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Abstract: Recent studies have attempted to develop molecular signatures of epithelial ovarian can-
cer (EOC) based on the quantitation of protein-coding and non-coding RNAs to predict disease
prognosis. Due to the heterogeneity of EOC, none of the developed prognostic signatures were
directly applied in clinical practice. Our work focuses on high-grade serous ovarian carcinoma
(HGSOC) due to the highest mortality rate relative to other types of EOC. Using deep sequencing
of small non-coding RNAs in combination with quantitative real-time PCR, we confirm the du-
alistic classification of epithelial ovarian cancers based on the miRNA signature of HGSOC (type
2), which differs from benign cystadenoma and borderline cystadenoma—precursors of low-grade
serous ovarian carcinoma (type 1)—and identified two subtypes of HGSOC, which significantly
differ in the level of expression of the progesterone receptor in the tumor tissue, the secretion of
miR-16-5p, miR-17-5p, miR-93-5p, miR-20a-5p, the level of serum CA125, tumor size, surgical out-
come (optimal or suboptimal cytoreduction), and response to chemotherapy. It was found that the
combined determination of the level of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p circulating
in blood plasma of patients with primary HGSOC tumors makes it possible to predict optimal cy-
toreduction with 80.1% sensitivity and 70% specificity (p = 0.022, TPR = 0.8, FPR = 0.3), as well as
complete response to adjuvant chemotherapy with 77.8% sensitivity and 90.9% specificity (p = 0.001,
TPR = 0.78, FPR = 0.09). After the additional verification of the obtained data in a larger HGSOC
patient cohort, the combined quantification of these four miRNAs is proposed to be used as a criterion
for selecting patients either for primary cytoreduction or neoadjuvant chemotherapy followed by
interval cytoreduction.

Keywords: miRNA; new-generation sequencing (NGS); quantitative RT-PCR; high-grade serous
ovarian carcinoma (HGSOC); cytoreduction; response to chemotherapy; progesterone receptor

1. Introduction

In recent years, ovarian cancer ranks seventh in the order of overall cancer incidence, fifth
among the causes of death from all malignant tumors in women [1], and is the leading cause
of gynecological cancers according to the International Agency for Research on Cancer (IARC).
Epithelial ovarian cancer (EOC) accounts for 60% of all cases of diagnosed ovarian cancer, is a
heterogeneous group of carcinomas and consists of several histological subgroups, among
which the most common are high-grade serous carcinoma, low-grade serous carcinoma,
endometrioid carcinoma, clear cell carcinoma and mucinous carcinoma, each characterized
by individual molecular genetic characteristics [2,3]. Among them, the serous type accounts
for 75–80% of epithelial malignant neoplasms, and most serous carcinomas are diagnosed at
already advanced stages of the disease. The highest mortality (about 70%) is observed among
patients with high-grade serous ovarian carcinoma (HGSOC).
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There are no clinical diagnostic and molecular biological methods for the early detec-
tion of EOC. EOC is characterized by high tumor heterogeneity and genomic instability,
changes in the methylation status of the promoters of protein-coding genes and non-coding
regions of the genome, and changes in the expression level of both proteins and their
regulators at the post-transcriptional level [4–12], which provide multicomponent and
multilevel pathogenesis of EOC and complicates the search for marker molecules to charac-
terize this disease. HGSOC is characterized by mutations in the TP53 gene in 96% of cases
with or without somatic mutations in the NF1, BRCA1, BRCA2, RB1, and CDK12 genes,
113 significant DNA copy number aberrations and changes in the methylation status of
168 genes, associated with the differential expression of 253 genes. Point mutations are
much less common for low-grade serous ovarian carcinoma (LGSOC), in which the most
frequent mutations are in BRAF and KRAS genes. A more complete and detailed molecular
biological study of EOC is needed to identify new target molecules, which will serve
as a basis for the development of methods for early diagnosis and effective therapeutic
treatment of this disease.

Currently used diagnostic markers (including CA125 and HE4) do not have sufficient
sensitivity and specificity to detect EOC [13]. It is known that increased levels of CA125 in
the blood serum can also be detected in patients with endometriosis, adenomyosis, uterine
fibroids, benign cysts, or inflammatory diseases in the pelvis. For example, in a retrospective
analysis of serum samples from 5500 women in Sweden, an increase in CA125 levels was
detected in 175 women, of whom only six were diagnosed with ovarian cancer, while three
women with normal CA125 levels were diagnosed with ovarian cancer [14].

The main regulators of genome stability and gene expression at the epigenetic and
post-transcriptional levels are small non-coding RNAs, including microRNAs (miRNAs).
The same miRNA can be involved in the regulation of hundreds of target genes, while each
of the structural genes is a target for different miRNAs [15]. Theoretically, the expression
of 60% of human genes is under miRNA control [16]. Most miRNAs have oncogenic
or oncosuppressive activity and can regulate various biological processes, including cell
metabolism, proliferation, apoptosis, and chemoresistance [17,18]. Since miRNA expression
is tissue-specific, detectable in blood, and correlates with clinical manifestations of cancer,
miRNA can be used as potential diagnostic and prognostic tumor markers [19–24].

Many research teams have worked on the creation of a molecular portrait of HGSOC,
comparing miRNA expression profiles in ovarian carcinoma with normal ovarian tissue or
cell lines derived from the surface epithelium of the ovaries [25–28]. However, according to
modern concepts of the pathogenesis of serous ovarian cancer, based on morphological
and molecular genetic studies, the most likely source of development of serous ovarian
carcinomas is the epithelium of the fallopian tube fimbriae [29–32]. There are two main
pathways for the pathogenesis of serous carcinomas. One of them is the dissemination
of fallopian tube epithelial stem cells to the surface of the ovary (presumably at the site
of ovulation) with the formation of cystic inclusions, which can increase in volume with
the formation of benign serous cystadenoma (BSC) with subsequent transformation into a
serous borderline tumor (SBT) and low-grade serous carcinoma (LGSOC). The formation
of HGSOC presumably occurs according to a different mechanism and begins with the
secretory cells’ outgrowth with the occurrence of a mutation in the TP53 (p53 signature)
and the formation of a serous tubal intraepithelial lesion (STIL). With the acquisition of
additional somatic mutations, serous tubal intraepithelial carcinoma (STIC) is formed, the
cells of which disseminate to the surface of the ovary and form a tumor.

In order to test two hypotheses of the pathogenesis of serous ovarian tumors, miRNA
expression profiles in the BSC, SBT and HGSOC samples were compared relative to the that
in samples of histologically unchanged fallopian tube fimbriae by new-generation sequenc-
ing (NGS). The top miRNAs from the signature of HGSOC were evaluated for specificity
and potential for use as diagnostic molecules while comparing their expression level in the
peripheral blood plasma of patients with various ovarian tumors or endometriosis.
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2. Materials and Methods
2.1. Patients

In total, 122 women aged between 25 and 77-years-old were enrolled in the study
and comprised the following groups: apparently healthy, n = 26; endometriosis, n = 24;
benign serous cystadenoma, n = 18; borderline serous cystadenoma, n = 21; low-grade
serous ovary cancer, n = 10; high-grade serous ovary cancer, n = 23 (Sections 3.1 and 3.3).
Written informed consent was obtained from each patient and the study was approved by
the ethics committee of the National Medical Research Center for Obstetrics, Gynecology,
and Perinatology, named after Academician V.I. Kulakov of the Ministry of Healthcare of
the Russian Federation.

2.2. RNA Isolation from Peripheral Blood Plasma

Venous blood samples from women were collected into S-MONOVETTE tubes con-
taining EDTA KE (Sarstedt AG&Co., Ltd., Nümbrecht, Germany, cat. No. 04.1915.100),
centrifuged for 20 min at 300× g (4 ◦C), followed by plasma collection and re-centrifugation
for 10 min at 16,000× g. RNA was extracted from 200 µL of blood plasma using an
miRNeasy Serum/Plasma Kit (Qiagen, Germany, cat. No. 217184).

