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Abstract: Proper delineation of both target volumes and organs at risk is a crucial step in the
radiation therapy workflow. This process is normally carried out manually by medical doctors, hence
demanding timewise. To improve efficiency, auto-contouring methods have been proposed. We
assessed a specific commercial software to investigate its impact on the radiotherapy workflow on
four specific disease sites: head and neck, prostate, breast, and rectum. For the present study, we
used a commercial deep learning-based auto-segmentation software, namely Limbus Contour (LC),
Version 1.5.0 (Limbus AI Inc., Regina, SK, Canada). The software uses deep convolutional neural
network models based on a U-net architecture, specific for each structure. Manual and automatic
segmentation were compared on disease-specific organs at risk. Contouring time, geometrical
performance (volume variation, Dice Similarity Coefficient—DSC, and center of mass shift), and
dosimetric impact (DVH differences) were evaluated. With respect to time savings, the maximum
advantage was seen in the setting of head and neck cancer with a 65%-time reduction. The average
DSC was 0.72. The best agreement was found for lungs. Good results were highlighted for bladder,
heart, and femoral heads. The most relevant dosimetric difference was in the rectal cancer case, where
the mean volume covered by the 45 Gy isodose was 10.4 cm3 for manual contouring and 289.4 cm3 for
automatic segmentation. Automatic contouring was able to significantly reduce the time required in
the procedure, simplifying the workflow, and reducing interobserver variability. Its implementation
was able to improve the radiation therapy workflow in our department.

Keywords: radiation therapy; contouring; auto segmentation; artificial intelligence; delineation

1. Introduction

Radiation therapy (RT) is an important treatment option in the management of cancer.
It aims at delivering a high radiation dose to target cancer cells to ensure clinically required
tumor control probability and concomitantly spare the nearby healthy tissues to prevent
acute RT-related toxicity and late effects.

Accurate contouring of Clinical Target Volumes (CTV) and Organ at Risk (OAR) is
important for treatment planning and delivery. Generally, the segmentation of tumor
regions and normal tissues is manually performed by the clinical staff, based on the images
acquired during planning computed tomography (CT). This approach is prone to a high
degree of inter and intra observers’ variability, being time-consuming, and representing
a bottleneck in the planning workflow [1].

To improve the efficiency of this process, auto-contouring methods have been pro-
posed. One of the most popular approaches is atlas-based segmentation [2,3]. However,
contouring algorithms based on deep-learning techniques are being increasingly used,
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showing better results than atlas-based approaches [4,5]. The purpose of our study was to
investigate the clinical implementation in our institution of a specific deep learning-based
auto contour commercial software to assess the impact on the radiotherapy workflow in
four specific disease sites: head and neck, prostate, breast and rectum.

2. Materials and Methods
2.1. Deep Learning Auto-Segmentation

A commercial deep learning-based auto-segmentation software, Limbus Contour (LC),
Version 1.5.0 (Limbus AI Inc., Regina, SK, Canada), which uses deep convolutional neural
network models based on a U-net architecture specific for each structure, was recently intro-
duced in our institution. The software relies on models trained, using public datasets [6–10],
as well as datasets obtained through institutional data agreements [11–15]. The number of
scans used in the training set for each model varies: each model is trained on hundreds or
thousands of scans. Models were trained using TensorFlow; typical image augmentation
and regularization techniques were applied. Each model is validated internally by Limbus
AI by comparing the model output on a set of test scans to expert human contours on
the same test scans. The models are also validated in published studies that investigate
qualitative and quantitative accuracy and time savings [1,16–18].

LC obtains information related to the acquisition protocol by reading the DICOM meta-
data of the CT images. The corresponding auto-segmentation model is then automatically
used to create auto-segmented contours that are exported alongside the CT images to the
treatment planning software to be eventually edited and then validated by the clinicians.

2.2. Patients’ Selection

Four disease sites were selected for the present study, namely Head and Neck (H&N),
prostate, rectum, and breast cancer. We focused on these four settings, considering their
high frequency and important impact on the radiotherapy workflow. For each type of
treatment, three patients treated in our center were selected.

