavior represented by
the lowermost Cambrian marine treptichnids? We know that organisms have been able to
exploit sub-seafloor settings by sediment displacive growth since the Ediacaran [62], so the
question remains “Do we even know if the earliest endogenic structures were trace fossils
sensu-stricto and not just external molds of the first sediment displacive endobenthos?” I
would posit that perhaps we do not.

If we are to open ourselves to the possibility of sediment displacive growth [62]
persisting beyond the Ediacaran, then there are a wide range of lower Cambrian burrow-
like structures that are always passively filled with sediment or collapse (i.e., not backfilled
by the trace maker) that could be reinvestigated. In this case rather than being burrows we
could think of them as external molds.
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Note that this is not the same as the approach to Treptichnus pedum by Dzik [23]
who conflated biotaxa and ichnotaxa (creating a priapulid genus Manycodes), even though
the two do not complete under the ICZN. Manycodes has not been accepted as being
synonymous with Treptichnus, though the Scalidophora are considered a likely trace-makers
of Treptichnus- and Trichophycus-like burrows both modern and ancient [97].

Figure 3. Tubular open “burrows” from the Fortunian of Fortune Head NL showing spiraling
morphologies of: (A) Gyrolithes gyratus; and (B) G. scintillus with pyrite rich silty sandstone fill.
(C) Shows the bedding plane view of a uniserially branching Treptichnus pedum in which the pyritic
fill has weathered away showing the mold of the burrow, the space that would have been occupied
in life. Whether these structures were burrows sensu-stricto or casts of the exterior of spiraling or
branching organisms remains to be determined. (D) Natural sandstone cast of T. pedum from the
Arumbera Formation in conventional positive hyporelief Scale bars 1 cm.
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Figure 4. Segments of Trichophycus ispp. from the lower Cambrian Arumbera Sandstone of central
Australia showing the stacked spreite (arrowed bottom left) and scratch marks (arrowed top right)
that distinguish the genus from Treptichnus. Scale bar 1 cm.

5. What are the Graphoglyptida if not the Rangeomorpha Persevering?

One of the remarkable things about the “trace fossil” record of the shallow marine
matground-rich facies of the lowermost Cambrian is that there are numerous narrow,
geometric graphoglyptids [97,98]. Graphoglyptids are primarily known from deep marine
depositional settings [99–101] (but sometimes shallow marine as well [102,103]) from
the Ordovician onwards and having a major radiation in the Cretaceous [101], perhaps
coincident with the expansion of deciduous trees and grasslands. The affinities of the
Graphoglyptida are contentious, and even though some examples are known from modern
seafloors, no trace-maker has yet been positively identified [104].

Recent work has divided the Graphoglyptida into three topological groups [105]:
(1) “line graphoglyptids” (mostly meanders and spirals) which are common in the Fortunian
lower Cambrian worldwide (Figure 5A,B); (2) “tree-form (mainly sympodially-branching)
graphoglyptids” (including Treptichnus [106]) which are locally common in lower shoreface
settings (Figure 5C,D); and (3) “net-type graphoglyptids” that are generally rare except in
tempestite and prodelta turbidite deposits [1,3,107] (Figure 5E,F).

Most authors have considered the mode of life of the graphoglyptid-making organisms
to include a combination of: (1) intensive [near]surficial bulk-sediment detritus feeding
in meanders and spirals [98,105]; and (2) the creation of open sub-surface branching
burrows and networks that were maintained for the purpose of “farming” microbes on the
burrow wall [98].
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Figure 5. Graphoglyptid morphologies: (A,B) are line graphoglyptids ((A) Helminthoida though note
the branching from the Cambrian Arumbera Sandstone Australia; (B) is Helicolithus from the latest
Ediacaran of Tanafjord, Norway); (C,D) are branching graphoglytids. ((C) is Belorhaphe from the late
Ediacaran of Tanafjord, Norway, (D) is cf. Paleomeandron from the Cambrian Arumbera Sandstone);
(E,F) are net graphoglyptids ((E) is Squamodictyon and (F) is Paleodictyon from the Arumbera Sandstone,
Australia). Scale bars 1 cm.
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5.1. The Early Vermiform/Line Graphoglyptids

In the Cambrian, hiatal matground facies prior to the onset of deep deposit feeding
activity is likely to have been associated with surficial-concentrated nutrients similar to
the distribution of food on the deep basin floors exploited by modern systematic (mean-
dering/spiraling) deposit feeders [107]. The similar trace fossil assemblage is perhaps to
be expected.