2.3. RNA Isolation from Fimbriae and Ovary Tumor Tissues

Fimbriae and ovary tumor tissues were collected for study during surgery and imme-
diately frozen in liquid nitrogen for subsequent storage at –80 ◦C. Total RNA was extracted
from 5–40 mg of tissue using the miRNeasy Micro Kit (Qiagen, Hilden, Germany, catalog
No. 217084), followed by the RNeasy MinElute Cleanup Kit (Qiagen, Germany, catalog
No. 74204). The RNA concentration was measured using the Qubit fluorometer 3.0 (Life
Technologies, Petaling Jaya, Malaysia, cat.Q33216). The sample quality of the total RNA
was examined on the Agilent Bioanalyzer 2100 (Agilent, Waldbronn, Germany, cat. No
G2939A) using the RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA, cat.
No. 5067-1511). Total RNA samples with an RNA integrity number (RIN) of at least 8 were
used for further study.

2.4. miRNA Deep Sequencing

cDNA libraries were synthesized using 500 ng of total RNA from the fimbriae and
ovary tumor tissues using the NEBNext® Multiplex Small RNA Library Prep Set for
Illumina® (Set11 and Set2, New England Biolab®, Frankfurt am Main, Germany, cat.
No. E7300S, E7580S), amplified for 14 and 18 PCR cycles, respectively, and sequenced
on the NextSeq 500 platform (Illumina, San Diego, AC, USA, cat. No. SY-415-1001). The
adapters were removed with Cutadapt. All trimmed reads shorter than 16 bp and longer
than 30 bp were filtered, and only reads with a mean quality higher than 15 were retained.
The remaining reads were mapped to the GRCh38.p15 human genome and miRBase v21
with the bowtie aligner [33]. Aligned reads were counted with the featureCount tool from
the Subread package [34] and with the fracOverlap 0.9 option, so the whole read was forced
to have a 90% intersection with sncRNA features. Differential expression analysis of the
sncRNA count data was performed with the DESeq2 package [35].

2.5. Reverse Transcription and Quantitative Real-Time PCR

Seven microliters from 14 µL of total RNA column eluate (miRNeasy Serum/Plasma
Kit, Qiagen, Germany, cat. No. 217184) extracted from 200 µL of blood plasma, or 250 ng
of total RNA from the fimbriae or ovary tumor tissue, were converted into cDNA in a
reaction mixture (20 µL) containing 1× Hispec buffer, 1× Nucleics mix, and miScript RT,
in accordance with the miScript® II RT Kit protocol (Qiagen, Germany, cat. No. 218161);
then, the sample volume was adjusted with deionized water to 200 µL. The synthesized
cDNA (2 µL) was used as a template for real-time PCR using a forward primer specific for
the studied RNA (Table 1) and the miScript SYBR Green PCR Kit (Qiagen, Germany, cat.
No. 218075). The following PCR conditions were used: (1) 15 min at 95 ◦C and (2) 40 cycles



Life 2022, 12, 2017 4 of 26

at 94 ◦C for 15 s, an optimized annealing temperature (52–62 ◦C) for 30 s and 70 ◦C at
30 s in a StepOnePlusTM thermocycler (Applied Biosystems, Waltham, MA, USA, cat.
No. 4376600). The relative expression of miRNA in the blood plasma sample was deter-
mined by the ∆Ct method using miR-30d-5p as the reference RNA. The relative expression
of miRNA in the tissue sample was determined by the ∆Ct method using SNORD68 as the
reference RNA.

Table 1. miRNA parameters.

miRNA

miRNA Accession Number
(miRBase), available online:

http://www.mirbase.org/ (accessed
on 15 August 2022)

Nucleotide Sequence of Sense
Primer for PCR, 5’-3’

PCR Primer Annealing
Temperature, ◦C

hsa-miR-16-5p MIMAT0000069 TAGCAGCACGTAAATATTGGCG 62

hsa-miR-17-5p MIMAT0000070 CAAAGTGCTTACAGTGCAGGTAG 55

hsa-miR-20a-5p MIMAT0000075 TAAAGTGCTTATAGTGCAGGTAG 52

hsa-miR-93-5p MIMAT0000093 CAAAGTGCTGTTCGTGCAGGTAG 55

hsa-miR-425-5p MIMAT0003393 AATGACACGATCACTCCCGTTGA 60

hsa-miR-101-3p MIMAT0000099 TACAGTACTGTGATAACTGAA 55

hsa-miR-140-3p MIMAT0004597 TACCACAGGGTAGAACCACGG 55

hsa-miR-30d-5p MIMAT0000245 TGTAAACATCCCCGACTGGAAG 55

2.6. Immunohistochemistry

Tissue samples were fixed using 10% buffered formalin solution. Four to five-micrometer
sections of formalin-fixed paraffin-embedded specimens were cut and immunohistochemi-
cal staining was performed with an automated immunostainer Ventana Benchmark Ultra
and the prescribed Ventana protocol for progesterone receptor (PgR) staining. Monoclonal
antibodies against PgR (clone 1E2) manufactured by Ventana were used, recognized A and
B isoforms of PgR. Immunohistochemical results were evaluated in a semi-quantitative
manner and scored according to intensity and the percentage of positively stained nuclei
with an Allred scale. The Allred scale is a clinical instrument based on the percentage of
cells that are stained by immunohistochemistry for steroid receptors (on a scale of 0 to 5)
and the intensity of that staining (on a scale of 0 to 3, for a possible total score of 8 [36].
Appropriate controls were included.

2.7. Statistical Analysis of the Obtained Data

For statistical processing, scripts written in R language [34] and RStudio [37] were
used. The correspondence of the analyzed parameters to the normal distribution law was
assessed by the Shapiro–Wilk test. When the distribution of data was different from normal,
the Mann–Whitney test for paired comparison was used, and data were described as the
median (Me) and Q1 and Q3 quartiles in the format Me (Q1; Q3). Since both quantitative
and qualitative characteristics were analyzed, a correlation analysis was performed using
Spearman’s nonparametric correlation test. The 95% confidence interval for the correlation
coefficient was determined using the Fisher transformation. The value of the threshold
significance level (p) was taken as equal to 0.05. If the p value was less than 0.001, then
p was indicated in the format p < 0.001.

3. Results
3.1. miRNA Signatures of the BSC, SBT and HGSOC According to NGS Data

In order to test two hypotheses of the pathogenesis of serous ovarian tumors, tissue
samples from patient cohort 1 (Table 2) were used to compare miRNA expression profiles
in the BSC, SBT and HGSOC samples with that in samples of histologically unchanged
fallopian tube fimbriae by NGS.

http://www.mirbase.org/
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Table 2. Sample characteristics of patient cohort 1.

Sample
ID

Sample
Description

Location in
Lower
Pelvis

Patient
ID Age

Menstrual
Cycle
Day

Duration of
Menopause,

Years
Diagnosis FIGO

[38]
pTNM

[39] NGS PCR

s26 Normal
fimbriae left side

P1 27 20 0
Endometriosis of the

sacro-uterine ligament. Mature
cystic teratoma of the left ovary

- - Yes Yes

s27 Normal
fimbriae right side - - No Yes

s25 Normal
fimbriae right side P2 30 13 0

Serous cystadenoma of the left
ovary, bicornuate uterus with
non-functioning closed horn

- - Yes Yes

s11 Normal
fimbriae right side

P3 71 0 21
Right ovarian benign serous

cystadenoma

- - No Yes

s12 BSC right side - - No Yes

s28 Normal
fimbriae left side

P4 64 0 12
Right ovarian benign serous

cystadenoma

- - No Yes

s29 Normal
fimbriae right side - - No Yes

s30 BSC right side - - Yes Yes

s5 Normal
fimbriae left side

P5 77 0 22 Benign serous cystadenomas of
both ovaries

- - No Yes

s7 Normal
fimbriae right side - - No Yes

s6 BSC left side - - Yes Yes

s8 BSC right side - - Yes Yes

s15 Normal
fimbriae right side

P6 45 28 0
Right ovarian benign serous

cystadenoma
- - Yes Yes

s16 BSC right side - - No Yes

s4 BSC right side P7 69 0 19 Benign serous cystadenomas of
both ovaries - - No Yes

s2 SBT right side P8 51 0 2

Borderline serous papillary
cystadenoma of the right ovary.
Multiple myoma of the uterine

corpus. Adenomyosis.

Ic1 pT1c1N0M0 Yes Yes

s10 SBT left side P9 29 12 0 Borderline serous papillary
cystadenoma of the left ovary. Ia pT1aCN0M0 Yes Yes

s24 SBT right side P10 27 7 0
Borderline serous papillary
cystadenoma of the right

ovary.
IIa pT2aCN0M0 Yes Yes

s18 HGSOC right side P11 45 0 1 High-grade serous carcinoma
of the right ovary. IIa pT2aCN0M0 Yes Yes

s21 HGSOC right side P12 58 0 10

High-grade serous carcinoma
of the right ovary. Ascites.
Adhesive process in the

abdominal cavity.