For H&N, we chose oropharyngeal cancer to guarantee the standardization of OARs
contouring. Patients eligible for the study received radical radiotherapy. The prescription
dose was 70 Gy delivered in 35 fractions for the curative setting. The prostate setting
consisted of patients who received exclusive radiotherapy on prostate gland and seminal
vesicles. A moderate hypofractionated schedule was proposed: 70 Gy on prostate gland
and 63 Gy on seminal vesicles in 28 fractions, delivered with a simultaneous integrated
boost. For rectal cancer, patients offered pre-operative RT were considered. The prescription
dose was 50 Gy on the gross tumor volume and positive nodes, and 45 Gy on the elective
volumes, in 25 fractions. Finally, patients with left-sided breast cancer who underwent
conservative surgery were selected. In this case, the prescription dose was 45 Gy for
whole breast irradiation and 50 Gy on the tumor bed, given with a concomitant boost, in
20 fractions.

2.3. Technical Setup

Each patient underwent a planning CT scan in supine position; to prevent patient’s
displacements during treatment, immobilization devices were used: thermoplastic mask
for H&N, knee wedge and foot lock for prostate and rectum treatments, breast board for
breast cases. Planning CT images were acquired with a Canon Aquilion LB V6.3 series
scanner (Canon medical system corporation—Ōtawara, Japan) with 120 kVp tube load.
The slice thickness was 3 mm for H&N cancer and 5 mm for other diseases. The in-plane
pixel size was 1 mm × 1 mm for all acquisitions.

2.4. Contour Methods

Four different RO, each with expertise in the specific clinical setting, manually delin-
eated the four-treatment districts following national and international consensus guide-
lines [11–15,19–22]. For contouring purposes, additional imaging (e.g., magnetic resonance
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imaging, positron emission tomography or diagnostic CT) were used, if necessary. The
clinically approved treatment plan was subsequently delivered.

The same CT acquisitions were contoured by LC and the images, together with the
RTstructure DICOM file, were then sent to the Treatment Planning System (TPS) Eclipse
(Version 15.6, Varian Medical Systems—A Siemens Healthineers Company, Palo Alto, CA,
USA). The LC structure set was later duplicated on the TPS. One structure set has been
reviewed by the competent RO and, if necessary, the contours were modified; the second
was not submitted to any change.

For H&N cancer, contoured OARs were fifteen (brainstem, brachial plexuses, spinal
cord, inner ears, parotid glands, thyroid, mandible, oral cavity, larynx, lungs and esopha-
gus). For prostate cases, five structures were considered (bladder, femoral heads, rectum
and penile bulb). For rectal cancer, four OARs were accounted for (femoral heads, bladder
and bowel—as abdominal cavity). Finally, for breast cancer contoured structures were
four (contralateral breast, heart, and both lungs).

2.5. Contouring Time

We recorded the time spent performing the manual contour for each CT scan.
Moreover, the time required for LC to generate OARs on a consumer grade system
(3.1 GHz Intel Core i7, 8 GB memory) was also evaluated. Finally, the time spent by
the ROs to review and, if necessary, edit the contours performed by LC was measured. The
overall duration of contouring using LC (LC contouring plus ROs review) was compared
to the time required to perform manual contouring, which was used as a reference. In this
way, the time difference—absolute and relative—between the two contouring methods
was obtained.

2.6. Geometrical Analysis

The manually contoured structures (MC) were compared with those generated by
LC by means of three indicators: volume variation, Dice Similarity Coefficient (DSC)
and shift of the center of mass. For structures with a volume greater than 15 cm3, the
volume percentage variation was considered. Conversely, for smaller structures, the
absolute change in volume was analyzed, since the percentage variation was not considered
indicative, given that small variations in volume lead to large percentage variations.

DSC [23] is a measure of the overlap of two volumes. Its value is comprised be-
tween 0 and 1, where 0 indicates no overlap while 1 stay for complete overlap. If X
and Y are the two volumes to be compared, the coefficient DSC (X|Y) is defined as DSC
(X|Y) = 2|X∩Y|/(|X| + |Y|). Finally, starting from the coordinates of the center of mass
of each structure in latero-lateral (X), cranio-caudal (Y) and antero-posterior (Z) direction,
its displacements between manual and auto-segmented contouring were evaluated. All the
parameters were obtained from the statistics tool of the contouring module of Eclipse TPS.