The surficial matground biotope was host to some of the earliest Ediacaran endogenic
structures (e.g., Lamonte trevallis). The ability of the organisms to penetrate matground
textures is a most surprising and fundamental innovation, potentially opening up the
sub-matground porewater systems to a second phase of microbial oxidation of buried
organic matter [108]. Since backfill is yet to be demonstrated in this under-mat-miner guild,
it should also be considered that the open tubular structures with their high surface area to
volume ratio might have been suitable for cilial bioirrigation by a very simple immotile
animal living in the sediment. Such a mode of life would be particularly effective if the
Lamonte-making organism had symbionts as did some of the rangeomorphs.

Other similar, open, unbranched features described as burrows are common in the
latest Ediacaran and lower Cambrian. Several distinctive spiraled/sinuous taxa of uniform
diameter without backfill are known from within meters of the Ediacaran–Cambrian
boundary, including the vertically spiraled Gyrolithes scintillus and G. gyratus (Figure 3)
and horizontally spiraled Helicolithus [3,80,90,109] (Figure 5A), Streptichnus [86], and some
prossible Treptichnus [37]. All of these taxa are considered to have been maintained such
that they were constantly open to seawater and are commonly partly pyritized. That the
burrows are commonly pyritized is suggestive of the presence of sulfur oxidizing bacteria
that would be predicted by the ciliary irrigating mode of life of the symbiotic/phagocytotic
Rangeomorpha proposed by Dufour and McIlroy [50].

Previous work has noted the potential for bacterial farming in Gyrolithes [90], pre-
sumably via bioirrigation [88], but did not consider a rangeomorph-like chemosymbiotic-
phagocytotic mode of life. The bacterial farming mode of life seems to rely on some form
of burrow wall grazing for which there is to date no convincing evidence. Younger occur-
rences of Gyrolithes are commonly attributed to conventional dwelling or deposit feeding
burrows of bilaterian taxa from various “worms”, arthropods and even vertebrates [90].
Modern Helicolithus-like burrows are known to be formed in sulfidic marine sediments by
the deposit feeding enteropneust Saccoglossus [110].

If the paradigm for a rangeomorph-like symbiotic lifestyle can be extended to un-
branched, high surface area-volume ratio burrows without evidence of burrowing ac-
tion/feeding, then the atypical nature of the earliest trace-fossil biotas and their overlap
with the Ediacaran biotas might be explainable.

5.2. The Tree-Like Graphoglyptids of the E-C Boundary

Recognition of the tree-like graphoglyptids in bedding plane expression is commonly
facilitated by the presence of sharp, commonly high angle branches—even 90◦ branching.
That in itself is unremarkable [111], but to have 90◦ branching without corner rounding
(see Treptichnus in [87], their Figure 6) is unusual/unknown in burrows that are constantly
patrolled by the trace-maker. A large number of trace fossils fall into this category; many
of them are very beautiful, consisting of high angle branching in complex shapes, often
forming meanders and almost never self-crossing. Most Phanerozoic examples of the tree-
like graphoglyptids have very long chains of self-similar elements in a single meandering
burrow [101]. Cambrian examples attributed to the same ichnotaxa tend to be short and
slightly atypically irregular [3] (Figure 5C,D).
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Figure 6. (A–D) Treptichnus pedum showing a range of branching types. All preserved as open
burrow fills from the Fortunian of Tanafjord, Norway. D shows both uniserial and biserial monopo-
dial branching. (E) is a small portion of aff. Bradgatia showing Treptichnus such as branching.
(F) Treptichnus lublinensis showing meandering habit and very rangeomorph-like branching. Scale
bars 1 cm except (D), which is 5 cm.

In the farming model for graphoglyptid paleobiology [98], the endobenthic organism
is inferred to have either actively or passively irrigated the burrow, thereby providing
a large surface area supplied with oxygenated seawater upon which a microbiota could
be cultured.

The most common tree-like, branching open burrow in the Cambrian is Treptichnus
pedum, which may have alternated between biserial and uniserial sympodial branching.
The feather-stitch biserial branching produces effectively straight burrows, with terminal
openings at the end of each blind ended branch (Figure 6A). The length of branches and
their angle can vary considerably, affecting spacing between branching (Figure 6B). The
same burrows can curve by undergoing uniserial sympodial branching (Figure 6C) while
avoiding self-crossing, perhaps in response of physico-chemical seafloor gradients.