IIIa2 pT3aCN0M0 Yes Yes

s14 HGSOC left side P13 44 22 0
High-grade serous carcinomas

of both ovaries. Small-size
uterine myomas.

IIIa2 pT3aCN0M0 No Yes

s22 HGSOC right side P14 53 0 3 High-grade serous carcinoma
of the right ovary. Ascites. IIIa2 pT3aCN0M0 No Yes

s33 HGSOC left side
P15 24 0 28

High-grade serous carcinomas
of both ovaries. Metastases in

the inguinal lymph nodes.
Adhesive process in the

abdominal cavity. Endometrial
polyp.

IVB pT3aN0M1 No Yes

s34 HGSOC right side Yes Yes

The obtained miRNA expression profiles were analyzed by the hierarchical clustering
method, and it was found that samples of HGSOC (s18, s21, s34) form a separate cluster,
which differs markedly from the second cluster formed by SBT samples (s2, s10, s24) and
BSC samples (s6, s8 s30), as demonstrated in Figure 1.
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Figure 1. Hierarchical clustering of NGS data on read counts of miRNA from BSC (s6, s8, s30), SBT
(s2, s10, s24,) and HGSOC (s18, s21, s34) samples.

When comparing the miRNA read counts in the analyzed samples of ovarian tumors
with those in samples of histologically normal fallopian tube fimbriae, the lists of differen-
tially expressed miRNAs were obtained for each type of tumor, namely, for BSC (Table S1,
Sheet 1), for SBT (Table S1, Sheet 2) and for HGSOC (Table S1, Sheet 3). When comparing
identified miRNA signatures for each kind of ovarian serous tumor by constructing a
Venn diagram, the similarity of the BSC and SBT was revealed, but molecular biological
profiles of both kinds of tumors, BSC and SBT, were almost completely different from that
of HGSOC (Figure 2).

The obtained data confirm the hypothesis of two different pathogenetic mechanisms
for the formation of serous ovarian tumors: a common mechanism for BSC and SBT, and
another mechanism for HGSOC (see the Introduction section). The list of miRNAs that
significantly differentiated BSC and SBT from HGSOC is presented in Table S1, Sheet 4. To
validate the NGS data by quantitative RT-PCR, we randomly selected eight miRNAs from
Table S1, Sheet 4, namely: hsa-miR-17-5p, hsa-miR-425-5p, hsa-miR-20a-5p, hsa-miR-93-5p,
hsa-miR-30d-5p and hsa-miR-16-5p, with a high level of expression in HGSOC relative to
BSC and SBT, and hsa-miR-101-3p and hsa-miR-140-3p, with a lower level of expression in
HGSOC relative to BSC and SBT (Table 3).
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Table 3. NGS data on read counts of miRNAs in serous ovarian tumors.

miRNA

log2 (Fold
Change in
Expression

Level)

lfcSE p-Value * s6 s8 s30 s2 s24 s10 s18 s21 s34

BSC SBT HGSOC

hsa-miR-
17-5p 3.2 0.5 3.4 × 10−11 70.0 56.9 48.6 62.1 61.1 90.4 703.3 294.1 675.4

hsa-miR-
425-5p 2.8 0.5 8.9 × 10−9 56.6 48.4 75.5 97.6 53.7 119.5 548.0 357.7 316.9

hsa-miR-
20a-5p 2.8 0.5 3.4 × 10−8 75.8 75.1 73.8 52.8 44.4 65.5 693.2 237.4 607.9

hsa-miR-
93-5p 2.7 0.5 1.8 × 10−7 386.9 207.7 131.6 366.0 218.3 342.7 1487.4 1260.6 2003.0

hsa-miR-
101-3p −2.5 0.5 2.2 × 10−7 989.6 2245.5 2097.1 724.5 1243.3 983.9 353.5 238.5 353.3

hsa-miR-
30d-5p 1.4 0.4 1.5 × 10−4 14401.1 15283.7 11120.3 14318.1 15006.9 12790.1 38252.0 26761.8 46379.9

hsa-miR-
140-3p −1.9 0.5 4.1 × 10−4 1836.6 2932.8 5613.0 2193.9 2908.5 3463.5 717.2 1319.7 709.2

hsa-miR-
16-5p 1.9 0.7 6.9 × 10−3 36.0 50.3 127.5 60.9 35.2 111.6 116.2 249.9 423.5

* Significance value of differences while comparing HGSOC vs. BSC and SBT.

3.2. Validation of NGS Data by Quantitative RT-PCR

The relative expression of hsa-miR-17-5p, hsa-miR-425-5p, hsa-miR-20a-5p, hsa-miR-
93-5p, hsa-miR-30d-5p, hsa-miR-16-5p, hsa-miR-101-3p and hsa-miR-140-3p in all samples
from Table 1 (normal fimbriae, n = 9; BSC, n = 6; SBT, n = 3; HGSOC, n = 6) was determined
by the ∆Ct method using SNORD68 as the reference RNA. To visualize the data obtained, a
box diagram was plotted (Figure 3).
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hsa-miR-
30d-5p 1.4 0.4 1.5 × 10−4 
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Figure 3. Quantitative RT-PCR data on the miRNA expression level (−∆Ct values) in the tissue
samples from patient cohort 1. Data are presented as the median of the “−∆Ct” values, quartiles Q1
and Q3, and outliers as the dots.

A two-tailed Wilcoxon–Mann–Whitney test was used to evaluate the significance of
the differences of the matched groups by miRNA expression level (-∆Ct values), and the
data are presented in Table 3. From Table 4 and Figure 3, it follows that, in HGSOC, the
expression levels of miR-16-5p, miR-17-5p, miR-20a-5p, miR-93-5p and miR-30d-5p are
statistically significantly elevated compared to normal tubal fimbriae or BSC or SBT, which
is consistent with NGS data (Table S1, Sheet 1–4).

Table 4. Wilcoxon–Mann–Whitney test data on pairwise comparison of normal fimbriae, BSC, SBT
and HGSOC groups by miRNA expression level in tissue samples. Significance level (p) values are
indicated for the corresponding compared groups.

miRNA Group Normal
Fimbriae BSC SBT

miR-16-5p BSC 0.2238 1 0.7143

miR-16-5p SBT 0.7273 0.7143 1

miR-16-5p HGSOC 0.0048 0.0087 0.0476

miR-425-5p BSC 0.3277 1 0.5476

miR-425-5p SBT 1 0.5476 1

miR-425-5p HGSOC 0.0663 0.0152 0.1667

miR-17-5p BSC 0.2721 1 1

miR-17-5p SBT 0.1455 1 1

miR-17-5p HGSOC 0.0004 0.0022 0.0238

miR-20a-5p BSC 0.3884 1 0.5476

miR-20a-5p SBT 0.7273 0.5476 1

miR-20a-5p HGSOC 0.0008 0.0022 0.0238

miR-93-5p BSC 0.7756 1 0.0476

miR-93-5p SBT 0.0182 0.0476 1

miR-93-5p HGSOC 0.0004 0.0022 0.0238
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Table 4. Cont.

miRNA Group Normal
Fimbriae BSC SBT

miR-30d-5p BSC 0.4559 1 0.9048

miR-30d-5p SBT 0.8636 0.9048 1

miR-30d-5p HGSOC 0.0016 0.0087 0.0238

miR-140-3p BSC 0.4559 1 0.3810

miR-140-3p SBT 0.4818 0.3810 1

miR-140-3p HGSOC 0.0663 0.0931 0.5476

miR-101-3p BSC 0.8639 1 0.2619

miR-101-3p SBT 0.2091 0.2619 1

miR-101-3p HGSOC 0.1447 0.2403 0.7143

3.3. Evaluation of the Diagnostic Potential of miR-16-5p, miR-17-5p, miR-20a-5p, miR-93-5p
and miR-30d-5p, Circulating in the Peripheral Blood Plasma of Patients with HGSOC