2.7. Dosimetric Analysis

A dosimetric analysis was performed to evaluate the effects of unsupervised use of
LC on the assessment of dose distribution.

The original treatment plan, optimized and clinically approved with the manually
contoured volumes, was recalculated on the LC contoured structure-set using the AAA
algorithm (version 15.6.06) of Eclipse TPS, the same as the original plan.

The differences in the Dose Volume Histograms (DVH) between the two structure sets
were then evaluated and plans were compared using the metrics reported in Table 1.

For serial organs, metrics associated with maximum dose were used, while for parallel
organs the average dose or dose too large volume were considered.
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Table 1. Metrics used for DVH. The results of Limbus Contour (LC) and Manual contour (MC) are
reported for different treatment sites and OAR ± one standard deviation.

Treatment Site OAR DVH Metric MC Mean ± SD LC Mean ± SD

H&N Oral cavity Mean dose 42.8 ± 4.8 47.9 ± 3.6

Esophagus D1cc 44.6 ± 3.4 45.7 ± 5.2

Larynx D1cc 49.2 ± 2.4 49.3 ± 1.4

Larynx Mean dose 34.8 ± 3.6 35.9 ± 2.1

Mandible D1 cc 63.3 ± 6.6 62.9 ± 7

Spinal Cord D0.03 cc 28.6 ± 1.7 28.4 ± 1.8

Spinal Cord Dmax 29.5 ± 1.3 29.1 ± 1.5

Inner Ear R Mean dose 11.3 ± 6.8 10.2 ± 6.2

Inner Ear L Mean dose 10.5 ± 6.1 9.3 ± 5.5

Parotid R Mean dose 32.4 ± 7.7 36.9 ± 8.7

Parotid R V30Gy 48.8 ± 10.9 56.2 ± 11

Parotid L Mean dose 29 ± 6.1 33.3 ± 6.6

Parotid L V30Gy 43.6 ± 9.8 53 ± 12.4

Lung R D30% 5.6 ± 8 5.5 ± 7.9

Lung L D30% 4.6 ± 6.4 4.5 ± 6.2

Thyroid V45Gy 77.7 ± 25.4 77.7 ± 25.4

Brain Stem D0.03cc 35.1 ± 2.9 34.6 ± 2.5

Brachial Plexus R D0.03 cc 56.6 ± 1.8 58.7 ± 4.6

Brachial Plexus L D0.03 cc 56.8 ± 1.8 58.8 ± 3.7

Left Breast Lung R V5Gy 0 ± 0 0 ± 0

Lung L V10Gy 12.1 ± 2.3 12.1 ± 2.3

Lung L V20Gy 8.5 ± 1.8 8.5 ± 1.8

Lung L V5Gy 19.9 ± 3.3 19.9 ± 3.4

Heart V25Gy 1.2 ± 1 1 ± 0.9

Breast D1cc 0.7 ± 0.1 1.4 ± 0.2

Prostate Penile bulb Dmean 14.8 ± 3.2 22.2 ± 15

Femoral Head R Dmax 35.3 ± 3 34.9 ± 3

Femoral Head L Dmax 37.5 ± 6.1 37.4 ± 5.8

Rectum V50Gy 17.4 ± 4.3 19.7 ± 3.6

Rectum V60Gy 7.2 ± 2 8.4 ± 1.9

Rectum V65Gy 3.8 ± 0.8 4.6 ± 1.7

Rectum V68Gy 2 ± 0.7 2.7 ± 1.6

Bladder V60Gy 14 ± 2.3 16.6 ± 4.5

Rectum Femoral Head R V30Gy 27.6 ± 4.8 27.6 ± 4.5

Femoral Head R V40Gy 1.1 ± 0.8 0.8 ± 0.8

Femoral Head R V45Gy 0 ± 0 0 ± 0

Femoral Head L V30Gy 24.3 ± 9.7 22.7 ± 11.7

Femoral Head L V40Gy 0.8 ± 1.3 0.5 ± 0.9

Femoral Head L V45Gy 0 ± 0 0 ± 0
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Table 1. Cont.