The epibenthic rangeomorph Bradgatia undergoes similar branching in search of nutri-
ents (Figure 6D) and likely had an oxygen-capturing upper surface and a ciliated lower
surface providing fresh supplies of seawater to its episymbionts. The other species of Trep-
tichnus that is only known from the lower Cambrian is the very shallow tier rangeomorph-
like Treptichnus lublinensis, which would not look out of place in some of the iconic deep
marine Ediacaran biotas [52] (Figure 6E). Additionally, zig-zagged open burrows attributed
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to Belorhaphe isp. (Figure 5C) from the latest Ediacaran of Norway [3] are similar to Trep-
tichus except for the branching position and small size. This not to say that the treptichnids
and forms such as Belorhaphe were indeed rangeomorphs per-se, just that they may have
had a rather rangeomorph-like mode of life and growth (albeit endobenthically rather than
epibenthically) and were not necessarily deposit feeders as is commonly stated but may
have had a sediment-displacive mode of life. As we strive to understand these purported
trace fossils, we need to bear in mind the possibility that they could be external molds
rather than burrows.

5.3. The Net-Like Graphoglyptida

The net-like Graphoglyptida are some of the most complex burrow systems in marine
depositional settings. If they were to be created by burrowing, their excavation would
require complex “programming” [98] to evolve at or before the Ediacaran–Cambrian
boundary since the net-like graphoglyptids are known from the latest Ediacaran (described
as Multina or Olenichnus [3,16,112]; Figure 7).

Figure 7. Net-type graphoglyptids from the Ediacaran (A) Multina and Fortunian (B) Paleodictyon of
Tanafjord. Some of the supposedly most complicated marine trace fossils amidst the earliest record of
endobenthic activity. Pen for scale in (A) is 1 cm diameter, scale bar in (B) 1 cm.

Modern soft-sediment cores have occasionally recovered shallow-tier polygonal
xenophyophore-like protistan organisms [113] comparable to partial Paleodictyon and
sponge markers have been associated with Paleodictyon-like openings [104]. At the same
time, however, it is possible for simple organisms such as nematodes and foraminifera
to make multi-tiered network burrows comparable to Multina isp. [114,115]. Some of the
network-like morphology of Multina and Olenichnus have sharp (unrounded) angles at the
branching points of the Graphoglyptida. That lack of corner rounding is common to all
Paleodictyon and, for this author at least, is very suggestive of branched growth evincing
preservation of external molds of an organism rather than being a constantly patrolled
burrow. Corner rounding is common in all long trace makers, e.g., worms and some arthro-
pods. Some authors have argued that sharp corners could be maintained in networks if
burrowed by a trace-maker that is about as long as the burrow is wide [105], which would
need a strange near spherical morphology.

6. Conclusions or “What if . . . .?”

The ideas outlined above constitute testable hypotheses that admittedly ask very
difficult questions of the rock specimens we have to work with, but should not be discarded
in preference for conventional interpretations without careful consideration.

The questions around the demise of the Ediacaran biotas and the diversification of
animals in the lower Cambrian are first order paleontological questions. Whether the
graphoglyptids function as microbe farms that were patrolled, irrigated and browsed upon
by a short-bodied active burrower; or whether they are the external molds of a simple
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pre-placozoan-grade rangeomorph-like organism that grew in or through the sediment is
also key.

If we could know unequivocally what the enigmatic open burrow-like structures in
the lowermost Cambrian are, we might become a step closer to understanding either the
persistence or otherwise of the chemosymbiotic Rangeomorpha, or better appreciate the
paleobiology of the earliest burrows. Either way, it is considered here that they might
make a poor choice for delineating the base of the Phanerozoic. The abundant traces of
arthropods might be preferable for their lack of ambiguity if nothing else.

The fossil record of the dawn of animal life is full of hints and contradictory evidence,
provincialism and incomplete datasets. The questions around the affinities of the Ediacaran
biota and the appropriate choice of marker for the Ediacaran boundary are still far from
resolved. There is much yet to do, and the hypotheses generated by asking the awkward
question ‘What if . . . ?’ are more likely to provide novel answers than not asking.
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