The expression level of miR-16-5p, miR-17-5p, miR-20a-5p, miR-93-5p and miR-30d-5p,
which are tissue-specific for serous ovarian tumors and statistically significantly differ-
entiate HGSOC from BSC and SBT, was analyzed by quantitative RT-PCR in peripheral
blood plasma of the second cohort of patients included in the following groups: 1 con-
trol group of 13 patients aged 33 to 54-years-old (average level of CA125 was equal to
16.5 U/mL in the range from 9.7 to 42.0 U/mL); 2 control groups of 13 patients aged 25
to 33-years-old (average level of CA125 was equal to 11 U/mL in the range from 2 to
19 U/mL); 20 HGSOC patients aged 33 to 77-years-old (average level of CA125 was equal
to 791 U/mL in the range from 30 to 3808 U/mL); 12 BSC patients aged 34 to 64 (average
level of CA125 was equal to 18 U/mL in the range from 4.8 to 31.2 U/mL); 18 SBT patients
aged 27 to 52-years-old (average level of CA125 was equal to 32 U/mL in the range from
2.9 to 143 U/mL); 10 LGSOC patients aged 27 to 54-years-old (average level of CA125
was equal to 324.6 U/mL in the range from 56.3 to 603.9 U/mL); 11 patients with ovarian
endometrioma aged 33–47-years-old (average level of CA125 was equal to 34.9 U/mL in
the range from 14.8 to 52 U/mL); 12 patients with deep infiltrating endometriosis aged
28–42-years-old (average level of CA125 was equal to 45.6 U/mL in the range from 26.2 to
65 U/mL). miR-30d-5p was used as an endogenous control RNA due to minor deviations
in the level in the blood plasma (standard deviation is 0.25) in the entire second cohort
of patients.

Principal component analysis of the miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p
levels in two control and HGSOC groups revealed the formation of two clusters of HGSOC
samples (Figure 4).

Samples from cluster 1 and cluster 2 (Figure 4) were statistically significantly different
in RECIST 1.1 MRI/CT criteria (p = 0.0191): pre-surgery CA 125 level (p = 0.05), tumor size
(tumor length, p = 0.0114; tumor height, p = 0.0192; tumor width, p = 0.0483), surgery time
(p = 0.013), surgery blood loss (p = 0.0175), hsa-miR-16-5p miRNA expression level
(p = 0.0001), hsa-miR-17-5p (p = 0.0001), hsa-miR-20a-5p (p < 0.0001) and hsa-miR-93-
5p (p < 0.0001). When analyzing the expression level of the progesterone receptor in
HGSOC tissues, a negative immunohistochemical reaction was detected in 12 out of 13 sam-
ples (92.3%) of cluster 1 HGSOC, while a positive immunohistochemical reaction was
detected in 5 out of 7 samples (71.4%) of cluster 2 HGSOC. Representative images of the
immunohistochemical staining of HGSOC tissue sections from clusters 1 and 2 are shown
in Figure 5.
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Figure 4. Principal component analysis (PCA) plot based on the miRNA dataset in the control and
HGSOC groups.

Spearman correlation analysis revealed that the expression level of the progesterone
receptor in the HGSOC tissue was statistically significantly inversely correlated with the
level of miR-17-5p (r = −0.46, p = 0.043) and miR-16-5p (r = −0.49, p = 0.0282), which in turn
were inversely correlated with tumor size (length: r = −0.58 and p = 0.0069 for miR-17-5p,
r = −0.75 and p = 0.0002 for miR-16-5p; width: r = −0.64 and p = 0.0022 for miR-17-5p,
r = −0.67 and p = 0.0012 for miR-16-5p; height: r = −0.7 and p = 0.0006 for miR-16-5p,
r = −0.7 and p = 0.0006 for miR-16-5p), surgery time (r = −0.63 and p = 0.0035 for miR-17-5p,
r = −0.59 and p = 0.0076 for miR-16-5p), surgery blood loss (r = −0.55 and p = 0.0119 for
miR-17-5p, r = −0.49 and p = 0.0294 for miR-16-5p). Eight out of thirteen (61.5%) patients
with HGSOC (cluster 1) underwent suboptimal cytoreduction, and in the remaining cases
(38.5%), complete cytoreduction was conducted (Table 5). In contrast, five out of seven
patients (71.4%) with HGSOC (cluster 2) underwent a complete cytoreduction and only
28.6% of patients underwent suboptimal cytoreduction (Table 5). According to the RECIST
1.1 criteria, three out of thirteen patients (23%) with HGSOC (cluster 1) showed a complete
tumor response to ongoing chemotherapy (carboplatin AUC 6 + paclitaxel 175 mg/m2);
in 7 out of 13 cases (54%), there was a stabilization of the condition, and in 3 out of
13 cases (23%), there was a progression of the disease (Table 5). Among patients with
HGSOC (cluster 2), there was a complete tumor response to chemotherapy in six out of
seven cases (85.7%) and disease progression in one out of seven cases (14.3%).

The detailed characteristics of 20 HGSOC patients are presented in Table 5.
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Table 5. Sample characteristics of the HGSOC patients.

Sample
ID

Age,
Years FIGO

CA 125 Level
before

Treatment,
U/mL

Risk of
Malignancy
Index (RMI)

Neoadjuvant
Chemotherapy

Tumor
Length, cm

*

Tumor
Width, cm

*

Tumor
Height, cm

*

Ascites,
mL

Extent of
Blood Loss,

mL

Surgery
Time,
min

0—Complete
Cytoreduction

(Size of Residual
Tumor Foci Less

than 2.5 mm),
1—Suboptimal
Cytoreduction

(Size of Residual
Tumor Foci

2.5 mm–2.5 cm)

Progesterone
Receptor

Expression in
Tumor, Allred

Score **

Cluster
Number in

Figure 4

RECIST 1.1
MRI/CT
Criteria:

1—Complete
Response,
2—Partial
Response,
3—Stable
Disease,

4—Progressive
Disease

1008 38 IVB 1244 10,359 No 7 10.5 11 2000 700 480 1 0 1 3

766 54 IIB 29 261 No 4 3 3 20 150 140 0 0 1 1

690 48 IVB 1340 12,060 No 5.5 3.5 4 50 700 206 0 0 1 3

679 51 IIIC 2000 18,000 No 9.5 6 8 1000 750 235 0 0 1 3

649 54 IIIC 200 1800 Yes 5 6 7 3000 650 285 1 0 1 4

15 57 IIC 198 1782 No 18 14 10 1000 400 190 1 0 1 4

19 63 IIIC 41 1206 No 6 2.4 4.6 200 400 265 1 0 1 1

782 45 IIB 517 1551 No 16 16 11.7 50 500 215 0 2 1 3

10 44 IIIB 129 387 No 6 7 6 700 500 175 1 5 1 1

13 71 IIIB 517 1551 yes 13 10 8 10 250 165 1 0 1 4

12 45 IIA 60 180 No 4 3 2 10 100 80 0 0 1 3

16 44 IIIC 92 277 No 5 4 4 10 300 185 1 0 1 3

17 47 IA 60 60 No 8.3 7.1 6.6 10 150 151 1 0 1 3

1060 77 IIIC 1203 10,827 No 10 9 8 1200 650 365 0 4 2 1

939 33 IIIC 59 270 No 13 12 10 2000 800 205 1 6 2 1

672 41 IIIC 1088 3264 No 9 7.5 10 1500 800 275 0 3 2 1

684 42 IIIC 1293 3879 No 14 8 6 1500 500 280 0 3 2 1

448 51 IVB 3808 11,424 No 15 17 18 10 3000 360 0 0 2 1

1061 49 IIIC 1756 5540 No 29.9 15 18.8 9000 3000 590 1 0 2 1

11 48 IC 189 567 No 18 10 8 10 300 375 0 6 2 4

* Intraoperative size. ** The Allred score combines the percentage of positive cells and the intensity of the reaction product in most of the carcinomas. Scores of 0–2 are considered
negative. Scores of 3–8 are considered positive.



Life 2022, 12, 2017 12 of 26

Life 2022, 12, x FOR PEER REVIEW 13 of 28 
 

 

 
Figure 5. Immunohistochemical analysis of the HGSOC samples from 1st and 2nd clusters formed 
by PCA in Figure 4. (A) Hematoxylin and eosin and (B) anti-progesterone receptor antibody staining 
of 1st cluster tumor (sample ID 19); (C) hematoxylin and eosin and (D) anti-progesterone receptor 
antibody staining of the 2nd cluster tumor (sample ID 672). 