Treatment Site OAR DVH Metric MC Mean ± SD LC Mean ± SD

Bladder V35Gy 30.1 ± 22 32.7 ± 24.8

Bladder V40Gy 19.5 ± 16.8 20.1 ± 17.3

Bladder V50Gy 0.6 ± 1.1 1.3 ± 1.1

Bowel V45Gy 10.4 ± 15.7 289.4 ± 34

3. Results
3.1. Contouring Time

The absolute and percentage variations of the contouring times are shown in Figure 1.
The maximum time saving, both absolute and relative, was obtained for the H&N setting
(80 min and 65%, respectively). The minimum changes, both absolute and relative, were
found for rectum (3 min and 17%, respectively). Similar variations were found for prostate
treatments, while breast cases showed intermediate values.
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Figure 1. Absolute (right) and percentage (left) time reduction obtained with Limbus auto-
segmentation software.

3.2. Geometrical Analysis

Figure 2 shows the average percentage variations in volumes for structures with
a volume greater than 15 cm3. The associated uncertainty is expressed in terms of
±1 standard deviation. The OAR with the minimum variation (1%) is lung; the structures
with the greatest percentage variation are bowel and oral cavity, with mean percentage
variations of 65% and 32%, respectively.

The absolute volume variations for structures with a volume smaller than 15 cm3

are reported in Figure 3. The associated uncertainty is expressed in terms of ±1 standard
deviation. All the structures show values close to or less than 1 cm3.

Figure 4 shows the average Dice Index for the analyzed structures, with the relative
uncertainty, expressed as ±1 standard deviation. The lowest DSC value is 0.39 for the
penile bulb. The best results were found for lungs, characterized by a Dice Index of 0.99.
Furthermore, a good agreement was found for bladder, heart, and femoral heads, with
values greater than or close to 0.9. Considering all structures, the average DSC is 0.72.
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The absolute value of the three-dimensional displacement of the center of mass is
represented, for all the structures, in Figure 5. The lowest values were found for lungs,
with values close to 0. The greatest displacement occurred for bowel, with a value equal to
2.4 cm. In Figure 6 the absolute values of the displacements in each direction are reported
for bowel.
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3.3. Dosimetric Analysis

In Table 1, the metrics used for the dosimetric comparison of the treatment plans are
reported. The most relevant difference was found in the bowel for rectal cancer treatments:
the mean volume covered by the 45 Gy isodose was 10.4 cm3 for the MC structures versus
289.4 cm3 for the LC ones.

4. Discussion

The present study explores the effects of commercial deep-learning based software for
auto-contouring on the clinical workflow of a radiation oncology department at a tertiary
cancer hospital. In particular, the focus was on timesaving and on the accuracy of the
contoured structures.

To accurately assess the time reduction, we evaluated the clinical settings having the
highest impact on the workflow in our radiotherapy department. In addition, for each
disease site we focused on, all the OARs included in the clinical routine were considered.

Limbus performance was already analyzed by other authors, who investigated multi-
observer variability [1], qualitative evaluations of expert ROs [21] and specific evaluations
for lung SBRT [22,23]. Furthermore, Zabel et al. [16] compared the manual contouring
workflow with LC and an additional atlas-based automatic contouring algorithm for
bladder and rectum contouring. Finally, a recent study by D’Aviero et al. evaluates the
geometric accuracy of the contours limited to H&N district [24]. The present study includes
28 OARs and 4 anatomical subsets, resulting in a total of 84 contours analyzed. To the best
of our knowledge, there are no data available in the literature on such a comprehensive
list of OARs and diseases. Furthermore, this study investigates the entire radiotherapy
workflow, focusing on geometrical accuracy, timesaving and dosimetric implications of LC
implementation in a radiotherapy department.

The possibility to save time is greater in anatomical districts characterized by a greater
number and complexity of OARs. Our data are similar to those reported in the literature. As
an example, in the setting of lung cancer, Lustberg et al. [2] showed an average time saving
of 61% compared to existing clinical practice and 22% compared to the use of atlas-based
contours. Wong et al. [1] also found remarkable decreases in contouring time, although for
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H&N the absolute time reduction is not comparable to ours due to the smaller number of
structures contoured by Wong et al.