The “-ΔСt” values in two HGSOC molecular subtypes were compared with those in 
two control groups (control 1, control 2), as well as with groups of women with other 
serous ovarian tumors and groups of women with endometriosis. In spite of the fact that 
only ovarian clear cell carcinoma and endometrioid ovarian cancer have links to 
endometriosis, groups of women with ovarian endometriosis and deep infiltrating 
endometriosis were included in this study as a variant of the female reproductive organ 
diseases. Furthermore, the endometrium is derived from the intermediate mesoderm via 
mesenchymal-to-epithelial transition during the development of the urogenital system, 
and during the pathogenesis of deep infiltrating endometriosis, endometrial epithelial 
cells may be prone to return to this state via epithelial-to-mesenchymal transition (EMT) 
[40]. In light of the above, we aimed to compare the blood plasma of patients with HGSOC 
and pelvic endometriosis by the quantitation of the miR-16-5p, miR-17-5p, miR-20a-5p 
and miR-93-5p as the key molecules in the EMT (see Section 3.5). The results of the 
comparison are presented in the form of box diagrams in Figure 6, Table 6, with indication 
of the “-ΔСt” median values and Q1 and Q3 quartiles, and Table 7, with indication of the 
significance of differences between the compared groups using a two-sided Wilcoxon–
Mann–Whitney test. It was found that miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p 
significantly differentiated the HGSOC of the cluster 1 group from the following groups: 
(i) HGSOC of cluster 2, (ii) LGSOC, (iii) SBT, (iv) BSC, (v) ovarian endometrioma and (vi) 
deep infiltrating endometriosis. At the same time, in comparison with the control groups, 
which differed in the patients’ age (control 1, 33–54-years-old; control 2, 25–33-years-old), 
the level of expression of all four miRNAs was significantly higher in the group of patients 
with HGSOC of cluster 1 than in all other groups of patients with serous tumors and 
groups of patients with endometriosis. Importantly, the two control groups differed 
statistically significantly in their levels of circulating miR-93-5p (p = 0.0096) and miR-16-
5p (p < 0.0001), with elevated levels of their expression in the older group. On the contrary, 
no dependence of miR-17-5p and miR-20a-5p levels in peripheral blood plasma on the age 

Figure 5. Immunohistochemical analysis of the HGSOC samples from 1st and 2nd clusters formed by
PCA in Figure 4. (A) Hematoxylin and eosin and (B) anti-progesterone receptor antibody staining
of 1st cluster tumor (sample ID 19); (C) hematoxylin and eosin and (D) anti-progesterone receptor
antibody staining of the 2nd cluster tumor (sample ID 672).

The “-∆Ct” values in two HGSOC molecular subtypes were compared with those in
two control groups (control 1, control 2), as well as with groups of women with other serous
ovarian tumors and groups of women with endometriosis. In spite of the fact that only
ovarian clear cell carcinoma and endometrioid ovarian cancer have links to endometriosis,
groups of women with ovarian endometriosis and deep infiltrating endometriosis were in-
cluded in this study as a variant of the female reproductive organ diseases. Furthermore, the
endometrium is derived from the intermediate mesoderm via mesenchymal-to-epithelial
transition during the development of the urogenital system, and during the pathogenesis
of deep infiltrating endometriosis, endometrial epithelial cells may be prone to return to
this state via epithelial-to-mesenchymal transition (EMT) [40]. In light of the above, we
aimed to compare the blood plasma of patients with HGSOC and pelvic endometriosis
by the quantitation of the miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p as the key
molecules in the EMT (see Section 3.5). The results of the comparison are presented in the
form of box diagrams in Figure 6, Table 6, with indication of the “-∆Ct” median values
and Q1 and Q3 quartiles, and Table 7, with indication of the significance of differences
between the compared groups using a two-sided Wilcoxon–Mann–Whitney test. It was
found that miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p significantly differentiated
the HGSOC of the cluster 1 group from the following groups: (i) HGSOC of cluster 2,
(ii) LGSOC, (iii) SBT, (iv) BSC, (v) ovarian endometrioma and (vi) deep infiltrating en-
dometriosis. At the same time, in comparison with the control groups, which differed in the
patients’ age (control 1, 33–54-years-old; control 2, 25–33-years-old), the level of expression
of all four miRNAs was significantly higher in the group of patients with HGSOC of cluster
1 than in all other groups of patients with serous tumors and groups of patients with
endometriosis. Importantly, the two control groups differed statistically significantly in
their levels of circulating miR-93-5p (p = 0.0096) and miR-16-5p (p < 0.0001), with elevated
levels of their expression in the older group. On the contrary, no dependence of miR-17-5p
and miR-20a-5p levels in peripheral blood plasma on the age of the patients was found,
and these two miRNAs were specific plasma markers of progesterone receptor-negative
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HGSOC (cluster 1), statistically significantly differentiating patients with this subtype of
HGSOC from apparently healthy women and patients with other types of serous ovarian
tumors or external genital endometriosis. In the blood plasma of patients with HGSOC,
highly expressing the progesterone receptor, a statistically significant decrease in the level
of miR-93-5p was found, in contrast to patients with a progesterone receptor-negative
HGSOC tissue, in whose blood plasma a statistically significant increase in the level of
miR-93-5p was detected, when compared with control group 1. A statistically significant
decrease in the level of miR-93-5p was also found in the blood plasma of patients with
endometrioid ovarian cysts when compared with control group 1, so this miRNA cannot
be considered a unique HGSOC marker.
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Figure 6. Comparative analysis of miRNA expression level in blood plasma samples of apparently
healthy women, patients with different histotypes of serous ovarian tumors, endometriosis by
quantitative real-time PCR. Data are presented as the median of the “-∆Ct” values, quartiles Q1 and
Q3, and outliers as the dots.

Table 6. miRNA expression levels in blood plasma samples of apparently healthy women, patients
with various histotypes of ovarian tumors and endometriosis.

miR-16-5p * miR-17-5p * miR-20a-5p * miR-93-5p *

Control 1 3.96 (−4.06; −3.64) −3.07 (1.31; 4.08) −2.76 (0.79; 3.83) −2.57 (1.88; 3.07)
Control 2 0.59 (−1.5; −0.2) −3.81 (2.96; 4.94) −3.34 (2.35; 4.94) −4.41 (2.87; 5.45)

HGSOC, cluster 1 5.06 (−5.51; −3.91) −0.21 (−0.37; 1.35) −0.22 (−0.47; 1.05) −1.01 (0.19; 2.46)
HGSOC, cluster 2 3.03 (−3.9; −2.33) −3.69 (3.44; 4.47) −3.75 (3.59; 4.47) −3.94 (3.63; 4.53)

LGSOC 2.45 (−3.21; −2.06) −4.32 (3.54; 4.86) −3.88 (2.25; 4.42) −4.17 (3.54; 4.63)
SBT 2.4 (−3.23; −1.89) −2.24 (1.33; 3.96) −2.31 (0.97; 4.39) −2.95 (1.95; 4.83)
BSC 2.22 (−3.45; −1.39) −2.79 (1.06; 4.69) −1.89 (0.91; 3.42) −2.87 (1.2; 4.54)

Ovarian endometrioma 3.22 (−3.98; −2.51) −3.39 (1.69; 4.46) −1.76 (0.74; 3.87) −4.39 (3.84; 5.19)
Deep infiltrating

endometriosis 1.97 (−2.87; −1.25) −2.54 (1.9; 3.58) −2.11 (1.85; 2.85) −3.4 (2.81; 5.85)

* Data are presented as median values “-∆Ct”, first and third quartiles, namely: Me (Q1; Q3).
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Table 7. Results of statistical analysis of miRNA expression levels in blood plasma samples of
apparently healthy women, patients with various histotypes of ovarian tumors and endometriosis.

miRNA Group
Control 1

(33–54 Age)
*

Control 2
(25–33 Age)

*

HGSOC,
Cluster 1 *

HGSOC,
Cluster 2

*

LGSOC
* SBT * BSC *

Ovarian En-
dometrioma

*

Deep
Infiltrating

Endometrio-
sis
*

miR-17-5p Control 2
(25–33 age) 0.1077 NA NA NA NA NA NA NA NA

miR-17-5p HGSOC,
cluster 1 0.017 0 NA NA NA NA NA NA NA

miR-17-5p HGSOC,
cluster 2 0.2441 0.9699 0.0024 NA NA NA NA NA NA

miR-17-5p LGSOC 0.1306 0.935 0.0019 0.7925 NA NA NA NA NA

miR-17-5p SBT 0.6787 0.0202 0.0224 0.0895 0.0987 NA NA NA NA

miR-17-5p BSC 0.7689 0.2174 0.0031 0.3355 0.5387 0.5732 NA NA NA

miR-17-5p Ovarian en-
dometrioma 0.649 0.1639 0.0108 0.3502 0.3494 0.412 0.9279 NA NA

miR-17-5p

Deep
infiltrating

endometrio-
sis

1 0.0594 0.0031 0.1246 0.2829 0.6615 0.8428 0.8328 NA

miR-93-5p Control 2
(25–33 age) 0.0096 NA NA NA NA NA NA NA NA

miR-93-5p HGSOC,
cluster 1 0.0413 2.00 × 10−4 NA NA NA NA NA NA NA

miR-93-5p HGSOC,
cluster 2 0.0125 0.9699 0.0062 NA NA NA NA NA NA

miR-93-5p LGSOC 0.0493 0.4952 0.0054 0.9578 NA NA NA NA NA

miR-93-5p SBT 0.3732 0.093 0.0106 0.3432 0.7595 NA NA NA NA

miR-93-5p BSC 0.6495 0.1257 0.0667 0.2496 0.4176 0.8187 NA NA NA

miR-93-5p Ovarian en-
dometrioma 0.0073 0.9188 0.0016 0.6605 0.5116 0.2204 0.1896 NA NA

miR-93-5p

Deep
infiltrating

endometrio-
sis

0.0597 0.8667 0.0017 0.4371 0.8212 0.2665 0.2657 0.4865 NA

miR-16-5p Control 2
(25–33 age) 0 NA NA NA NA NA NA NA NA

miR-16-5p HGSOC,
cluster 1 0.1184 0 NA NA NA NA NA NA NA

miR-16-5p HGSOC,
cluster 2 0.2441 0.0016 0.0365 NA NA NA NA NA NA

miR-16-5p LGSOC 0.008 0.0192 0.0029 0.4923 NA NA NA NA NA

miR-16-5p SBT 0.0073 0.001 0.0066 0.4537 0.9812 NA NA NA NA

miR-16-5p BSC 0.0457 0.0087 0.0063 0.3845 0.9742 0.7231 NA NA NA

miR-16-5p Ovarian en-
dometrioma 0.0821 6.00 × 10−4 0.0037 0.8836 0.1971 0.2962 0.4491 NA NA

miR-16-5p

Deep
infiltrating

endometrio-
sis

6.00 × 10−4 0.0414 5.00 × 10−4 0.0668 0.381 0.3048 0.5512 0.0688 NA

miR-20a-5p Control 2
(25–33 age) 0.2005 NA NA NA NA NA NA NA NA

miR-20a-5p HGSOC,
cluster 1 0.0044 1.00 × 10−4 NA NA NA NA NA NA NA

miR-20a-5p HGSOC,
cluster 2 0.21 0.791 0.0062 NA NA NA NA NA NA

miR-20a-5p LGSOC 0.1306 0.8065 1.00 × 10−4 0.9578 NA NA NA NA NA
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Table 7. Cont.

miRNA Group
Control 1

(33–54 Age)
*

Control 2
(25–33 Age)

*

HGSOC,
Cluster 1 *

HGSOC,
Cluster 2

*

LGSOC
* SBT * BSC *

Ovarian En-
dometrioma

*

Deep
Infiltrating

Endometrio-
sis
*

miR-20a-5p SBT 0.8902 0.1896 0.0027 0.2796 0.2449 NA NA NA NA

miR-20a-5p BSC 0.7689 0.1523 0.0119 0.2496 0.0804 0.8187 NA NA NA

miR-20a-5p Ovarian en-
dometrioma 0.8646 0.2171 0.0362 0.2561 0.1971 0.8079 0.8801 NA NA

miR-20a-5p

Deep
infiltrating

endometrio-
sis

0.4696 0.0529 0.0021 0.1025 0.1072 0.8841 0.8428 0.9759 NA

* The table shows the values of the statistical significance of the differences between the compared groups using
the two-tailed Wilcoxon–Mann–Whitney test.

3.4. Evaluation of the Prognostic Potential of miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p,
Circulating in the Peripheral Blood Plasma of Patients with HGSOC

In light of the above, the possible link between the level of circulating miR-16-
5p, miR-17-5p, miR-20a-5p and miR-93-5p in the blood of HGSOC patients with sur-
gical outcome and post surgery response to chemotherapy was evaluated. This anal-
ysis of the data is relevant, since there is no clinically applicable biomarker that can
predict suboptimal cytoreduction, which is associated with poor overall survival, as dis-
cussed in a number of systematic reviews [41–43]. To develop prediction models of lo-
gistic regression, clinical characteristics of the HGSOC patients from Table 4 (surgical
outcome—complete or suboptimal cytoreduction; RECIST 1.1 data—complete response or
resistance to chemotherapy in the case of partial response, stable disease and progressive
disease) and -∆Ct values for each of the miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p
were used. The developed models are presented in Figure 7.
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Figure 7. Models of logistic regression for HGSOC patients based on the ∆Ct values for the miR-
16-5p, miR-17-5p, miR-20a-5p and miR-93-5p in the peripheral blood plasma. (a) Prediction for
complete cytoreduction; (b) Prediction for complete response to post surgery chemotherapy. For the
combination of miRNA molecules indicated by a red asterisk, the parameters and formula of the
logistic regression model are given.
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It was found that the combined determination of the level of circulating miR-16-
5p, miR-17-5p, miR-20a-5p and miR-93-5p circulating in blood plasma in patients with
primary HGSOC tumors makes it possible to predict the optimal cytoreduction with
80.1% sensitivity and 70% specificity (Figure 7a, model 1: p = 0.022, TPR = 0.8, FPR = 0.3,
probability of optimal cytoreduction at calculated values according to formula of the model
> 0.4108) and the complete response to post surgery chemotherapy with 77.8% sensitivity
and 90.9% specificity (Figure 7b, model 1: p = 0.001, TPR = 0.78, FPR = 0.09, probability of
chemosensitivity at calculated values according to formula of the model > 0.5972). The use
of these models can predict cases where complete cytoreduction cannot be achieved due
to difficulty in resecting tumors that have invaded vital organs. In such cases it would be
preferable to forego primary cytoreduction surgery and use neoadjuvant chemotherapy to
reduce the residual tumor mass and increase the chances of achieving complete interval
cytoreduction. For instance, the addition of hyperthermic intraperitoneal chemotherapy
to interval cytoreductive surgery after three cycles of neoadjuvant chemotherapy with
carboplatin and paclitaxel resulted in a 12-month increase in overall survival for patients
who were not eligible for an initial macroscopic complete resection [44].

3.5. Functional Significance of miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p in
Determination of Different HGSOC Subtypes

Using the MiRTargetLink database ( https://ccb-compute.cs.uni-saarland.de/mirtargetlink2
/bidirectional_search/) (accessed on 30 August 2022), we focused our attention on those miRNA
target genes that can determine the proliferative, invasive and metastatic properties of primary HG-
SOC tumors, which in turn determine the success of cytoreduction and sensitivity to postoperative
chemotherapy (Figure 8).

According to this database, miR-17-5p, miR-20a-5p and miR-93-5p negatively regulate
TRIM8, which is a direct target of the P53 gene [45]—the main participant in the p53 tumor
suppressor pathway [46–48]. In turn, the p53 protein level is controlled by miR-16-5p
(MiRTargetLink data) and by TRIM8, aninducer of the degradation of the MDM2 protein,
which is the principal negative regulator of p53 stability [45]. TRIM8 deficit, in particular
due to miR-17-5p upregulation, contributes to the impairment of p53-mediated responses
to chemotherapeutic drugs and results in chemoresistance and oncogenesis [49]. Moreover,
miR-17-5p may perform a role in the development of drug resistance in cancer cells by
targeting the anti-apoptotic p21 protein (CDKN1A) [50]. Therefore, there is a feedback
loop with the participation of p53, TRIM8 and miRNAs, which control their protein levels:
p53 promotes the transcription of TRIM8, which, in turn, interacting with p53, induces its
stabilization and the p53-dependent transcriptional activation of cell cycle arrest genes,
such as CDKN1A and GADD45, and this axis is under the control of miR-17-5p, miR-
20a-5p, miR-93-5p and miR-16-5p (according to MiRTargetLink data) in defining drug
responsiveness and cell proliferation (Figure 8a).