LC provides good results, as no gross contouring errors were found. This high-quality
performance is highlighted by the average DICE Index of 0.72 which can be considered
acceptable in clinical practice [21]. However, some OARs have characteristics that deserve
to be discussed.

As can be seen by center of mass and geometrical analyses, there is a difference in
bowel manual contouring versus automatic segmentation. LC considers as bowel the
entire abdominal cavity, extending the caudal limit including the whole inferior abdomen,
regardless of the presence of the intestinal loops. During manual contour, however, bowel
was considered as abdominal cavity whose caudal limit is defined by the presence of
intestinal loops [14,25,26]. These differences justify the dosimetric variation observed.

Regarding the oral cavity, the differences are due to different approaches in contouring;
similar results are found by Zhong et al. [27]. LC considers the extended oral cavity, as
Contouring Head and Neck OARs Guidelines suggest [15], including the oral tongue and
anterior portion of the oropharynx. In manual contouring, the latter was instead excluded
from the oral cavity OAR, since it is part of PTV.

The low DSC for penile bulb is an expected finding, as the anatomical markers or
the necessary soft tissue contrast for the penile bulb is generally lacking on CT. To best
identify penile bulbs and reduce great contouring variability, some authors have stressed
the importance of performing an MRI or CT scan with contrast in the urethra for optimal
identification of the penile bulb [14].

About brachial plexuses, the institutional practice is not to contour the complete
brachial plexus until, laterally, the thoracic wall because for oropharynx tumors the dose
to the brachial plexus axillary trunk is negligible [28]. This choice is due to the necessity,
in manual contouring, to reach a compromise between the contouring time and the use-
fulness of the executed contour. However, this tradeoff is not necessary in the case of
automatic contouring.

A disagreement in the cranial limit of plexuses was also found. During manual
contouring, the brachial plexuses start from the spinal nerves through the neural foramina
from the C4–C5 (C5 nerve roots) to the T1–T2 (T1 nerve roots) level. In LC the cranial level
of brachial plexus is often higher, such as C2–C3, probably due to the position of neck.
These issues explain differences in DSC values for brachial plexuses (about 0.7) compared
to those found by D’Aviero et al. [24] (about 0.95).

Regarding parotid glands, no significant changes in geometric parameters were found.
However, there is a non-negligible variation of dosimetric indicator. Although the shape
and position of parotid glands are similar in manual contouring and LC, minimal differ-
ences could drastically affect dosimetric parameters because of the proximity of parotid
glands to PTV and to the steep dose gradients. These results are similar to those reported
by Nelms et al. [29].

Good results were found for lungs, femoral heads and bladder. DSC values for these
OARs were similar to those found by Wong et al. for bladder, femoral heads [21] and
lungs [22]. Furthermore, Zabel et al. [16] bladder DSC value −0.97—confirms our result.

A limitation of the study is the low number of patients analyzed for each setting. How-
ever, the analysis considers all OARs involved in the clinical workflow for the considered
anatomical regions. This allows for a comprehensive assessment of the impact of LC on
radiotherapy routine and considers all the steps of the radiotherapy planning process,
from contouring to dosimetric consequences of the unsupervised use of LC. A complete
description of LC impact on radiotherapy routine can provide useful information.

As a novelty, this study provides quantitative evidence of the time savings achieved
by LC use. These values are realistic, thanks to the number of contoured structures. Further-
more, it is possible to identify the anatomical sites which most benefit from LC. Dosimetric
evaluation shows that, although DVH differences are not significant in most cases, LC con-
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toured structures must always be supervised by an expert contourer. Otherwise, especially
in regions near to high dose gradients, there may be relevant dosimetric variations.

5. Conclusions

Although an accurate visual review by an expert clinician is still required, LC can
significantly reduce the time required for contouring and simplify the workflow leading to
treatment planning. Its implementation also allows reducing interobserver variability and
improving the interpretation of radiological anatomy. Furthermore, LC can support staff
training and the continuous assessment of clinical contouring and structure segmentation.
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