The two molecular subtypes of HGSOC that we detected differed in the expression
level of the progesterone receptor (PGR-negative and PGR-positive), and the PGR-negative
phenotype of HGSOC was associated with the upregulation of miR-17-5p, miR-20a-5p,
miR-93-5p and miR-16-5p. Although these miRNAs do not directly regulate the level of
the PGR, their experimentally proven target genes are transcription factors binding to
promoter/enhancer sites of the PGR gene, according to the MiRTargetLink database; in
particular: miR-17-5p downregulates PKNOX1, CBX8, MNT; miR-16-5p—POLR2A, TBP,
SMARCA4, NFIC, PKNOX1, ZFX; miR-93-5p—PKNOX1, CBX8, ZIC2, POLR2A, EZH2;
miR-20a-5p—PKNOX1, CBX8. The common target for all four miRNAs is the homeobox
protein PKNOX1 gene. The action of progesterone through the PGR mediates the transcrip-
tional regulation of DREAM complex proteins supporting the DREAM/DYRK1-mediated
repression of cell cycle-dependent genes [51]. According to the MiRTargetLink data, the
expression level of some of the DREAM complex proteins, namely, E2F5, REL1 and REL2,
are under the control of the miR-17-5p, miR-20a-5p and miR-93-5p (Figure 8b), providing
the proliferative potential and survival of the tumor cells.

https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/bidirectional_search/
https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/bidirectional_search/
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The experimentally proven target genes of miR-17-5p, miR-20a-5p and miR-93-5p
(from MiRTargetLink data base) are RUNX3, PTEN and SMAD4, which cause the acti-
vation of the downstream EMT signaling in the case of their decreased expression level
(Figure 8c); in particular: upregulation of mesenchymal proteins—vimentin, FN1, N-
cadherin, Snail, ZEB2/SiP1, YB-1, and downregulation of epithelial proteins—E-cadherin,
ZO-1, α-catenin [52–60]. It was found that cells undergoing EMT are characterized by
the antiproliferative properties with high invasiveness, metastatic ability, resistance to
apoptosis, radio- and chemotherapy [61–63]. So it was suggested that high cell proliferation
is necessary for the initial stages of the pathogenesis of primary tumor and its maintenance,
while inhibition of cell division is a key step for ensuring the invasion and migration of
tumor cells [58].

4. Discussion

Ovarian cancer incidence and mortality cases increased by 88.01 and 84.20%, respec-
tively, from 1990 to 2017, all over the world [64]. Serous ovarian cancer accounts for 75–80%
of ovarian malignancies. A better understanding of the pathogenesis and molecular classi-
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fication of ovary cancer is urgently needed because the mortality rate has remained high
and five-year survival rates are low; in particular, for the dominant tumor histologic type
in epithelial ovarian cancers, HGSOC, these values are approximately equal to 40.6% [65]
or to 70–80% [66].

In the present study, we focused on the identification of the miRNA signature of
HGSOC tissue in comparison with other serous ovarian tumors (BSC and SBT) by deep
sequencing, followed by the validation of selected miRNAs by real-time quantitative
PCR. An analysis of differentially expressed miRNAs in ovarian tumor tissues relative to
normal fallopian tube fimbriae revealed scant similarity between HGSOC and BSC (3.2%
of 128 analyzed miRNAs) and SBT (7.9%), but a greater similarity between BSC and SBT
(33%). The hierarchical clustering of miRNA profiles of tumor tissues demonstrated the
formation of a separate cluster of HGSOC samples and a common cluster of BSC and
SBT samples. The data obtained confirm the dualistic classification of epithelial ovarian
cancers based on the differences in morphological types with specific molecular changes
and differences in prognosis [67]: type I ovarian neoplasms are usually low-grade tumors
without TP53 mutations, with slow progression and with a good prognosis if they are
diagnosed in the early stages (LGSOC, mucinous carcinomas, clear cell carcinomas, and
endometroid ovarian carcinomas), and type II ovarian neoplasms (HGSOC), which are
characterized by mutations of TP53 and frequently diagnosed in the advanced stages
with a poor prognosis. The precursor lesion of HGSOC is considered to be serous tubal
intraepithelial carcinomas (STICs), which was proved by revealing identical somatic TP53
mutations in STICs and concurrent HGSOCs [68] and the identification of STICs in 11–61%
of cases with HGSOC [69]. As for LGSOC, it is thought to progress from BSC in a stepwise
fashion via SBT, which was confirmed by an in vitro carcinogenic model [12] and by genetic
analyses of the serous cystadenomas [70]. Another hypothesis is that a papillary tubal
hyperplasia (PTH) is the source of origin for LGSOC. According to this hypothesis, the PTH,
as a precancerous lesion, develops in the fallopian tube and involves the ovary secondary
having the same morphology as an SBT (papillary structures, branching, psammoma bodies
and salpingoliths) [71–73]. Consequently, only the progression from an SBT to LGSOC
occurs in the ovary.

Two subtypes of HGSOC were identified, which significantly differ in the level of
expression of the progesterone receptor in the tumor tissue, the secretion of miR-16-5p,
miR-17-5p, miR-93-5p and miR-20a-5p, and the level of serum CA125, tumor size, surgical
outcome (optimal or suboptimal cytoreduction) and response to chemotherapy. In partic-
ular, we identified patients with the progesterone receptor-negative subtype of HGSOC,
characterized by an increased level of miR-16-5p, miR-17-5p, miR-93-5p and miR-20a-
5p in peripheral blood, by lower serum CA-125 levels, smaller tumor size, suboptimal
cytoreduction in 61.5% of cases and a complete response to adjuvant chemotherapy in
only 20% of cases, in comparison with the progesterone receptor-positive subtype of HG-
SOC, with optimal cytoreduction in 71.4% of cases and a complete response to adjuvant
chemotherapy in 85.7% of cases. It was found here that the combined determination of the
level of circulating miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p circulating in blood
plasma in patients with primary HGSOC tumors makes it possible to predict the optimal
cytoreduction with 80.1% sensitivity and 70% specificity; furthermore, the combination
of miRNAs can predict a complete response to post surgery chemotherapy with 77.8%
sensitivity and 90.9% specificity. It is assumed that the success of cytoreductive surgery, as
well as response to chemotherapy, are dictated by EOC biology, and the low probability of
optimal cytoreduction is associated with the progression of the disease and poor overall
survival [41,42,74]. While comparing primary tumors from optimally and suboptimally
cytoreduced patients, Liu Z. and colleagues [74] revealed the gene network associated
with increased stromal activation and lymphovascular invasion of a distinct mesenchymal
molecular subtype of EOC. This molecular signature (POSTN, FAP, TIMP3, CTSK, TNFAIP6,
CXCL14, FAP, TIMP3 and COL11A1) is overlapped with the gene signature of suboptimal
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debulking identified by Riester M. [75] and by Tucker S. [76], among which the expression
of POSTN, FAP and TIMP3 was associated with therapeutic resistance in EOC [77].

The main regulators of the expression of key genes involved in the pathogenesis of
certain molecular subtypes of serous ovarian cancer are small non-coding RNAs, including
miRNAs. These small molecules could be used as diagnostic and prognostic molecules [78],
as they regulate multiple pathways implicated in cell proliferation, differentiation, cell
migration and apoptosis [79,80], by targeting mRNAs and repressing translation as a part
of the RISC [81,82]. Kuznetsov VA and colleagues, using big-data analytics, identified
19 miRNAs and 31 miRNAs expressed in tumors as prognostic classifiers, allowing the
separation of the HGSOC patients into low-, intermediate- and high-risk subgroups with
a five-year survival rate of 51.6–85%, 20–38.1% and 0–10%, respectively, which were also
correlated with post surgery chemotherapy response [83]. In particular, low- and high-risk
patients were significantly correlated with the “proliferative, sensitive to chemotherapy”
and “mesenchymal, chemoresistance” subtypes of HGSOC, respectively. It has been estab-
lished that it is rapidly dividing cells that are sensitive to chemotherapy, which explains
the resistance to chemotherapy of a mesenchymal-type tumor with signs of stemness, in
contrast to a proliferative-type tumor with a good response to chemotherapy [66,84–87].
In the present study, we divided the HGSOC samples into two subtypes according to the
content of miR-16-5p (from mir-15 family), miR-17-5p and miR-20a-5p (from the miR-17/92
cluster of the mir-17 family), and miR-93-5p (from the miR-106b/25 cluster of the mir-17
family) circulating in the blood plasma of patients. The participation of these miRNAs
in the induction of EMT was revealed, in particular, by targeting RUNX3 [52], by the
silencing of CYB7B1 [88], through the PTEN/Akt pathway [59,89] and by downregulating
Smad4 [55].

Our data are in good agreement with those of other colleagues who showed increased
levels of miR-20a-5p, miR-16-5p and miR-93-5p in serous ovarian cancer tissues compared
with the corresponding normal tissues [28,90], upregulated miR-16-5p and miR-17-5p in
the peripheral blood lymphocytes of patients with ovarian cancer [91], and upregulated
miR-93-5p in the serum of patients with SOC [92]. The overexpression of miR-19a and
miR-19b-1, the key oncogenic components of the miR-17-92 cluster, triggers the EMT of
lung cancer cells, providing cancer invasion and metastatic dissemination, the resistance
of tumor cells to radiotherapy and chemotherapy, and apoptosis, associated with poor
prognosis of cancer patients [58]. The authors of this article underline that the upregulation
of cell proliferation is important for the initiation and maintenance of primary tumors, but
during EMT, the proliferative rates of tumor cells decrease to enable them to reach their
new destinations.

The identification of miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p in blood
plasma, elevated in suboptimally versus optimally cytoreduced patients, their increased
HGSOC tissue expression level and the association with the mesenchymal tumor type make
it reasonable to speculate that a changed level of these miRNAs in blood plasma reflects
the biological characteristics of the tumor tissue itself. Jaynish S. Shah with colleagues
proposed a combination of miR-34a-5p and CA125 levels to classify women with an optimal
or suboptimal cytoreduction with an AUC of 0.818 and an accuracy of 0.786 [93]. However,
according to the authors of the study themselves, the elevated miR-34a-5p in the blood
plasma of suboptimally cytoreduced patients did not originate from the tumor tissue itself
but may reflect a systemic inflammatory response to the pattern of spread of HGSOC.
Consistent with our NGS data, miR-34a-5p did not significantly differentiate BSC and SBT
from HGSOC (p = 0.449, data are not shown). That is why we did not validate this miRNA
by RT-PCR in tissue and plasma samples.

We also observed statistically significant differences between the two molecular sub-
types of HGSOC in terms of tumor size, where a smaller tumor volume was characteristic
of progesterone receptor-negative HGSOC, with increased levels of extracellular miR-16-5p,
miR-17-5p, miR-93-5p and miR-20a-5p, and with more aggressive tumor behavior respon-
sible for the failure of optimal surgical resection in most cases. In addition, in our study,
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HGSOC patient groups (PGR-positive and PGR-negative tumors) significantly differed
by the serum CA125 levels, with a more pronounced increase in CA125 in the group of
patients with a high level of expression of the PGR in the tumor. Our data reflect the
proven relationship between CA125 and tumor cell invasiveness through binding with
E-cadherin and β-catenin complexes, and in the case of the downregulation of cell-surface
CA125/MUC16, EMT is promoted [94]. In light of this fact, it is not excluded that the
possibility of increased EMT under decreased CA125 and the upregulation of miR-16-5p,
miR-17-5p, miR-93-5p and miR-20a-5p in the case of PGR-negative HGSOC results in a
smaller tumor size, unresectable tumor and worse survival compared to PGR-positive
HGSOC. According to a systematic review and meta-analysis, the high expression of circu-
lating miR-20a is a risk factor for unfavorable prognosis for patients with cancers [95]. It
was demonstrated that an increased expression of miR-20a could promote the activation of
the NFκB pathway by targeting NFKBIB (alternative name IκBβ) and result in the increased
expression of p65, livin and survivin, which potentially contribute to a decrease in the
gastric cancer cell apoptosis induced by cisplatin and chemoresistance [96]. The other
members of the miR-17/92 cluster have also been associated with an unfavorable prognosis
and reduced overall survival [97–100]. In our study, complete cytoreduction and respon-
siveness to chemotherapy was observed in HGSOC patients with reduced plasma levels of
miR-20a-5p and miR-17-5p relative to controls. On the contrary, a pronounced increased
level of miR-20a-5p and miR-17-5p in patients with HGSOC in blood plasma relative to the
control was associated with the inability to carry out a complete cytoreduction and with an
incomplete response to chemotherapy.

In the present study, we found that two molecular subtypes of HGSOC, with increased
and decreased levels of secretion miR-16-5p, miR-17-5p, miR-93-5p and miR-20a-5p, are
characterized by the absence or presence of progesterone receptor expression, respectively.
Moreover, statistically significant inverse correlations of the expression level of the pro-
gesterone receptor in the HGSOC tissue with the level of circulating miR-17-5p (r = −0.46,
p = 0.043) and miR-16-5p (r = −0.49, p = 0.0282) were estimated. Although miR-16-5p,
miR-17-5p, miR-93-5p and miR-20a-5p do not directly regulate the level of the PGR, their
experimentally proven target genes are transcription factors binding to promoter/enhancer
sites of the PGR gene, according to the MiRTargetLink database. In addition, the common
target for all four miRNAs is found to be the homeobox protein PKNOX1 gene. PKNOX1 (al-
ternative name is PREP1) is a tumor suppressor gene that is linked to the definition of DNA
replication timing of a significant portion of the genome and prevents DNA damage [101].
Unlike normal human tissues expressing PREP1, the vast majority of human cancers lack
PREP1 and are characterized by genomic instability and DNA damage [102,103]. Thus, the
elevated secretion of miR-17-5p, miR-20a-5p, miR-93-5p and miR-16-5p by HGSOC tissue,
associated with high tumor invasiveness and low probability of optimal cytoreduction,
may reflect DNA instability and damage in tumor tissue and provide the PGR-negative
phenotype of HGSOC.

The PGR has a crucial role in protecting against the occurrence of ovarian cancer
by clearance of p53-defective lesions through the TNF-a/RIPK1/RIPK3/MLKL pathway,
inducing cell necroptosis [104]. It is believed that HGSOC, in contrast to other ovarian
cancer subtypes, originates predominantly from serous tubal intraepithelial carcinomas
(STICs) possessing TP53 mutations and showing little to no proliferative activity under the
PGR regulation of DREAM complex genes, repressing 900 cell cycle genes [51]. Whether
the transition from “dormant” STICs with low proliferation to “active” STICs with high
proliferation, able to shed and disseminate, is accompanied by a change in PGR signaling is
not known. However, according to the western blot analyses carried out by Mauro L.J. and
colleagues, all analyzed normal human fallopian tube tissues have a robust expression of
both PGR isoforms; PGR staining was observed in STICs, and this expression was retained
in invasive HGSC tissue, but only ~35% of metastatic HGSC tumors expressed abundant
progesterone receptors [51]. This is consistent with the data of Tone A.A. et al. [105], which
demonstrated a strong downregulation of PGR expression in HGSOC, with >10% positivity
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for PR-A and PR-B in 20% and 25% of all HGSOC cases, respectively. In our HGSOC patient
cohort, 6/20 (30%) showed an Allred score ≥ 3 and were considered positive for PGR-A/B.
Since the level of the PGR expression was found to be different in the two subtypes of
HGSOC we identified, and PGR level was associated with a certain miRNA signature, the
possibility of optimal cytoreduction, and sensitivity to chemotherapy, larger studies are
needed to confirm/refute these relationships.

5. Conclusions

To date, there is no clinically applicable biomarker that can predict suboptimal cytore-
duction. The search for such biomarkers is very important for the HGSOC patient because,
in the case where primary complete cytoreduction cannot be achieved due to difficulty in
resecting tumors that have invaded vital organs, patients are more likely to benefit from
neoadjuvant chemotherapy to reduce the tumor burden and increase the chances of achiev-
ing complete interval cytoreduction surgery. We found that the combined determination
of the level of circulating miR-16-5p, miR-17-5p, miR-20a-5p and miR-93-5p circulating in
blood plasma in patients with primary HGSOC tumors makes it possible to predict optimal
cytoreduction with 80.1% sensitivity and 70% specificity (p = 0.022, TPR = 0.8, FPR = 0.3).
Closer examination of the molecules, in particular, circulating miRNAs, that have already
been identified in association with the mesenchymal subtype of HGSOC and poor overall
survival [7,106–109], in addition to our results, may reveal important information about
the biology of unresectable HGSOC and can make a significant contribution to the creation
of a test system for predicting suboptimal cytoreduction.
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